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Abstract

The Grid scheduler, schedules user jobs on the best available resource in terms of resource

characteristics by optimizing job execution time. Resource failure in Grid is no longer an

exception but a regular occurring event as resources are increasingly being used by the sci-

entific community to solve computationally intensive problems which typically run for days or

even months. It is therefore absolutely essential that these long-running applications are

able to tolerate failures and avoid re-computations from scratch after resource failure has

occurred, to satisfy the user’s Quality of Service (QoS) requirement. Job Scheduling with

Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure

that jobs are executed successfully even when resource failure has occurred. The technique

employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll

back recovery strategy. Check-pointing aims at reducing the amount of work that is lost

upon failure of the system by immediately saving the state of the system. A comparison of

the proposed approach with an existing Ant Colony Optimization (ACO) algorithm is dis-

cussed. The experimental results of the implemented Fault Tolerance scheduling algorithm

show that there is an improvement in the user’s QoS requirement over the existing ACO

algorithm, which has no fault tolerance integrated in it. The performance evaluation of the

two algorithms was measured in terms of the three main scheduling performance metrics:

makespan, throughput and average turnaround time.

Introduction

Grid emerges from solving computational problems which otherwise cannot be solved by an

individual or stand-alone computing systems. This extremely high computing power is

achieved by the optimal utilization of distributed heterogeneous resources which are lying idle.

This has enabled scientists to broaden their simulations and experiments to take into account

more parameters than ever before. Owning to the fact that high performance computing

resources are expensive and hard to access, alternative choices are to use federated resources
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that could comprise computation, storage and network resources from multiple geographically

distributed institutions [1]. As most systems are idle for significant periods of time, it should

be possible to harness their idleness or unused resources and apply them towards projects in

need of such resources. The Grid paradigm emerged, as a result of the resourceful contribu-

tions made by Foster, Carl Kesselman, and Steve Tuecke [2, 3]. Their work put together, led to

the development of the Grid toolkit, that handled computation management, data movement,

storage management and other infrastructure that could handle large Grid computations with-

out restricting themselves to specific hardware and requirement [4].

Due to the dynamic nature of the Grid computing environment, more resources failures

are likely to occur in the environment, which may affect the actual execution time required to

execute already scheduled jobs and thereby degrading the performance of the system. Grid

compute intensive applications or jobs as the case may be and often require much longer exe-

cution time in order to solve a single problem. The huge computing potential of Grid systems

usually remain unexploited due to their susceptibility to failures, such as process failures,

machine crashes, and network failures [5, 6, 7]. The failure of a resource running a user job

has a huge setback on the Grid performance. Hence, in order to ensure high system availabil-

ity, job site failure handling is inevitable. In Grid computing, incorporating fault tolerant algo-

rithms in the course of job scheduling process is often advocated. It is in this light, that an

extension of the work proposed in [8] is extended in this paper by incorporating a fault toler-

ant scheduling algorithm into the Swarm Intelligent Grid Job Scheduling Algorithm proposed

by the author. The existing algorithms however, do not take into consideration Grid resource

failure.

Fault tolerance is responsible for handling the reliability and availability of distributed sys-

tems [9]. Fault tolerance is a capability developed in the system so that it could perform its

function correctly even in the presence of resource failure. It is developed to detect immedi-

ately the occurrence of faults and recover the executable task without participation of any

external agents, thereby, making the system more dependable. In fault tolerance, according to

Garg and Kumar [10], failure is encountered when a system drifts away from its normal behav-

ior. The cause of a failure is called error, which also ultimately depicts some sort of fault or

defect in that system. That is, fault is the actual cause of a failure, and error is just an indication

or sign of a fault. Multiple errors could be due to a fault, and even a single error could be the

cause of multiple failures. With many independent resources cooperating together as one, the

chance of failure of an individual resource increases drastically, particularly if the resources are

very physically dispersed and connected using network links. With the possibility of many

thousands of computing resources operating together, the odds of a long running process not

failing on at least one resource is almost zero [11, 12]. Also, according to Townend and Xu

[13], it was posited that as applications scale to take advantage of Grid resources, their size and

complexity increase drastically. Those systems with complex asynchronous and interacting

activities are very prone to errors and failures due to their extreme complexity. Therefore fail-

ure free applications are unfeasible irrespective of the fault avoidance and fault removal tech-

niques implemented [13]. It is more likely that errors will be aggravated by the fact that many

Grid applications will perform long tasks that may require several days of computation, if not

more.

Most of the scheduling algorithms however, assume that resources are fully reliable and

there is no failure of resource while processing group of tasks. The Grid has so many resources,

such that the probability of some resources failing is very high. Most often, if any of the allo-

cated resources fails during job execution, the job is rescheduled on another resource which

would start executing the same job from scratch. Even though some of these resources satisfy

the criterion of deadline constraint, they still have tendencies toward failure. In such a
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scenario, the scheduler goes ahead to select the same resource for the simple reason that the

Grid resource assured to meet user’s requirements of the jobs. This leads to more time being

consumed executing the user job than expected. This is a setback to the Grid providers and

users. A record number of research contributions, whose efforts ensure the integration of fault

tolerant components into scheduling algorithms in the Grid computing environment, do exist

[14– 16].

The main goal of this paper is to incorporate a fault-tolerant scheduling mechanism into an

ant colony load balancing scheduling algorithm tagged AntZ, which was initially proposed by

Ludwig and Moallem [8]. However, the specific goal of the paper is to design and implement

an efficient fault tolerance algorithm that will:

1. Enable job execution in spite of resource failure in the context of Grid computing

environment.

2. Improve user QoS requirements (e.g. deadline to complete job execution).

3. Reduce the selection probability of resources with more fault occurrence history.

Therefore, we intend to achieve the above goal through the:

1. Incorporation of fault tolerant scheduling algorithms into an existing AntZ or ant colony

optimization (ACO) Grid load balancing algorithm proposed in [8].

2. Implementation and simulation of the proposed scheduling algorithms using GridSim

Toolkit simulator.

3. Performance comparison of ACO (AntZ) with the proposed method in terms of makespan,

average turnaround time, throughput and resource utilization.

4. Statistical analysis of the proposed and existing algorithms’ results with the objective of

drawing a rigorous and fair conclusion.

The remainder of the paper is organized as follows. In Section 2, a review of related schedul-

ing algorithms and fault tolerance scheduling mechanisms in Grid environment is carried out.

In Section 3, the architecture of the scheduling algorithm is discussed. In Section 4, implemen-

tation of a prototype system and performance evaluation of the proposed algorithm is carried

out. Section 5 presents concluding remarks and outlines future directions.

Related work

In [8], two new distributed swarm intelligence inspired load balancing AntZ and Particle

Swarm Optimization (PSO) scheduling algorithms are discussed. In the AntZ approach or

ACO as it is called in this paper, each job submitted to the Grid invokes an ant which searches

through the network to find the best node (lightest loaded node) to deliver the job to. Ants

leave information related to the nodes they have seen as a pheromone in each node which

helps other ants to find lighter resources more easily and also carry the load information of the

visited nodes along with themselves. However, the decision making as to which node to take

next is either by looking at the load information table of the nodes or they choose a node ran-

domly by the probability of a mutation factor. At the end, the ant delivers the job to a resource

and dies. In the PSO approach, as jobs are submitted to the node in the network, they go in a

local queue list of jobs in each node waiting for their turn to be executed. Each resource in the

network is considered to be a particle and nodes communicate with each other about their

load information to find a better candidate to execute their workload. The amount of workload

being submitted is being controlled by a threshold defined by the load difference. However,
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one major limitation of the ACO scheduling algorithm is the lack of resource failure handling,

and which is the main goal the proposed work intends to address.

Fault tolerant measures, in Grid environment are different from those of general distributed

systems [17]. Fault tolerance is a crucial issue in Grid computing. Also in large-scale Grids, the

probability of resource failure is much greater than in conventional parallel systems. Thus,

fault tolerance is an area of exploitation in Grid computing. Nazir, et al., [18], avers that with

the emergence of Grid computing more emphasis will be on fault tolerance, and that Grid

computing will impose a number of unique new concepts and technical challenges to fault-tol-

erance researchers. The three fault tolerance techniques highlighted in their work include;

checkpointing, replication and adaptability. Similarly, in [18], an adaptive fault tolerant job

scheduling strategy for Grid scheduling called CFTGS is proposed. The fault tolerant strategy

of the CFTGS is checkpointing-based. It maintains the fault index of Grid resources. The

scheduler makes scheduling decisions according to the value of resource fault index and

response time. Simulation results show that the proposed algorithm is able to execute more

jobs successfully within the specified deadline and allotted budget, while improving the overall

execution time and minimizing the execution cost of Grid jobs.

Checkpointing is one of the prevalent techniques used to provide fault-tolerance in unreli-

able systems [5]. It records the snapshot of the entire system state in order to restart the appli-

cation after the occurrence of a resource failure. It is applied specifically to areas where there

are demands for high QoS with respect to non-violation of service level agreement (SLA)

between the system users and the resource providers [19]. Checkpointing performs the task of

saving the system state into a permanent storage location so as to retain the current state of the

system processes in the course of system failure, and as such the system would not have to start

the execution process all over from the scratch, but at the last checkpoint read. Usually all

checkpoint measurement data collected are stored either on a temporary or stable storage

medium. A rollback mechanism is incorporated into the checkpoint, to allow system restore at

any state of the running process [20]. Checkpointing strategy can be applied to any system or

program that is susceptible to failures. However, other options of fault handling with regards

to load balancing in the Grid have been exploited. Next, we briefly discuss the fault tolerant

system proposed by Balasangameshwara and Raju [14].

In [14], a fault tolerant hybrid load balancing strategy referred to as AlgHybrid_LB, which

takes into account Grid architecture, computer heterogeneity, communication delay, network

bandwidth, resource availability, resource unpredictability and job characteristics is proposed.

The AlgHybrid_LB juxtaposes the strong points of neighbor-based and cluster based load bal-

ancing algorithms. The main goal of this fault tolerant system is to achieve minimum response

time and optimal computing node utilization with different job assignments. Experimental

results show that the proposed algorithm performs very well in a large Grid environment with

drastic reduction in additional communications induced due to load balancing. However, the

system is limited by scalability and robustness, based on the two passive replication strategy

used for the implementation of the proposed fault tolerant load balancing algorithm. These

missing components which our proposed ant colony optimization fault tolerant algorithm

incorporates are vital and required for handling faults in a dynamic environment such as the

Grid.

With respect to swarm intelligent based fault tolerant systems, Khanli et al., [15], proposed

a new Genetic Algorithm (GA) that uses resource fault occurrence history (RFOH) to achieve

reliable job scheduling in the computational Grid. In this case, the Grid Information Server

(GIS) maintains the history of fault occurrence in resources, in a table called fault occurrence

history table (FOHT). The FOHT has two columns. First column presents the histories

of resources faults, while the second column keeps track of the number of successful job
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execution by resources. Therefore, the number of rows and the number of resources are equal.

The fault index is incremented or decremented depending on the job status. The experimental

results show that the proposed strategy is capable of reducing the total job execution time and

at the same time decreases the probability of failure, thereby increasing the overall system reli-

ability. Similar application of GA based fault tolerant algorithm with related strategy on fault

handling in the Grid system is presented in [20].

Fault tolerance architecture

An architectural view of the fault tolerant system in Grid environment considered in this

paper is depicted in Fig 1. The scenario is as follows: The clients through a user interface sub-

mit their jobs to the Grid transparently specifying their QoS requirements such as the cost

of computation, deadline to complete the execution, the number of processors, speeds of pro-

cessing, internal scheduling policy, and time zone. Grid scheduler which is an important entity

of the Grid is connected to an instance of a user [18]. Each Grid job is first submitted to its

scheduler, which then schedules the Grid job according to the user’s scheduling policy. The

scheduler maps jobs received from users to Grid resources. Scheduling decisions taken by

the scheduler are based upon information provided by the Grid Information Service (GIS),

which contains information about all available Grid resources with their computing capacity

and cost at which they offer their services to Grid users. All resources that join and leave the

Fig 1. Proposed fault tolerant architecture. The fault index value suggests the rate of tendency of

resource failure; the lesser the fault index value, the lesser the failure rate of the resource and the higher the

fault index value, the higher the failure rate. Checkpoint handler queries the checkpoint repository to obtain

latest checkpoint files of the executed jobs on the failed resource and reschedules the jobs along with last

checkpoint status (see Algorithm 7). On the successful completion of the job, the checkpoint handler receives

the job completion message from the Grid resource and updates the fault index handler to increment the

success rate of the resource The fault index handler maintains a fault index history of the Grid resources,

which indicates the failure rate of the resource. To update and maintain the fault index of a Grid resource, the

fault index handler uses Algorithm 6 described below to take decision:

https://doi.org/10.1371/journal.pone.0177567.g001
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Grid are monitored by GIS. The component Fault Handler is responsible for detecting failure

in resources and estimating the required information for fault tolerance process. If the fault

handler detects a Grid resource failure during execution of job, the job is rescheduled on

another resource which starts executing the job from scratch. This leads to more time con-

sumed executing the job than expected. Thus, the user’s QoS requirements are not satisfied.

The scheduling system acts not only as an interface between users and Grid resources but also

provides reliable service to users. The pseudo-codes for the AntZ [8] approach are provided in

Algorithm listing 1, 2, and 3.

The interaction between the different components of the system is also depicted in Fig 1.

When Grid Scheduler receives a Ggrid job from users, it connects to the GIS to get informa-

tion of available Grid resources and then requests the resources to send their current work

load condition and after that it gets the fault rate history of each resource from the fault man-

ager. The scheduler collects the set of appropriate resources along with their load and fault rate

and invokes the ACO techniques. The ACO with fault tolerance technique presented in Algo-

rithms listing 4, 5, and 6 are implemented to search for the resource that meets the user’s

requirements using the fault rate of the resource and the load on the resource, to make appro-

priate decisions. A Resource is selected based on the current work load and fault rate of the

resources, and before forwarding the job to the selected resource, a job dispatcher dispatches

the jobs to the checkpoint handler. On receiving the job from the job dispatcher, the check-

point handler gets the number of successful jobs completed and number of failed jobs of the

resource from the fault index handler on which it is scheduled and sets the number of time to

checkpoint and the checkpoint interval based on the failure rate of the resource. The check-

point handler then submits the job along with the checkpoints to the selected resource. The

checkpoint repository receives partially executed result of a task from a Grid resource in the

intervals specified by the checkpoint handler. It maintains Grid tasks and their checkpoint

table which contains information of partially executed tasks by the Grid resources. For a par-

ticular job, the checkpoint repository discards the result of the previous checkpoint, when a

new value of the checkpoint result is received. When a particular job is completed, its entity

will be removed from the checkpoint result table.
Algorithm1: Pseudocodefor the existingAntZ algorithm(ACO)
A user submitsa Job to its local resourcenode
An Ant is createdand invokedin responseto the user’srequests,the job is
deliveredto the ant.
For each Job {
(A)Antstartsto move from node to node for a numberof stepssearchingfor

the best suitablenode (lightestloadednode).
For each step takenby the ant {
(i) PheromoneLaying
Ant collectsload informationof the node it is visitingand adds to its

history
Updatesthe load informationtablein the visitingnode
(ii) DecisionMaking
Look up Load tableinformationof nodes
Randomselectionwith a probabilityof mutationfactor
}//endfor
(B) Ant deliverjob to a particularresourceand dies

}//Endfor
Algorithm2: ExistingAntZ schedulingalgorithm(ACO)
1: functionAnt (Gridlet_ID){
2: Initialize() // initializationof variables
3: While(step< MaxSteps){
4: currentNode= LocalResourceID
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5: currentLoad getNodeLoadInformation
6: AntHistory.add(currentLoad)// databasestorage
7: localLoadTable.update // databasestorage
8: If random()< MutRateThen
9: nextNode= RandomlyChosenStep//randomlygeneratenumber
10: Else nextNode= getLighterNodeInHistory()
11: MutRate= MutRate—DecayRate
12: step = step + 1
13: currentNode= nextNode// moveToNextNode
14:} //EndWhile
15: deliverJobToNode
16:} //EndfunctionAnt
Algorithm3: ExistingAntZ for acquiringnode history(ACO)
1: functiongetLighterNodeInHistory(){
2: bestNode currentNode
3: bestLoad currentLoad
4: for entry 1 to n {
5:If entry.load< bestLoad{
6: Then bestNode entry.node
7: Add(bestNode)}
8: Else If entry.load= = bestLoad
9: Add(entry.load)
10:} // end for
11: If Add() > 0
12: randomlypickFrom Add()
13: Else bestNode
14:} // End algorithm

In the proposed scheduling fault tolerant algorithm depicted in Algorithm 4, the ant collects

load information of the resources as well as the fault rate of the node it visited and adds it to its

memory using Algorithm 5. The job is submitted to the resource with checkpointing status.

That is, during execution, the process state will be saved at a particular period.

The Fault Handler in Grid system as shown in Fig 1 monitors the status of the resources

available in the Grid at regular intervals. If any failure occurs, it is reported to the checkpoint

handler. Checkpoint handler updates the fault index handler to increment the failure index of

the Grid resource.
Algorithm4: ProposedACO with FaultTolerancealgorithm(ACOwFT)
1: functionAnt (Gridlet_ID){
2: Initialize() // initializationof variables
3: While(step< MaxSteps){// while stoppingcriteriaare not satisfied
4: currentNode= LocalResourceID
5: currentLoad getNodeLoadInformation(currentNode)
6: currentFault getFaultRate
7: AntHistory.add(currentLoad,currentFault)//databasestorage
8: localLoadTable.update // databasestorage
9: If random() < MutationRateThen
10: nextNode= RandomlyChosenStep//randomlygeneratenumber
11: Else nextNode= getLighterNodeInHistory()
12: MutationRate= MutationRate—DecayRate
13: step = step + 1
14: currentNode= nextNode
15:} //endwhile
16: AssignCheckPoint() // depictedin Fig 2 pseudocode
17: deliverJobwithCheckPointToNode
18:} //endfunction
Algorithm5: ProposedACOwFTalgorithmfor acquiringnode history
1: functiongetLighterNodeInHistory () {
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2: bestNode currentNode
3: bestLoad currentLoad
4: bestFault currentFault
5: For entry 1 to N {
6; If entry.load<bestLoadand entry.fault< bestFaultThen {

Fig 2. An illustration of the recovery analysis.

https://doi.org/10.1371/journal.pone.0177567.g002
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7: bestNode entry.node
8: bestLoad entry.load
9: bestFault entry.fault
10: Add (bestNode)}
11: Else If entry.load< bestLoadand entry.fault> bestfaultThen {
12: bestNode entry.node
13: bestLoad entry.load
14: bestFault entry.fault
15: Add(bestNode)}
16: Else If entry.load= = bestLoadand entryfault= = bestfaultThen{
18: add(entry.node)}}
19: If Add() > 0
20: randomlypickFromAdd()
21: Else bestNode
22:} // End for
23:} // End funtion
Algorithm6: ACOwFTalgorithmfor fault indexhandler
1. If the checkpointhandlerreceivesthe job completionmessagefrom
resourceThen

• Send a messageto the fault indexhandlerto incrementsuccessindex of
the resource.

• Submitsfinishedjob to the scheduler.
End If

2. If the checkpointhandlerreceivesthe failuremessagefrom the resource
monitor
Then
• Send a messageto the fault indexhandlerto incrementthe failureindex

of the resourcethat failsto completethe assignedjob.
• Send a messageto the checkpointrepository,to checkcheckpointstatus

of this job.
3. If the checkpointresultof the job existsin the checkpointrepository
Then
• Submitthe last checkpointdata received,to the schedulerhandlerfor

rescheduling.
• Exit
End If

4. If the checkpointresultof the job does not exist in the checkpoint
repository
Then
• Resubmitthe job to startfrom scratchto the schedulerhandlerfor

rescheduling.
• Exit
End If
End If

Algorithm7: Pseudocodefor ACOwFTCheckpointing
1: set checkpointtime and intervalfor a particularjob
2: submitthe job for execution
3: While(job is runningtill the end)
4: If currentTime> = checkpointTimeThen
5: Updatecheckpointintervaltime
6: Incrementnumberof time checkpoint
7: Checkpointcurrentprocessstate
8: Else
9: not time for checkpoint
10: End
The variable initialization function for the algorithm 4 as used in the experimental setup is

given as follow:
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Initialize()
{

Ant_ID= Gridlet_ID
ResourceID= IDofCurrentResource;
InitialresourceLoadInformation = getResourceLoad;//Gridsimcompute

initialpheromone
InitialresourceFault= getResourceFaultRate;
Wander_Number= 5; // MaxStep
MutationRate= 0.5;
DecayRate= 0.2;
AntIsFinish= false

}//Endof Initialize

Checkpointing implementation

Checkpointing is a combination of two activities, first, it saves the running data and restores it

after getting a suitable resource. Second, it captures the states and data of a running process

including registers containing the address, variables, libraries, data structures, files containing

data with a large size, etc. An application-level checkpointing tool is adopted, which is directly

implemented within the application source code. That is, the application contains source code

that saves and restores critical program variable to and from stable storage.

The checkpointing of an object-oriented program is considered, in which the state of the

program can be recovered from the contents of the fields of the objects. In this context, check-

pointing amounts to recursively traversing the objects and recording the local state of each

one. It is essential to identify what is to be checkpointed. The implementation consists of a

GridletCheckpointing, which specifies the logical condition that must be provided by each

object to be checkpointed. When it is time to take a checkpoint, the application writer is

expected to explicitly call the function CheckpointRepository() whenever a checkpoint is

required. GridletCheckpointing object drives the checkpointing process.

The checkpoint file used in this experiment is a Hash function. Hashing is a technique of

storing values and searching for them in tables. Table is a set of table entries, (K; V), each con-

taining a unique key K, and a value (information) V. Each key uniquely identifies its entry. For

simplicity the assumption made is that checkpoints are written to this hash table. Each check-

point contains only the pages that have been modified since the previous checkpoint. Here,

Hash table keyed is used, to keep track of the necessary objects. It uses a hash table keyed on

identity hash code of the objects. The hash table maps from the object to a pair: <object,

address>. Object is referenced back to the object; address refers to the address of the object in

the output image.

Rollback recovery analysis

In a conventional system, when a failure occurs, usually a job is rescheduled on another Grid

resource and execution start from the beginning. A technique to avoid restarting the applica-

tion from the beginning is the rollback recovery, which is based on the concept of checkpoint-

ing. The checkpointing mechanism periodically saves the application’s execution state to

stable storage. Hence, whenever a failure interrupts a volunteer computation, the job can be

resumed from its last successful state, thereby improving the QoS requirement of the users.

An illustration of the fault tolerance scheduling algorithms is depicted in Fig 2. The first

diagram shows a normal environment where job failure does not exist, when the job is submit-

ted it run to completion. Although with the Grid environment where resource failure is

guaranteed, the dynamism is put into consideration. The scenario is as follows: In the ACO

algorithm (Algorithm 1), when a resource failure occurs, the scheduler needs to reschedule the
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job which starts its execution from scratch, leading to an increase in the execution time of the

job. To improve on the performance of the algorithm presented in [8], a checkpoint based

fault tolerance and recovery strategy is integrated into the existing algorithm, which is called

ant colony optimization job scheduling with fault tolerance (ACOwFT) in Grid Computing by

using checkpointing mechanism, the return time will be improved considerably, this is useful

for environments with high source fault rate [21].

In the new proposed ACOwFT algorithms (see Algorithm 4), the job execution status is

preserved in the form of checkpoints. When a resource failure occurs, the job is restarted

exactly from the last saved checkpoint, thereby eliminating the need to start executing the job

from scratch again. Hence, the execution time of the job is reduced. As presented in [15], the

submitted job starts its execution at time JobST and finishes its execution at time JobET in a nor-

mal environment, that is, the execution time of the job ET is given in Eq 1.

ET ¼ ðJobET � JobSTÞ ð1Þ

And without considering checkpointing, if failure occurs at time JobFT then the job restarts

its execution from the beginning at time JobRSTS and finishes at time JobET, that is, the Total

Execution Time (TET) of the job as given in Eq 2 is the summation of the following: JobFT—

JobST; JobFT—JobRSTS; JobET—JobRSTS;

TET ¼ ðJobFT � JobSTÞ þ ðJobRSTS � JobFTÞ þ ðJobET � JobRSTSÞ ð2Þ

If the job execution status is maintained in the form of a checkpoint file, and the last created

checkpoint is at time JobCP which is before JobF, then the job can be restarted from the last

checkpoint at time JobRST. Also the total completion time as given in Eq 3 will be the summa-

tion of JobFT—JobST; JobFT—JobRST; JobET—JobRST (Fig 2).

TET ¼ ðJobFT � JobSTÞ þ ðJobFT � JobRSTÞ þ ðJobECT � JobRSTÞ ð3Þ

Checkpoint interval

The efficiency of a checkpoint mechanism is strongly dependent on the length of the check

pointing interval. Checkpointing interval is the duration between two checkpoints. Each inter-

val starts when a checkpoint is established and ends when next checkpoint is established. Fre-

quent checkpointing leads to a large number of redundant checkpoints, which may enhance

overhead like delay job processing by consuming computational and network resources. On

the other hand, lazy check pointing may lead to loss of significant computation because a sub-

stantial amount of work has to be redone in case of a resource failure [22]. Hence, the decision

about the size of the checkpoint interval and the checkpoint technique is a complicated task

and should be based upon the knowledge about the application as well as the system [23].

Most utilized checkpointing mechanisms use resource fault index to determine checkpoint-

ing interval. It was shown in [24], that resource failure rate is more effective than resource fault

index. Resource failure rate is used to represent the failure history of a resource. So, the

resource failure rate (FR) is used to determine the checkpoint interval and the number of

checkpoints instead of using the resource fault index [24]. Eq 4 calculates the fault rates of the

resources [25] and Eq 5 calculates the number of times to checkpoint a particular job when it

is running and Eq 6 calculates the checkpoint interval time when a job should be check-

pointed.

FR ¼
Nf

Ns þ Nf
ð4Þ

Where Nf is the number of failed jobs assigned to the resources and Ns is the number of job
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submitted to the resources.

CheckpointNumber ¼ Rt � FR ð5Þ

where Rt = Response time

checkpointInterval ¼
Rt

Rt � FR
ð6Þ

A resource is considered to have failed, when a resource service stops due to resource crash

or the resource is withdrawn from the Grid system. The checkpoint handler interacts with the

scheduler to perform the rescheduling of a job unconditionally, using a checkpoint. Therefore,

the main goal of Algorithm 4 is to minimize job processing time, improve throughput, and to

also consider the failure rate of resources during resource selection.

Experimental configuration

For experimental purpose, the resources are assumed to be homogeneous so as to allow effi-

cient comparison between the proposed ACOwFT and existing ACO algorithms, despite the

existence of heterogeneous characteristics among Grid resources. Similarly, for experimental

purposes, it is likewise assumed that the Grid consists of one computing node (machine) per

resource, two Processing Elements (PE) and also network bandwidth speed among the com-

puting nodes as shown in Table 1.

Application model

For the application model, we assume that jobs which are submitted to the Grid are indepen-

dent tasks with no required order of execution predefined priorities. The jobs are of the same

computational size, same input files size requirements. The computational requirement (or

job length) of each job is presented in Millions of Instructions (MI). In GridSim, jobs are cre-

ated and their requirements are defined through Gridlet objects [26]. A Gridlet is a package

that contains all the information related to a job and its execution management details such as

the job length (in MIs), the size of input files, and the job originator (user information). The

characteristics of the Gridlet sent to the Grid to compare the performance of different algo-

rithms are shown in Table 2.

Since parameter selection may significantly influence the final results obtained for each

algorithm performance, the parameter settings for all the simulations conducted on the two

algorithms are presented in Table 3.

Table 1. Grid resource characteristics.

Number of machines per resource 1

Number of PE per machine 2

PE ratings 50 MIPS

BandWidth speed 5000 B/S

https://doi.org/10.1371/journal.pone.0177567.t001

Table 2. Gridlet characteristics.

Length 0–50000 MI

Input file size 100 + (10% to 40%)

Output file size (10% to 50%)

https://doi.org/10.1371/journal.pone.0177567.t002
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Performance metrics

In this section, performance evaluation criteria which are used to evaluate the performance of

the proposed algorithm are defined. The criteria include makespan, average turnaround time,

and throughput. As the Gridlets and topologies are generated randomly, although every simu-

lation yields roughly the same result, each single simulation is different from another one;

thus, an average of 1,000 runs were made using batch file in order to simulate realistic

conditions.

Makespan is defined as the execution time spent from the beginning of the first job to the

end of the last job in the schedule. It is assumes that the jobs are ready at time zero and

resources are continuously available during the whole scheduling. Then the makespan is

obtained by Eq 7:

Makespan ETmax ¼ maxfET1; ET2; . . . ;ETng ð7Þ

where, ETi is the completion time of job i. The lesser the value of the makespan, the more effi-

cient is the algorithm, that is, less time is taken to execute the algorithm.

Another important metrics that is required to measure the efficiency of the new system is

the throughput. Throughput is one of the most important standard metrics used to measure

the performance of any fault tolerant systems [27, 28]. Here, throughput is defined as Eq 8:

Throughput ¼
n

TET
ð8Þ

where n is the total number of jobs submitted and TET is the total execution time necessary to

complete n jobs. The throughput metrics is also used to measure the ability of the Grid system

to accommodate jobs.

The last metrics considered in this paper is the throughput. Let the total number of jobs be

n, the completion time for the specified job be ET and job arrival time is denoted by ST. The

turnaround time is defined as Eq 9:

Turnaround Time ¼ JobET � JobST ð9Þ

The average turnaround time is equally defined as Eq 10:

Average Turnaround Time ¼
Pn

i¼1
Turnaround Time

n
ð10Þ

Where

N ¼ number of gridlets and gridlets ¼ jobs

In a scenario where failure is considered for Turnaround Time, Eq 8 will not hold. There-

fore Eq 2 was used in the existing algorithm simulation since no fault mechanism was

Table 3. Parameterization of the ACOwFT and ACO.

ACOwFT ACO

Parameter Values Values

Number of resources 3,050 100

Number of Gridlets 3,000 1,000

Ant wander number 5 4

Ant mutation rate 0.5 0.5

Ant decay rate 0.2 0.2

https://doi.org/10.1371/journal.pone.0177567.t003
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considered. Once a failure occurs, job execution will starts again from scratch. For the new

algorithm presented in this paper, Eq 3 was used and when failure occurs, the process will con-

tinue executing the job from the last checkpoint recorded.

Results and discussion

This section shows a comparison of the simulated algorithms when using ACO with Fault Tol-

erance (ACOwFT), which is the proposed algorithm and the existing ACO without the fault

tolerance algorithm for scheduling jobs in distributed Grid environment. In the ACO algo-

rithm, when a resource failure occurs, the scheduler needs to reschedule the job and the job

execution usually will start from scratch, leading to an increase in the execution time of the

job. But by incorporating Fault Tolerance into the ACO algorithm and that is using the

ACOwFT, the job execution status is preserved in the form of checkpoints. Therefore, when a

resource failure occurs, the job is rescheduled to resume execution exactly from the last saved

checkpoint, thereby, eliminating the need to start executing the job from scratch. Hence, the

execution time of the job is reduced. The ACOwFT algorithm was implemented using Grid-

Sim simulator to verify the improvement of the proposed approach over the existing ACO

algorithm discussed in [8]. The experimental results are analyzed based on performance crite-

rions used.

In order to evaluate the performance of the proposed algorithm, a set of experiments were

conducted to measure makespan, average turnaround time and throughput. The result of

the proposed scheduling algorithm with Checkpoint (or with failure) is compared with the

algorithm in [8], which is without failure control mechanism. In the simulation, scheduling

experiments is performed by keeping the resource constant and setting different values to

the number of jobs; the number of Gridlet is varied from 100 to 3,700 and the length of each

Gridlets is 200,000 MIs at each step. For each job submitted, an Ant is created and ant is

assumed to travel from one resource to another in an increment of one (1) time step, each Ant

is assumed to take 5 steps and stop when this criterion is reached. It is clear that the efficiency

is improved, since the tour of the Ants consider both the resource load and fault rate of the

resource. This increases the chance of each Ant to find a resource with low fault tendency.

Tables 4, 5 and 6 show the simulation results for ACOwFT and ACO algorithms. Figs 3, 4

and 5 depict the makespan, Average Turnaround Time and Throughput. Generally, when

there is a decrease in makespan and average turnaround time and an increase in Throughput,

Table 4. Average makespan table for varied Gridlets.

No. of Resources No. of Gridlets ACO [8]a ACOwFTb

100 100 48,569.8266 82,581.19148

100 500 156,705.023 159,281.0954

100 900 235,171.492 235,238.1332

100 1,300 306,692.039 298,183.8147

100 1,700 368,990.225 347,092.3771

100 2,100 445,146.758 383,579.4808

100 2,500 493,102.208 423,205.2016

100 2,900 572,050.794 467,180.1945

100 3,300 643,413.86 505,964.9605

100 3,700 712,712.996 548,524.3321

a. The existing Ant Colony Load Balancing: AntZ (ACO)
b. The proposed Ant Colony Load Balancing: AntZ with fault tolerance (ACOwFT)

https://doi.org/10.1371/journal.pone.0177567.t004
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we say that there is an improvement of the algorithm over an existing one. With the existing

algorithm, as the size of the number of Gridlets is increased, the numbers of jobs failure increases

because a particular resource at the time of failure might have more jobs in execution when it

failed. The intention here, is to find its effect on the makespan (see Fig 3), as the number of Grid-

let increases the performance of the proposed algorithm tends to be better, this is expected since

the proposed scheduling algorithms keeps track of the process state of the entire job executing in

each resource at a particular time interval. It tends to save a lot of execution time by avoiding the

situation of starting all over from the scratch, because having more than one job executing con-

currently and when there is a resource failure, it affect the whole jobs in that resource.

In Fig 4, as the number of Gridlets increases, the proposed scheduling algorithms tend to

have better result. At the initial state, when the number of Gridlets is 100, the existing algo-

rithm scores a good result, even when Gridlets number is increased to 500, this is because,

with few jobs and many resources, resources might be executing few jobs when failure occurs.

As the number of Gridlets increases from 500 to 900, the two graphs overlap when the number

of Gridlets is at 900 and also at 1,300. As the size of Gridlets increases, the job failure increases

because a particular resource at the time of failure might have more jobs in execution when it

failed. The proposed scheduling algorithm tends to improve better than the existing algorithm,

with a percentage difference of 13%, which is a decrease in the makespan. Fig 4, which depict

throughput for varied Gridlets, the goal here is maximization, as Gridlets size increases the

graph produces a better result, at size 100 and 500 existing algorithm shows better perfor-

mance, this is as a result of few jobs executing at that time, at size 900, the two lines in the

Table 5. Average throughput table for varied Gridlets.

No. of Resources No. of Gridlets ACO ACOwFT

100 100 0.002137812 0.001295921

100 500 0.003261955 0.003220209

100 900 0.003888949 0.003908796

100 1,300 0.004304247 0.004431326

100 1,700 0.004655346 0.004955437

100 2,100 0.004779502 0.005525678

100 2,500 0.005112216 0.005947022

100 2,900 0.005121511 0.006234242

100 3,300 0.005176597 0.0065532

100 3,700 0.00523709 0.00676183

https://doi.org/10.1371/journal.pone.0177567.t005

Table 6. Average turnaround time for varied Gridlets.

No of Resources No. of Gridlets ACO ACOwFT

100 100 25,191.8559 32,851.01982

100 500 72,079.09801 79,757.59004

100 900 128,938.2533 134,389.9038

100 1,300 185,247.1481 186,865.8473

100 1,700 241,360.751 228,997.5128

100 2,100 297,892.2344 262,358.6086

100 2,500 352,209.5551 298,553.1052

100 2,900 407,783.3016 339,709.521

100 3,300 466,519.0582 383,153.9393

100 3,700 523,189.5081 427,488.4148

https://doi.org/10.1371/journal.pone.0177567.t006
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graph intercepts and also when the size of Gridlets is at 1,300. The graph widens apart as the

sizes of the Gridlets increases. From Fig 4, increment in the Gridlets size improved the new

proposed algorithm with a percentage increase of 12% when compared with the existing algo-

rithm. 12% decrease in Average Turnaround Time was observed when compared with the

same simulation result, as shown in Fig 5. The size of the Gridlets improves the Average

Fig 3. Average makespan for varied Gridlets.

https://doi.org/10.1371/journal.pone.0177567.g003

Fig 4. Average throughput for varied Gridlets.

https://doi.org/10.1371/journal.pone.0177567.g004
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Turnaround Time of the proposed scheduling algorithms. This improvement was as a result of

checkpointing and selection of resources with low failure tendency.

Tables 7, 8 and 9 gives the results obtain as the number of Gridlets is kept constant and the

number of resources varied. In this experiment, 3,000 jobs are sent to the Grid with varying

Fig 5. Average turnaround time for varied number of Gridlets. Similar experiments were carried out by

keeping the number of Gridlets constant and varying the number of resources. Figs 6, 7 and 8 gives the

results obtain as the number of Gridlets is kept constant with varied number of resources. In this experiment,

3,000 jobs are sent to the Grid with varying number of resources from 50 to 3,050, and as can be seen,

increasing the number of resources has a decreasing exponential effect on the execution time. The proposed

algorithms perform better when there is a small number of resources and a large number of jobs.

https://doi.org/10.1371/journal.pone.0177567.g005

Table 7. Average makespan time for varied resources.

No. of Resources No. of Gridlets ACO ACOwFT

50 3,000 5,333,758.145 4,193,551.119

250 3,000 1,032,621.551 915,672.9539

450 3,000 735,204.4272 635,026.9101

650 3,000 608,917.605 522,718.7224

850 3,000 547,930.762 462,654.4447

1,050 3,000 510,076.0521 425,486.6746

1,250 3,000 471,787.1408 384,175.1397

1,450 3,000 437,496.6908 366,323.4776

1,650 3,000 416,411.9805 324,779.3881

1,850 3,000 384,378.3534 330,142.321

2,050 3,000 379,767.6597 317,569.9529

2,250 3,000 367,627.454 311,514.3109

2,450 3,000 371,217.0904 293,752.8611

2,650 3,000 357,757.9686 282,355.1981

2,850 3,000 341,346.5343 284,203.798

3,050 3,000 330,936.4383 272,435.0624

https://doi.org/10.1371/journal.pone.0177567.t007
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number of resources from 50 to 3,050. Fig 6, which depicts the makespan result simulation,

since the size of Gridlets is constant for all resources. As there is an increase in resources, it can

be observed that there is a decreasing exponential effect on the execution time. The algorithm

achieved 18% reduction in makespan, 18% maximization in throughput and up to 14% reduc-

tion in average turnaround time.

As can be seen in Figs 9, 10, and 11, the three metrics used for the evaluation of the two

algorithms namely, makespan, throughput, and turnaround time are affected in the case of

both algorithms as the percentage of faults introduced into the system increases. Generally,

there were increases in both the makespan and average turnaround time, and a decrease in the

throughputs. However, for the proposed ACOwFT algorithm, these changes are insignificant

Table 8. Average throughput time for varied resources.

No. of Resources No. of Gridlets ACO ACOwFT

50 3,000 0.000578341 0.000723232

250 3,000 0.002929033 0.003296531

450 3,000 0.004154446 0.004769876

650 3,000 0.005048586 0.005824279

850 3,000 0.005629315 0.006571081

1,050 3,000 0.006114395 0.007189014

1,250 3,000 0.00665545 0.007918572

1,450 3,000 0.007119166 0.008371468

1,650 3,000 0.007432594 0.008859062

1,850 3,000 0.008134158 0.009326724

2,050 3,000 0.008270621 0.009682522

2,250 3,000 0.008510047 0.009844879

2,450 3,000 0.00849208 0.010470581

2,650 3,000 0.00878381 0.010836466

2,850 3,000 0.009138704 0.010826396

3,050 3,000 0.009544452 0.011195351

https://doi.org/10.1371/journal.pone.0177567.t008

Table 9. Average turnaround time for varied resources.

No. of Resources No. of Gridlets ACO ACOwFT

50 3,000 3,807,268.06 3,026,939.176

250 3,000 631,508.8115 569,764.0766

450 3,000 345,302.0931 324,526.2434

650 3,000 243,015.8456 232,252.3372

850 3,000 193,772.7683 186,910.5638

1,050 3,000 164,348.6584 159,492.8966

1,250 3,000 145,337.533 141,939.9795

1,450 3,000 133,213.1211 130,883.2574

1,650 3,000 123,799.4381 121,695.203

1,850 3,000 118,449.8406 116,649.3752

2,050 3,000 113,883.6945 112,504.8401

2,250 3,000 110,544.2414 109,215.7295

2,450 3,000 108,441.4055 107,411.0636

2,650 3,000 106,048.3362 104,947.0919

2,850 3,000 104,075.5757 103,099.5684

3,050 3,000 102,759.8428 101,897.4044

https://doi.org/10.1371/journal.pone.0177567.t009

An improved ACO algorithm with fault tolerance for job scheduling

PLOS ONE | https://doi.org/10.1371/journal.pone.0177567 May 17, 2017 18 / 24

https://doi.org/10.1371/journal.pone.0177567.t008
https://doi.org/10.1371/journal.pone.0177567.t009
https://doi.org/10.1371/journal.pone.0177567


as compared to the results of the existing ACO algorithm. In the case of the throughput for

example, the ACOwFT produced a better throughput than the ACO. This can be attributed to

the fact that before any scheduling is done, the ACOwFT first considers the fault rate of the

candidate resources to be allocated to the jobs and then makes it scheduling decision based on

the same computed resources failure rates. This is not the case with the ACO, which does not

have any fault handler mechanism. Similarly, the ACOwFT has a better turnaround time than

the ACO, which can also be attributed to the fact that in ACO, there are more faulty resources

Fig 6. Average makespan time for varied number of resources.

https://doi.org/10.1371/journal.pone.0177567.g006

Fig 7. Average throughput time for varied number of resources.

https://doi.org/10.1371/journal.pone.0177567.g007
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compared to the ACOwFT, which has checkpointing mechanism and the capability to select

resources with low failure tendency. Therefore, with more faulty resources in the ACO, it is

expected that the delay time will likewise increase, as a result of the prolonged searching of

alternative candidate resources, which leads to increase in the system turnaround time and the

makespan as well.

Conclusion

The paper describes the incorporation of a fault tolerance system, which is used to enhance the

performance of the resource scheduling algorithm in Grid computing environment. This was

achieved by introducing into the existing ACO a checkpointing mechanism. The ACO does

not address the fault tolerance requirements explicitly. ACOwFT uses ACO algorithm, and

builds fault tolerant solutions around it, to support checkpoint based fault tolerance. By adding

fault tolerant features within the scheduling approach, the overall performance of the Grid sys-

tem is improved.

The experimental results demonstrate that the proposed strategy effectively schedules the

Grid jobs even in the presence of failures. It is observed from the experiments that the fault tol-

erance based resource scheduling strategy provides better results than the resource scheduling

algorithm without fault tolerance in terms of various performance metrics, such as makespan,

average turnaround time and the number of jobs completed. The proposed strategy has shown

Fig 8. Average turnaround time for varied number of resources. Another important factor that is worth

mentioning here is the robustness of the proposed algorithm in comparison with the existing ACO or AntZ

algorithm. Robustness in this case implies the capability of an algorithm to deal with resource failure when it

occurs in the system and to be able to automatically recover from such failure. Since the main goal of the

proposed work is to model a fault tolerant algorithm, then a simulation test is further carried out to verify our

claim that the proposed ACOwFT algorithm is more robust than the existing ACO algorithm. For this

experiment, we considered the case, where 3,000 jobs are sent to the Grid for execution and different

percentages of faults deliberately introduced into the system. Similar to the work presented in [24], were the

injected fault percentages are assumed from 10% to 50%, in this paper the assumed fault percentages

introduced into the system is from 10 to 70%. The essence of introducing a very high fault percentage is to

thoroughly evaluate the robustness of the proposed scheduling system under heavy faulty conditions.

https://doi.org/10.1371/journal.pone.0177567.g008
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tangible improvements in satisfying the user’s QoS requirements for the submitted jobs in a

fault tolerant way, in spite of the highly dynamic nature of the Grid.

The result of the two compared algorithms show that the proposed algorithm achieved up

to 13% reduction in makespan, 12% maximization in terms of throughput and 12% maximiza-

tion in average turnaround time when the Gridlets are varied and the resources are kept

Fig 9. Average makespan time for varied number of faults (total number of Gridlets = 3,000).

https://doi.org/10.1371/journal.pone.0177567.g009

Fig 10. Average throughput time for varied number of faults (total number of Gridlets = 3,000).

https://doi.org/10.1371/journal.pone.0177567.g010
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constant. Also when the Resources are varied and Gridlets are kept constant, the proposed

algorithm achieved 18% reduction in makespan, 18% maximization in terms of throughput

and up to 14% maximization in average turnaround time. The aim therefore, was to reduce

the selection probability of resources with more fault occurrence history. Future work can con-

sider some additional factors such as; jobs with a deadline, network delay, specifying QoS

(Quality of Service) requirements and the consideration of checkpoint latency with respect to

reading and writing to an external file. Another area of further research interest, which the

new fault tolerance algorithm can be exploited, is the cloud computing environment. Similar

experiments can be conducted to see how the algorithm performs in this setting by using the

same performance evaluation metrics similar to the ones computed in this paper.
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Fig 11. Average turnaround time for varied number of faults (total number of Gridlets = 3,000). To

conclude the overall evaluation of the results, and with the aim of making a deeper analysis, the Friedman’s

non-parametric test is carried out to check if there are any statistically significant difference between the two

algorithms in terms of makespan, throughput, and turnaround time results reported for each of the algorithms.

For makespan, throughput and average turnaround time, the resulting Friedman statistics has been 7.00.

Taking into consideration that the confidence interval has been stated at the 99% confidence level, the critical

point in χ2 distribution with 1 degree of freedom is 6.635. Since 7 > 6.635(p-value = 0.008), it can be concluded

that there are statistically significant difference between the three metric results reported by ACOwFT and

ACO whilst running χ2(1) = 7, with ACOwFT being the one with the lowest rank.

https://doi.org/10.1371/journal.pone.0177567.g011
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23. Buligon C, Cechin S, Jansch-Pôrto I. Implementing rollback-recovery coordinated checkpoints. InInter-

national Symposium and School on Advancex Distributed Systems 2005 Jan 24 (pp. 246–257).

Springer Berlin Heidelberg.

24. Amoon M. A Fault Tolerant Scheduling System Based on Check pointing for Computational Grids. Inter-

national Journal of Advanced Science and Technology. 2012 Nov; 48:115–24.

25. Amoon M. A fault-tolerant scheduling system for computational grids. Computers & Electrical Engineer-

ing. 2012 Mar 31; 38(2):399–412.

26. Buyya R, Murshed M. Gridsim: A toolkit for the modeling and simulation of distributed resource manage-

ment and scheduling for grid computing. Concurrency and computation: practice and experience. 2002

Nov 1; 14(13-15):1175–220.

27. Khan FG, Qureshi K, Nazir B. Performance evaluation of fault tolerance techniques in grid computing

system. Computers & Electrical Engineering. 2010 Nov 30; 36(6):1110–22.

28. Ezugwu AE, Buhari SM, Junaidu SB. Virtual machine allocation in cloud computing environment. Inter-

national Journal of Cloud Applications and Computing (IJCAC). 2013 Apr 1; 3(2):47–60.

An improved ACO algorithm with fault tolerance for job scheduling

PLOS ONE | https://doi.org/10.1371/journal.pone.0177567 May 17, 2017 24 / 24

https://doi.org/10.1371/journal.pone.0177567

