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by C-type lectin receptors
may be a novel target in
immunotherapy for urothelial
bladder cancer
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Immunotherapies, such as immune-checkpoint blockade and adoptive T-cell

therapy, offer novel treatment options with good efficacy for patients with

urothelial bladder cancer. However, heterogeneity and therapeutic resistance

have limited the use of immunotherapy. Further research into immune-

regulatory mechanisms in bladder cancer is urgently required. Emerging

evidence demonstrates that the commensal microbiota and its interactions

with host immunity play pivotal roles in a variety of physiological and

pathological processes, including in cancer. The gut microbiota has been

identified as a potentially effective target of treatment that can be synergized

with immunotherapy. The urothelial tract is also a key site for multiple

microbes, although the immune-regulatory role of the urinary microbiome in

the process of carcinogenesis of bladder cancer remains to be elucidated. We

performed a comprehensive analysis of the expression and biological functions

of C-type lectin receptors (CLRs), which have been recognized as innate

pathogen-associated receptors for fungal microbiota, in bladder cancer. In

line with previous research on fungal colonization of the urothelial tract, we

found that CLRs, including Dectin-1, Dectin-2, Dectin-3, and macrophage-

inducible Ca2+-dependent lectin receptor (Mincle), had a significant

association with immune infiltration in bladder cancer. Multiple innate and

adaptive pathways are positively correlated with the upregulation of CLRs. In

addition, we found a significant correlation between the expression of CLRs

and a range of immune-checkpoint proteins in bladder cancer. Based on

previous studies and our findings, we hypothesize that the urinary

mycobiome plays a key role in the pathogenesis of bladder cancer and call
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for more research on CLR-mediated anti-fungal immunity against bladder

cancer as a novel target for immunotherapy in urothelial bladder cancer.
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Introduction

Bladder cancer continues to be one of the most common

urological malignancies worldwide, with the highest incidence

and mortality rates (1–3). Several therapeutic approaches, such

as transurethral resection of bladder tumor (TUR-BT) and

intravesical infusion chemotherapy (4, 5), are available in

early-stage bladder cancer. Where bladder cancer progresses to

the muscle-invasive stage, the incidence rate of lymph node

metastasis increases significantly and the survival rate decreases

significantly (6, 7). Radical cystectomy is an effective treatment

option for patients with advanced bladder cancer. However,

excision of the bladder can lead to poor quality of life and the

possibility of recurrence remains, even under the maintenance of

adjuvant chemotherapy (8). Recently, adjuvant immunotherapy

with immune-checkpoint blockade agents has been reported to

have great efficacy in the treatment of bladder cancer and

bladder retention in a range of clinical trials (9–11).

Nevertheless, high levels of efficacy and heterogeneity and the

frequent occurrence of immune resistance limit the benefits of

immunotherapy. Even though patients can respond well to

immune checkpoint blockade (ICB) therapy, with prolonged

survival, most patients do not benefit from ICB therapy. In

addition, even those who initially respond well to ICB therapy

can lose their primary sensitivity to the therapy and bladder

cancer can develop adaptive immune resistance (12, 13).

Therefore, clinicians and researchers are trying to understand

the immune-regulatory mechanisms in the tumor

microenvironment and develop therapies with novel targets

that can be synergizing with immunotherapy.

The commensal microbiota, which refers to the colonizing

microbes, such as bacteria, fungi, archaea, and their metabolites,

in different organs of our body, has been revealed recently as a

pivotal player in our immune system (14, 15). The best-studied

microbiome is the gut microbiota, which has been found to exert

powerful immune functions by interacting with various

receptors expressed on immune cells (16–18). Multiple

gastrointestinal pathological processes, including inflammatory

bowel disease, gastric carcinoma, and colon cancer, have been

found to be associated with specific alterations of the gut

microbiota and abnormal activation of immune responses (16,

19–21). Notably, the regulatory networks mediated by the gut
02
microbiota have even been extended to further organs, referred

to as the gut–brain axis (22) and the gut–lung axis (23). The

remote regulations performed by the gut microbiota could

participate in the disease progression of depression and lung

cancer (24–26). Overall, the commensal microbiome, especially

the gut microbiome, plays powerful and complex roles in our

physiological system. The commensal fungi, also known as the

mycobiome, has long been ignored or mistaken to be an

unimportant bystander in the gut microbiota. However, in

recent studies, researchers have identified that the fungal

microbiota plays crucial roles in a range of cancers (27–29).

Anti-fungal immunity in our mucosa is mediated mainly by C-

type lectin receptors (CLRs), which represent a family of

transmembrane receptors recognizing endogenous or

exogenous ligands mainly derived from fungi. Immune

responses can be activated following the recognition of fungi.

The four main members of the CLR family include Dectin-1,

Dectin-2, Dectin-3, and macrophage-inducible Ca2+-dependent

lectin receptor (Mincle). These differ in the extracellular domain,

recognized ligands, and downstream activation pathways (30–

32). Dectin-3 has been found to serve as an immune barrier

against the potential invasion of Candida tropicalis, and its

deficiency can lead to impaired anti-fungal immunity and

subsequent colitis (33). Furthermore, Dectin-3 has also been

found to participate in the tumorigenesis of colon cancer

through interaction with Candida albicans, thus forming a

crosstalk network between innate immune cells and tumor

cells (34). By contrast, the activation of Dectin-1 by galectin-9

on tumor-infiltrating macrophages has been found to induce

immune escape and accelerate the progression of pancreatic

cancer, which suggests a dual function of CLRs in cancer (35).

The idea that the urinary tract, including the bladder, is

sterile has dominated our thinking for a long time. However,

with the development of advanced detection technology,

multiple studies have shown the importance of the urinary

microbiome, which may provide novel targets and strategies in

the treatment of various urological diseases, including bladder

cancer (36, 37). The mycobiome has also been identified as a

widespread microorganism with high levels of diversity and

heterogeneity among urinary systems, and it may assume key

functions during the process of bladder cancer (38).

Nevertheless, related studies are lacking. In this article, we
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report our comprehensive analysis of the correlations between

the expression, function, and immune infiltration of CLRs in

bladder cancer to explore the possible mechanisms of immune-

regulatory functions exerted by the urinary mycobiome and

CLR-expressing immune cells. Furthermore, we discuss the

possibility and feasibility of utilizing CLR-mediated anti-fungal

immunity as a novel effective target for synergizing and

optimizing the efficacy of immune-checkpoint blockade

therapy in bladder cancer.
Justification of the hypothesis

The existence of and alterations in the
urinary microbiome in pathological
conditions

An important premise for our hypothesis is the widespread

presence of the mycobiome in the urinary system, especially in

the bladder. For a long time, the urinary tract has been

considered to be a sterile organ unless it is in an infected state.

However, with the rapid development of culture technology and

molecular sequencing methods, several studies have been carried

out to elucidate the potential functional microbes in the

tumorigenesis of bladder cancer. Significant overexpression of

Streptococcus has been found in urothelial cancer patients,

suggesting an association between a specific type of bacteria

and bladder cancer (39). Moreover, the utilization of the bacillus

Calmette–Guérin (BCG) vaccine, which involves the

administration of Mycobacterium tuberculosis with attenuated

toxicity, has become the standard therapeutic approach for non-

muscle-invasive or intermediate-risk bladder cancer (4).

Although the exact mechanisms are still unclear, the current

consensus is that the effectiveness of the vaccine is dependent on

the inflammatory immune responses provoked by the induction

of this specific bacteria, which results in the anti-tumor effect.

Two questions emerge from this long-standing therapeutic

application: (1) Would the input of new bacteria alter the

microbiome in the bladder and influence immunity? Previous

studies have transplanted microbiota and found that the transfer

of intestinal microbiota or the mono-colonization of the

mycobiome can reshape the composition of the gut microbiota

and regulate anti-cancer immunity; similar effects may be found

in the bladder microbiota (40, 41). (2) Do any other exogenous

or endogenous microbes possess similar immune-activating

characteristics? To address these questions, we may need to

first identify the specific microbiota in the bladder under

different conditions.

A series of studies have been carried out to explore the

commensal microbiota in the bladder of healthy hosts. The

most frequently detected bacteria genera were Streptococcus and

Lactobacillus (42). Other bacteria have been found less frequently

in healthy bladders, such as Veillonella, Burkholderia,
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Alloscardovia, and Saccharofermentans (36, 37). Nevertheless,

observation of the commensal urinary microbiome has lacked

sufficient accuracy owing to the technical limitations of 16S

ribosomal RNA (rRNA) sequencing, which has not been able to

differentiate between dead, living and ruptured bacteria. In

addition, vulvovaginal contamination has affected detection

accuracy in women. Interestingly, the urinary microbiota is not

a static symbiont and has shown great diversity according to age

and sex (36, 43), which indicates that in one individual the urinary

microbiome can experience active reprogramming in the

regulation of various factors, suggesting possible regulatory

functions of the urinarymicrobiota under pathological conditions.

As alluded to above, different anatomical structures appear

to result in differences in the urinary microbiota of men and

women. Taking into consideration the significant difference in

the incidence rate of bladder cancer among men and women, the

microbiota has emerged as another possible factor, alongside

hormonal factors, in bladder cancer tumorigenesis. Multiple

studies have been conducted to identify abundant or dominant

microbiota in the bladder tissue of bladder cancer patients, and

results vary. In some studies, members of the phylum Firmicutes

have been found to be the most abundant bacteria in the urinary

and bladder tissue of bladder cancer patients (44, 45), whereas in

other studies the dominant phylum has been reported to be

Proteobacteria (46, 47). Cyanobacteria have been detected in

bladder cancer patients’ urine and tissues, constituting up to 8%

of the urinary microbiome (45, 48). It is worth noting that this

phylum of bacteria can produce toxic microcystins, which have

been found to promote the progression of colorectal and liver

cancer (49, 50), but it is still unclear whether Cyanobacteria can

have a similar function in the development of bladder cancer.

Public databases from DIANA Lab (University of Thessaly,

Thessaly, Greece; www.dianalab.gr) were utilized to explore

the bacteria phyla significantly associated with bladder cancer.

As shown in Figure 1, Acidobacteria and Candidatus

Saccharibacteria are the two bacteria phyla that are most

significantly altered in urothelial bladder cancer patients

compared with healthy subjects. However, the data lack

sufficient stability; for example, one study found that

Acidobacteria levels were higher in the urine of bladder cancer

patients than in the urine of control participants, whereas

another study found the opposite (see DIANA Lab data).

Therefore, taking the presently available studies into account,

we could come to several conclusions. First, the commensal

microbiota is a widespread, symbiotic organism residing in our

urinary system, particularly in the bladder. However, microbiota

characteristics are highly heterogeneous among individuals, at

least at the taxonomic level of the kingdom. Although several

studies have been conducted to identify the dominant or

functional bacteria in the tumorigenesis of bladder cancer, we

are still far from a definitive answer. Therefore, alongside more

research on bacteria, it may also be necessary to do more

research on other microorganisms.
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Mycobiome and C-type lectin receptor-
mediated anti-fungal immunity in
the context of cancer

CLRs, defined as a family of receptors characterized by the

C-type lectin domain, are the major pattern recognition

receptors for detecting fungi. By recognizing b-glucans, a-
mannan, etc., which are the major components expressed on

the cell walls of fungi, CLRs can initiate innate as well as adaptive

immune responses through activation of a range of downstream

signaling pathways (32). Major CLRs include Dectin-1, Dectin-

2, Dectin-3, and Mincle, which are expressed mainly on myeloid

immune cells (51, 52). By regulating anti-fungal immunity,

various CLRs have been found to participate in multiple

pathological immune processes, including colitis (33, 53),

Crohn’s disease (54, 55), and systemic lupus erythematosus

(56). More importantly, CLR–fungi crosstalk has been

identified as a major carcinogenic factor. Zhu et al. (34) found

that Dectin-3 deficiency can increase the fungal burden of

C. albicans, which in turn can reprogram innate immune

cells metabolically and enhance the tumorigenesis of colon

cancer. Furthermore, another study found that macrophage-

expressed Dectin-1 can accelerate the progression of
Frontiers in Immunology 04
pancreatic cancer through ligation with galectin-9 in the

tumor microenvironment, which depends on adaptive

immunosuppression (35). This study reminds us that CLRs

can also exert immune functions by interacting with non-

pathogen ligands in the tumor microenvironment.

Nevertheless, the roles played by CLRs in the context of

bladder cancer and whether CLR–fungi crosstalk can have

crucial functions in the tumorigenesis of bladder cancer are

still unclear to us. To clarify this, we conducted a comprehensive

analysis of CLRs and their related biological processes in bladder

cancer. Specifically, when it comes to the signaling mechanism

and immune functions, CLRs can be divided into two subgroups

according to different intracellular signaling motifs: those

associated with the immunoreceptor tyrosine-based activation

motif (ITAM) domain and those associated with non-ITAM

domains (57). The activation of Dectin-1 triggers the

intracellular signaling pathways through the direct

transduction of the ITAM-like motif(s) within the cytoplasmic

tails; Dectin-2, Dectin-3, and Mincle transduce the signaling

pathways indirectly by ITAM-containing Fc receptor g (FcR-g)
chains (58, 59). On recognition of the ligand, the receptors are

activated and Src kinases are recruited to induce tyrosine

phosphorylation of the ITAM motif, thus further activating
FIGURE 1

Significantly associated bacteria phyla detected in bladder cancer patients, extracted from DIANA Lab databases.
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SYK kinase and thereby activating the downstream signaling

pathways (58, 60). Following its activation, SYK kinase induces

the phosphorylation of protein kinase C-d (PKC-d), which then

mediates the phosphorylation of caspase recruitment domain-

containing protein 9 (CARD9). This process leads to the

subsequent formation of the complex of CARD9 along with B-

cell lymphoma/leukemia 10 (Bcl-10) and mucosa-associated

lymphoid tissue lymphoma translocation protein 1 (MALT1)

(61), which, finally, triggers the activation of nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-kB) (62)

or extracellular signal-regulated kinases (ERKs) (63). In addition

to the SYK-dominated signaling pathway, Dectin-1 can also

activate another signaling pathway independent of SYK kinase,

which is mainly mediated by Raf-1 (61). Following the activation

of these signaling pathways, multiple signaling events are

induced, including respiratory burst, phagocytosis, and the

production of a range of inflammatory mediators (51, 64, 65).

Through secretion of interleukin 1 beta (IL-1b), interleukin 6

(IL-6), and interleukin 23 (IL-23), the cluster of differentiation

4+ (CD4+) T cells would be polarized into T helper type 1 (Th1)/

T helper type 17 (Th17) cells, forming the essential anti-fungal

immunity (61, 66).

In addition to the four major CLRs we have introduced here,

there are many other CLRs, such as MR (CD206), DC-SIGN

(CD209a), CD23, and CR3. Therefore, the reader may wonder

why only these four CLRs are discussed here. The reasons can be

divided into two categories. First, the four CLRs discussed here

(i.e. Dectin-1, Dectin-2, Dectin-3, and Mincle) are the best-

studied CLRs that recognize fungal ligands and exert crucial

anti-fungal immune functions (52). Importantly, owing to the

anatomical and biological features of the bladder and bladder

cancer, we need to focus on the CLRs that play well-studied

regulatory roles on mucosal immunity. These CLRs are the most

commonly recognized receptors exerting such functions (33, 67–

69). Therefore, we selected these four CLRs as crucial mediators

in anti-fungal immunity in the bladder and potential regulators

in the tumorigenesis of bladder cancer. Second, there is

insufficient evidence of the capability of other CLRs to

modulate immune-regulatory functions in the bladder.

Although one study found that MR may transduce

downstream signaling pathways upon M. tuberculosis infection

(70), further investigation concluded that MR has no significant

impact on the host’s anti-fungal immunity (71, 72), further

indicating that MR may not be a major receptor in anti-fungal

immunity. Compared with MR, DC-SIGN has been found to

perform a more important role in anti-fungal immunity, with its

pivotal fungi recognition ability (73–75). Nevertheless, to our

knowledge no gene-targeting experiment has been carried out to

evaluate the importance of DC-SIGN in anti-fungal immunity.

Similarly, the exact functional mechanisms of other CLRs are

still far from clear. Therefore, limited by the relatively small

number of studies of other CLRs, we focused on the four CLRs
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homeostasis and pathology of the bladder. Nevertheless, other

CLRs may play undiscovered roles in the pathogenesis of bladder

diseases, especially bladder cancer, and future investigation of

the underlying molecular mechanisms of crosstalk among other

fungal pattern recognition receptors (PRRs) will be of great

significance. Taken together, the four CLRs we discuss here (i.e.

Dectin-1, Dectin-2, Dectin-3, and Mincle) are major regulators

in anti-fungal immunity in bladder cancer and deserve further

investigation and discussion.

Notably, although CLRs are commonly recognized as major

sensors in fungi recognition, CLRs may also recognize other

pathogens, such as bacteria, viruses, and fungi, leading to the

induction of immune responses. As is shown in Figure 1, two

bacterial phyla have been found to be significantly altered in

urothelial bladder cancer patients. In addition, as discussed

above, Firmicutes, Proteobacteria, and Cyanobacteria have

been found to be abundant in the urinary samples of bladder

cancer patients (45–48). Therefore, there could also be

associations between CLRs and bladder cancer-related bacteria.

Nagata et al. (76) found that the metabolites derived from

Helicobacter pylori can be recognized by Mincle, inducing T-

cell inflammatory responses and leading to gastritis. More

recently, an obligately intracellular bacteria, Orientia

tsutsugamushi, was found to be able to upregulate the

expression of Mincle on macrophages, which subsequently

triggers sustained inflammatory responses (77), indicating that

specific bacteria may also modulate CLRs expression and

thereby induce downstream immune functions. Therefore, an

abundance of certain bacteria may be another contributing

factor in CLR expression and function in bladder cancer.

The mycobiome, which refers to the fungal microbiota, is

another major component in our microbial ecosystem. However,

the importance of the mycobiome for our systemic homeostasis

and various pathological processes has long been

underestimated. Recently, the mycobiome and mucosal anti-

fungal immunity have been found to be influential in a range of

diseases (78). As the largest shelter for microorganisms, the

gastrointestinal tract was the first to be studied. C. albicans was

found to activate macrophage inflammatory responses through

b-glucan exposure, which enhances the pathological process of

inflammatory bowel disease (79). Similarly, C. tropicalis was

found to participate in the formation of colonic colitis through

interaction with Dectin-3-expressing macrophages (33). These

studies suggest that the role played by the commensal fungi in

immune homeostasis is primarily in the induction of innate

immunity. Moreover, fungi have been identified as influential in

carcinogenesis. Commensal C. tropicalis was found to increase

myeloid-derived suppressor cell (MDSC) infiltration in CARD9

deficiency, contributing to the development of colon cancer (40,

80). Furthermore, C. albicans was found to promote the

progression of colon cancer through metabolic regulation of
frontiersin.org
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innate immune cells (34, 81). These studies demonstrate the

significant contribution of commensal fungi in colon

carcinogenesis, which has so far been neglected.

When it comes to the bladder, the role of the commensal

mycobiome is still unclear, limited as we are by the lack of

comprehensive studies identifying commensal fungi. However,

there exist a few previous studies of the urinarymycobiome, which

may provide further clues. Candida spp. have been detected in

urinary samples from healthy control participants as well as

patients with urological disorders (82–84). More recently,

through the application of next-generation sequencing (NGS)

with internal transcribed spacer 1 (ITS1)-region amplification,

researchers found significant diversity in the fungal population

among individuals (38). Previous studies have identified

Saccharomycetes fungi, including Saccharomyces and Candida

spp., in the urine of patients with urological symptoms (85, 86),

which suggests that these fungi may play a role in our urinary

system. In the context of bladder cancer, we have identified the

potential regulatory roles of different bacteria taxa in

tumorigenesis (87). Therefore, we may wonder whether there

exist specific pathogenic fungi in bladder cancer. Aykut et al. (88)

utilized the 18S internal transcribed spacer (ITS) sequencing

approach and found an abundance of Malassezia in the

pancreas and pancreatic cancer tissue, further elucidating its

oncogenic function through mannose-binding lectin (MBL)

activation. Moreover, another study involving 18S rRNA

sequencing found a predominant abundance of Malassezia in

the fungal mycobiome in pancreatic cancer tumor tissues.

Notably, it was found that the intratumoral mycobiome can

promote the production of IL-33 from cancer cells and

subsequently enhance the recruitment and activation of Th2

cells and innate lymphoid cells in the microenvironment of

pancreatic cancer, thus inhibiting the progression of the tumor

(89). In addition, the role of the fungal mycobiome in

tumorigenesis in colon cancer has been demonstrated (40, 80).

These studies indicate that the tumor-resident mycobiome can be

detected precisely using NGS technology. Back in the 1990s,

Skoutelis et al. (90) performed an analysis comparing the

adherence of urine-derived C. albicans to bladder epithelial cells

between bladder cancer patients and control participants and

found a significant increase in C. albicans adherence among

bladder cancer patients, which suggests that the bladder

urothelium in such patients may exhibit specific alterations and

thus be more susceptible to fungal colonization. Furthermore,

NGS with ITS1 amplification has been utilized to identify the rich

and heterogeneous fungal mycobiome in multiple urinary samples

(91). In addition, several case reports have reported the

colonization of the bladder by certain fungal species in the

context of cancer (92) or diabetic neurogenic bladder (93).

Although the utilization of 16S rRNA sequencing technology

has helped us to identify specifically bladder cancer-related

bacteria microbiota, the bladder cancer-related mycobiome is

still not understood. Related studies of the participation of the
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Therefore, deeper insights into the mycobiome in the bladder and

its interactions with the host are warranted in the future.
Comprehensive analysis of CLRs and
related immunity in bladder cancer

Expression of C-type lectin receptors in
bladder cancer tissue and normal tissue

The messenger RNA (mRNA) expression of the four CLRs

in bladder cancer primary tumor tissues and normal tissues was

first evaluated using a sample comprising 408 primary tumor

tissues and 19 normal bladder tissues. Dectin-1 was significantly

upregulated in tumor tissue compared with normal tissues

(Figure 2A). Similar results were observed for Dectin-2

(p < 0.01), but Dectin-2 transcriptional levels were low in both

normal and tumor tissues (Figure 2B). As with Dectin-3 and

Mincle, no significant differences in expression were found

between normal tissues and tumor tissues (Figures 2C, D). To

further detect the expression location and status at the protein

level, we retrieved immunohistochemical (IHC) data (only

Dectin-3 and Mincle were available) from the Human Protein

Atlas (HPA) database (Kungliga Tekniska högskolan Royal

Institute of Technology, Stockholm, Sweden; www.proteinatlas.

org). As shown in Figures 2E, G, there was a relatively low but

extensive expression of Dectin-3 and Mincle in urothelial cells in

the urothelial mucosal layer of the bladder. In addition, both

Dectin-3 and Mincle were observed to be expressed in the

infiltrated immune cells in the submucosa. In bladder cancer

tumor tissue, in both the tumor cells and the tumor-infiltrated

immune cells, both high and low expressive levels of Dectin-3

and Mincle were observed (Figures 2F, H).

Gene enrichment and potential
pathways analysis

To further explore the biological functions and regulatory roles

performed by CLRs in the tumor microenvironment, we

performed a differential gene analysis based on TCGA data from

bladder cancer tissue samples, which can be divided into two

subgroups, CLR-high and CLR-low, to determine the differentially

expressed genes (DEGs) potentially under the regulation of CLRs

in bladder cancer (Figures 3A–D). The results show that the most

common DEGs include those in the C-X-C motif chemokine

ligand (CXCL) family and the chemokine ligand (CCL) family,

which largely function as immune-regulatory chemokines involved

in the induction and chemotaxis of immune cells. To further

compare the expression of the genes of interest in the CLR-low and

CLR-high groups, we also performed specific group comparisons

for CXCL9, CXCL10, CXCL13, and CCL18 (Figure 4). Other

DEGs may also indicate specific downstream biological functions

of different CLRs in bladder cancer. To further explore the

potential cellular pathways mediated by CLRs in bladder cancer,
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we performed a gene ontology (GO) enrichment pathway

prediction analysis based on the previously obtained

differentiated genes (Figures 3E–H). Interestingly, we found that

these four CLRs shared similar pathways, which focused on the

positive regulation of the activation and migration of innate and
Frontiers in Immunology 07
adaptive immunity, which suggests that CLRs potentially provide

immunity against bladder cancer. In addition, we evaluated the

interaction network among CLRs and their work partner proteins

using STRING (Search Tool for the Retrieval of Interacting Genes/

Proteins; ELIXER, Hinxton, UK; https://string-db.org) (Figure 3I).
B

C D

E F

G H

A

FIGURE 2

Comparative analysis of mRNA expression of CLRs between bladder cancer tumor tissue and normal bladder tissues using the Cancer Genome
Atlas. (TCGA; https://portal.gdc.cancer.gov) database (A–D). The TCGA database is part of a landmark cancer genomics program that has
characterized over 20,000 primary cancers of 33 types and corresponding normal tissue samples. Our analysis enrolled 19 normal tissues and
408 tumor tissues from the bladder cancer database. IHC results show the protein expression of Dectin-3 and Mincle in normal bladder tissues
(E, G) and bladder cancer tumor tissues (F, H). The basic clinical information of the enrolled patients is presented. ns means no significant
difference was found between the two groups.**p < 0.01,***p < 0.001.
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FIGURE 3

DEGs were found in bladder cancer patients in the CLR-high and CLR-low groups (A–D). The CXC subfamily chemokines of CXCL9, CXCL10,
and CXCL13, and the CC subfamily chemokine of CCL18 were found to be consistently expressed in bladder cancer patients in the CLR-high
group, and levels of expression were significantly higher among bladder cancer patients in the CLR-high group than among the those in the
CLR-low group. CLR gene enrichment pathway prediction based on the DEGs in bladder cancer patients (E–H). Protein crosstalk networks
centered on CLRs using STRING (I). Toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), and Fc epsilon receptor Ig (FCER1G) are the predicted
functioning partners with CLRs.
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Associations between C-type lectin receptors
with immune cells and immune-
checkpoint proteins

TIMER (Tumor IMmune Estimation Resource, Dana Farber

Cancer Institute and Harvard University, MA, USA; https://

cistrome.shinyapps.io/timer/) was used to analyze associations

between CLR expression and immune infiltration in the bladder

microenvironment. We focused on macrophages, neutrophils,

dendritic cells (DCs), CD8+ T cells, regulatory T cells, B cells,

and MDSCs. A strong positive correlation was found between

infiltration of CD8+ T cells, regulatory T cells, and MDSCs and

expression of all four CLRs (Figures 5B, D, E). In the case of B

cells, there was a medium-strength positive correlation with the

expression of Dectin-1 and Dectin-2. In addition, the correlation

between the expression of a range of crucial immune-checkpoint

proteins and the CLRs was analyzed. The profiles of the RNA-

sequencing expression and the corresponding clinical

information of the 406 bladder cancer patients were

downloaded from the TCGA database, and we selected sialic

acid-binding Ig-like lectin 15 (Siglec15), programmed death

ligand 1 (PD-L1), T-cell immunoglobulin mucin-3 (TIM-3),
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programmed cell death 1 ligand 2 (PD-L2), lymphocyte

activation gene 3 (LAG3), T-cell immunoreceptor with Ig and

ITIM domains (TIGIT), cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4), and programmed cell death protein 1

(PD-1) as the crucial immune-checkpoint molecules, looking

at their expression values. The patients were divided into two

groups based on the median transcript expression of the CLRs –

the CLR-low group (n = 203) and the CLR-high group

(n = 203) – and the expressions of the selected immune-

checkpoint proteins were compared. We found significantly

higher levels of expression of immune checkpoint proteins

among patients in the CLR-high group than among patients in

the CLR-low group (Figures 5F–I).

Associations between C-type lectin receptors
expression and immune checkpoint blockade
therapy response

The computational framework Tumor Immune Dysfunction

and Exclusion (TIDE) (Dana Farber Cancer Institute and

Harvard University, MA, USA; http://tide.dfci.harvard.edu)

was developed as a tool to identify the crucial factors
FIGURE 4

Comparison of specific chemokines expression between bladder cancer patients in the CLR-low and CLR-high groups. The 406 bladder cancer
patients from the TCGA database were divided into CLR-low (n = 203) and CLR-high (n = 203) groups according to whether the expression of
CLR mRNA was above or below the median. The abscissa represents different sample groups and the ordinate represents the distribution of
expression of CLRs; different colors represent different groups. *p < 0.05, **p < 0.01,***p < 0.001, ****p < 0.0001. The statistical differences
between the two groups were compared using a Wilcox test.
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FIGURE 5

Association between CLR expression and multiple crucial immune cell infiltration in bladder cancer, including macrophages, neutrophils, and
dendritic cells (A), CD8+ T cells (B), B cells (C), MDSCs (D), and regulatory T cells (Tregs) (E). Comparison of the expression of the crucial
immune-checkpoint molecules between bladder cancer patients in the CLR-low group and the CLR-high group (F–I). The colors represent the
trend of gene expression in different samples. *p < 0.05, **p < 0.01, ***p < 0.001. The statistical differences between the two groups were
compared using a Wilcox test.
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regulating tumor immune escape, which can be utilized as a

feasible and reliable biomarker to predict ICB therapy response.

The higher the TIDE score, the worse the immune evasion

status, meaning that the ICB response is likely to be poorer. We

utilized TIDE to evaluate the association between CLR

expression and ICB response in bladder cancer. The clinical

information and the RNA-sequencing data of 406 bladder

cancer patients were downloaded from the TCGA database

and the expression groups of the CLR genes were extracted

according to expression value. Based on the median mRNA

expression levels of the CLRs, the patients were further divided

into two groups: the CLR-high group (n = 203) and the CLR-low

group (n = 203). Both the statistical table and the scoring of

immune responses are shown in Figure 6. Patients with high

levels of expression of all CLRs displayed significantly higher

TIDE scores than patients with low levels of expression, meaning

that patients in the CLR-high group were at greater risk of
Frontiers in Immunology 11
immune dysfunction and evasion and may be insensitive to

ICB therapy.
Integration of the results of the analysis
and expansion of the hypothesis

Potential modulatory functions on the
expression of immune-checkpoint proteins by
C-type lectin receptors

As shown in Figures 5F–I, a high level of expression of the

four CLRs is significantly correlated with the upregulation of a

range of immune-checkpoint ligands and proteins in the

microenvironment of the bladder in bladder cancer, and they

can be divided into two subgroups: those mainly expressed on

tumor cells, such as PD-L1 and PD-L2, and those mainly

expressed on T cells, including PD-1, CTLA-4, TIM-3, LAG3,
B

C D

A

FIGURE 6

Prediction of response to ICB therapy between bladder cancer patients in the CLR-high and CLR-low groups (A. Dectin-1, B. Dectin-2, C.
Dectin-3, D. Mincle). The enrolled bladder cancer patients (n = 406) were divided equally into two groups based on median transcript
expression levels of CLRs. Patients in the CLR-high group had consistently higher TIDE scores than those in the CLR-low group. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001. The statistical differences between the two groups were compared using a Wilcox test.
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and TIGIT. In the traditional view, immune-checkpoint

expression serves as the guardian of systemic homeostasis

against the overactivation of the immune system and

subsequent damage to normal tissue. Nevertheless, in the

context of cancer, this mechanism can be exploited by tumor

cells to induce the exhaustion of T cells and inhibit their

functions, eventually leading to immune escape and promoting

the further deterioration of cancer. Based on the phenotypes

showing a positive correlation between the expression of CLRs

and a range of immune-checkpoint proteins, we discuss multiple

mechanisms that CLRs may utilize to regulate the function of

immune-checkpoint proteins. Moreover, we discuss in depth

how this process could influence the efficacy of ICB therapy.

Multiple pathways could be utilized to control the expression

of immune-checkpoint proteins, including receptors, signal

molecules, transcription factors, epigenetic modulation, post-

transcriptional regulation, and post-translational regulation. As

with the regulation of receptor-activated signaling pathways,

cytokine–receptor interaction seems to be an important mode to

exert possibly crucial functions on the expression of immune-

checkpoint proteins related to CLR regulation. A wide range of

cytokines have been identified as key upstream factors that

trigger the expression of immune-checkpoint proteins (94).

For example, the g-chain cytokines, such as IL-2, IL-7, IL-12,

IL-21, and IL-15, could increase the expression of TIM-3 and

PD-1 in T cells by activating the Janus kinase (JAK)-signal

transducer and activator of transcription (STAT) signaling

pathway following the recognition of IL-receptors (94–97). In

addition, transforming growth factor beta (TGF-b), interferon
alpha (IFN-a), and interferon gamma (IFN-g) could regulate the
upregulation of multiple immune-checkpoint proteins (98, 99).

Notably, the anti-fungal immunity mediated by CLRs is also

involved in the production of a range of functional cytokines.

Signaling of Dectin-1 could induce the secretion of IL-12

following the activation of the Raf-1/NF-kB pathway,

subsequently inducing the Th1 response (61). Moreover,

Dectin-1 was found to be involved in the production of tumor

necrosis factor a (TNF-a) in monocytes under the stimulation

of fungal ligands (100). Interestingly, the positive correlation

between CLR expression and the immune-checkpoint proteins is

a highly coordinated phenotype, which extends across almost all

the crucial immune-checkpoint proteins, as shown in

Figures 5F–I, suggesting that there might be a pivotal

upstream regulator. Chihara et al. (101) found that another

immunoregulatory cytokine, IL-27, was able to drive the

expression of a module of co-inhibitory immune-checkpoint

proteins, including the combination of PD-1, TIM-3, LAG-3,

TIGIT, and a range of atypical immune-checkpoint proteins,

which is mediated by the downstream co-regulation of PR

doma in z in c finge r p ro t e i n 1 (PRDM1) and c -

musculoaponeurotic fibrosarcoma (c-MAF) transcription

factors. Recently, Fisher et al. (77) reported that, following

infection with O. tsutsugamushi, the pulmonary expression of
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Mincle was significantly upregulated, promoting the sustained

production of IL-27 and forming the pro-inflammatory immune

response to infection. Furthermore, another study showed that

the combined use of Dectin-1 agonist zymosan and IFN-b could

enhance the expression of IL-27 in the context of multiple

sclerosis (102). Although the association between CLRs and

IL-27 in bladder cancer has not been fully elucidated, we can

speculate that this potential pathway could be utilized by tumor

cells to promote the expression of a variety of immune-

checkpoint proteins and further facilitate the formation of

immune resistance. We further analyzed the correlation

between the expression of CLRs and the immune-checkpoint

protein-regulating cytokines, specifically the correlation between

the four CLRs and crucial cytokines (Figure S1A). The results

demonstrated a significant positive correlation between the

expression of these CLRs and the expression of the crucial

cytokines regulating the expression of immune-checkpoint

proteins. Importantly, because we paid special attention to IL-27,

we also explored the relationship between the CLRs and the IL-27

downstream functional transcription factors of PRDM1 and c-MAF

(Figure S1B). We speculated that the expression of CLRs is

significantly correlated with the increase in these two transcription

factors. Both the reviewed literature and our analysis suggest that we

may be able to obtainmore evidence that CLRs play a regulatory role

in the expression of immune-checkpoint proteins, but more

experiments are required to verify this hypothesis.

In addition to the immune-checkpoint receptors mainly

expressed on immune cells, the immune-checkpoint ligands

mainly expressed on tumor cells or macrophages are also

important immunoregulators involved in carcinogenesis.

Recently, Chen et al. (103) explored for the first time the

relationship between the microbiota profile and PD-L1

expression in patients with non-muscle-invasive bladder

cancer. There were significant differences in the composition

of specific bacteria genera between the PD-L1-high group and

the PD-L1-low group. This study indicated that the urogenital

microbiota may be a factor affecting PD-L1 in bladder cancer

patients. Regarding the mechanisms, we assumed two possible

directions. One is similar to what we have discussed above: the

regulation of the production of certain functional cytokines,

such as IFN-g, TGF-b, and IL-27, could increase PD-L1 mRNA

expression (104), which may partly explain the mechanism of

PD-L1 upregulation in the regulation of fungi–CLR interaction.

The other possible direction is from the expression

characteristics of CLRs, which are mainly expressed in innate

immune cells, such as macrophages, dendritic cells, monocytes,

and MDSCs (105, 106). It is worth noting that, in addition to

tumor cells, these myeloid-derived innate immune cells can also

express PD-L1 in the tumor microenvironment (107, 108).

Considering the classical downstream signaling pathway

following activation of CLRs, which results eventually in the

activation of NF-kB, we may wonder whether this pathway or

some other unknown pathways can directly promote PD-L1
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mRNA transcription on CLRs activation. Surprisingly, a recent

study found that administration of the agonist of another

member of the CLR family – C-type lectin domain family 5

member A (CLEC5A) – resulted in increased expression by

macrophages of a series of anti-inflammatory molecules,

including PD-L1, which skewed the macrophages toward a

pro-tumoral and anti-inflammatory phenotype (109).

However, the authors did not explore the exact mechanism of

this effect, and we are still uncertain whether this phenotype is

regulated at the transcriptional level or by the alteration of

multiple cytokines. In addition, other modulatory modes could

also be utilized by CLRs to regulate immune-checkpoint

proteins, such as post-transcriptional and post-translational

regulation. Therefore, more experiments are required to

uncover the functional mechanisms of CLRs in modulating the

immune response in bladder cancer.

As shown in Figure 6, patients were divided into two groups

according to mRNA expression of CLRs, the CLR-low and CLR-

high groups, and TIDE scores were compared between the

groups. TIDE scores represent the degree of immune escape

by measuring the dysfunction of tumor-infiltrated cytotoxic T

cells and the exclusion of tumor-infiltrated cytotoxic T cells by

immunosuppressive factors. Interestingly, the TIDE scores of

patients in the CLR-high group were significantly higher than

those of patients in the CLR-low group, which means that high

levels of expression of CLR are significantly associated with a

poorer immune escape status in the tumor microenvironment in

bladder cancer. In addition, high levels of expression of CLRs in

bladder cancer may predict a poorer response to ICB therapy

and lower survival rates after ICB therapy in bladder cancer

patients. This result is consistent with the results we found in

Figure 5, that is, high levels of expression of CLRs are positively

correlated with a wide range of immune-checkpoint molecules,

which indicates that the high expression state of CLRs may be an

important indicator of a more immunosuppressive

microenvironment. Notably, several studies have explored the

relationship between intratumoral microbiota and ICB therapy

efficacy. Nejman et al. (110) found significant variation in the

composition of microbiota between responders and non-

responders to immunotherapy from the tumor samples of

melanoma patients. Moreover, a unique tumor microbiota

signature was found to be closely related to better survival

rates in pancreatic cancer patients (111). However, whether

the alteration of the mycobiome in bladder cancer can

influence ICB treatment efficacy remains unknown. The strong

positivity of the expression of some immune-checkpoint

molecules, such as PD-L1, PD-1, and CTLA-4, is an effective

biomarker for ICB administration and can predict a positive

response to ICB therapy (112–114). However, we can see from

the results of the analysis that CLR expression has a tight and

highly consistent positive correlation with a wide range of almost

all of the crucial immune-checkpoint molecules, which suggests

that high levels of expression of CLRs are linked with a highly
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immunosuppressive tumor microenvironment in bladder

cancer. Therefore, targeting a single immune-checkpoint

protein, such as PD-L1 or PD-1, may be insufficient. It may be

more effective to double or even triple block the selected

immune-checkpoint molecules. Moreover, as discussed above,

the upstream pivotal regulator controlling the co-expression of a

range of immune-checkpoint proteins may be a potential target

worthy of more attention, especially IL-27. Combined inhibition

of IL-27 and other immune-checkpoint molecules may be a

potential choice for bladder cancer patients with high levels of

expression of CLRs.

Based on the pivotal immune-modulatory functions, it has

been found that the specific composition of gut microbiota has a

great impact on treatment efficacy (115, 116), which has

introduced a potential novel ICB synergistic therapy targeting

the regulation and remodeling of the commensal microbiota,

mainly through probiotic management and microbial

transplantation. Recently, Gao et al. (117) found that the use

of Lactobacillus rhamnosus probiotic could improve the gut

microbiota, increasing the levels of beneficial bacteria and thus

significantly improving the efficacy and responsiveness of anti-

PD-1 immunotherapy in colon cancer. Moreover, transplanting

the fecal microbiota from long-term responder melanoma

patients to refractory metastatic melanoma patients was found

to be able reverse immune resistance to anti-PD-1

immunotherapy and further optimize the efficacy of ICB

therapy (41). In the fungal mycobiome, in vivo transplantation

of specific fungi has been performed to explore its immune-

regulatory roles. Wang et al. (40) performed the mono-

colonization transplantation of C. tropicalis in germ-free mice

during the inflammatory induction of colon cancer and found

that this transplantation significantly accelerated tumor

progression, whereas colonization with other fungi,

Saccharomycopsis fibuligera, did not induce this phenotype.

Moreover, both in vivo and in vitro experiments were

performed and it was found that C. tropicalis can promote the

polarization and activation of MDSCs. However, pathogenic or

beneficial fungal species in bladder cancer have not been

identified. Therefore, more research is required to determine

the immune functions of the mycobiome in bladder cancer and

utilize in vivo transplantation to identify the biological functions

and the mycobiome’s impact on the efficacy of ICB treatment.

Possible mechanisms of regulation on the
immune cells by C-type lectin receptors-
mediated immunity

Within the tumor microenvironment, multiple innate and

immune cells infiltrate or reside alongside the tumor cells and

stromal cells. Active crosstalk between these forms a delicate,

dynamic immunoregulatory network. Notably, the state of the

immune microenvironment largely determines ICB therapy

efficacy. According to this theory, tumor immune status can be

divided into three subtypes, “immune-deserted”, “immune-
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excluded”, and “immune-inflamed”, depending on the degree of

infiltration of cytotoxic T cells and their exhaustion state in the

tumor microenvironment (118, 119). In addition to T cells, the

differentiation, infiltration, and function of other immune cells

in the tumor microenvironment are also key factors determining

ICB therapy efficacy (120–122). Therefore, to further evaluate

potential fungi- and CLR-mediated immune regulation in

immune cells in bladder cancer and explore its impact on ICB

therapy efficacy, we conducted a TIMER analysis to specifically

explore the association between CLRs and some immune cells, as

shown in Figures 5A–E.

Our analysis focused on three cell types, including CD8+ T

cells, regulatory T cells, innate myeloid immune cells, and B cells,

which are important immunomodulatory factors in the tumor

microenvironment during ICB treatment. CD8+ effector T cells

play a central role in triggering anti-cancer immune responses

through cytotoxicity and apoptosis induction (123). Therefore,

the high levels of infiltration of CD8+ T cells in the tumor

microenvironment before ICB therapy are commonly viewed as

a signal of improved immune activity and may predict an

optimal response to ICB therapy (124). As shown in

Figure 5B, the recruitment of CD8+ T cells has a moderate

positive correlation with the expression of the four CLRs in the

microenvironment of bladder cancer. On stimulation of Dectin-

1 with the fungi-derived b-glucan ligands, dendritic cells would

be activated and thus induce the expansion of CD8+ T cells and

enhance their differentiation into cytotoxic T cells, which

depends on Dectin-1/spleen tyrosine kinase (SYK) pathway

activation (125). Furthermore, Hass et al. (126) confirmed that

the adaptor protein CARD9 is an indispensable mediator in

dendritic cells for cytotoxic T-cell induction by Dectin-1 and

thereby controls tumor growth. Similar functions and

mechanisms were also identified in Dectin-2 (127), Dectin-3

(128), and Mincle (129). These studies indicate that CLRs may

also utilize the classical SYK/CARD9 pathway to induce the

expansion of CD8+ T cells in the tumor microenvironment in

bladder cancer and thus influence ICB therapy efficacy.

However, CD8+ T cells are not the only determinators of anti-

cancer immunity. Regulatory T cells suppress anti-tumor

immune response through attenuating CD8+ T-cell functions,

wh ich are dependent on the re l ease of mul t ip le

immunosuppressive cytokines and high levels of expression of

immune-checkpoint molecules (130). Depletion of regulatory T

cells by anti-PD-1 or anti-CTLA-4 agents has been found to be

able to effectively strengthen the effector T-cell function and

thereby synergize ICB therapy efficacy (131, 132). Interestingly,

as shown in Figure 5E, the high levels of infiltration of regulatory

T cells are strongly linked to the high levels of expression of

CLRs in bladder cancer. Recently, Karnam et al. (133) utilized an

Aspergillus fumigatus model to find that dendritic cells can

promote regulatory T-cell polarization through activation of

the WNT/b-catenin signaling pathway and PD-L1 induction.

In addition to this non-classical pathway, Dectin-1 was also
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found to be able to induce Treg differentiation through SYK

signaling and subsequent IL-1b secretion (134). From these

studies we can conclude that CLRs are a double-edged sword

in the inflammatory environment. It maintains a delicate

immune equilibrium between CD8+ T cells and regulatory T

cells. However, how this balance is hijacked by tumor cells in

bladder cancer remains unknown. More importantly, we may

need to identify which fungi drive and prime this process.

In addition to the adaptive immune cells, the innate immune

cells are of great importance. Innate immunity represents the

basis for all immune responses and serves as the first line

of defense against invading pathogens or tumor cells.

Furthermore, CLRs are mainly expressed in the innate myeloid

immune cells, including dendritic cells, macrophages, and

neutrophils. Therefore, we also explored the correlation

between CLR expression and innate immune cells, especially

myeloid cells. MDSCs are a pivotal immune cell subset

with strong immunosuppressive capabilities in the tumor

microenvironment. First, MDSCs can express a high load of

PD-L1 in multiple cancers, including bladder cancer (135).

Second, MDSCs can utilize different modulatory functions,

such as reactive oxygen species (ROS) induction, arginase 1

(ARG-1) secretion, and inducible nitric oxide synthase (iNOS)

production, to inhibit the immune response of natural killer

(NK) cells and effectors cells (136) and promote the

immunosuppressive capabilities of tumor-associated

macrophages (137) and regulatory T cells (138). Consistent

with these immunosuppressive capabilities, MDSCs have been

found to be an effective target for ICB therapy, and the

elimination or inhibition of MDSC could help optimize ICB

therapy efficacy (139, 140). As we can see from Figure 5D, high

levels of expression of the four CLRs are significantly associated

with more abundant infiltration of MDSC in the bladder

microenvironment in bladder cancer. Multiple studies have

explored the relationship between CLRs, fungi, and MDSCs.

For example, Rieber et al. (141) found that the pathogenic fungi

C. albicans and A. fumigatus can induce the activation of MDSCs

through the Dectin-1/SYK/CARD9 signaling pathway, which

subsequently results in the attenuation of T-cell and NK-cell

immune response against pathogenic infection. Notably, another

study found that Dectin-1 plays an important contributing role

in the tumorigenesis of aged oral squamous cell carcinoma in

mice. Increased fungal burden and MDSC infiltration were

observed in the tumor-loaded mice, which could be alleviated

by the inhibition of Dectin-1, indicating that Dectin-1 can

participate in the formation of an immunosuppressive milieu

by increasing MDSC expression in oral cancer (142). Moreover,

the degree of this MDSC induction effect seemed to be partly

dependent on the fungal species (143), suggesting that the

predominance of different fungal species may determine the

degree of MDSC infiltration in bladder cancer. In addition to

MDSCs, macrophages and dendritic cells are also indispensable

participators in anti-cancer immunity. CLRs are mainly
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expressed on macrophages and dendritic cells, and we explored

the relationship between the expression of CLRs and dendritic

cells and macrophages. As with macrophages, we found a

slightly positive correlation between the expression of CLRs

and macrophages. In the context of cancer, tumor-associated

macrophages played a dual role, and can be divided into two

subtypes: anti-cancer M1 macrophages and pro-tumoral M2

macrophages (144). Based on the divergent immunoregulatory

roles played by tumor-associated macrophages, several strategies

have been developed to suppress M2 differentiation and function

or promote conversion to M1 phenotype, which may help

increase ICB therapy efficacy (145, 146). In pancreatic cancer,

Dectin-1 was found to be able to reprogram the tumor-

infiltrating macrophages into immune tolerogenic phenotypes

and subsequently induce adaptive immunosuppression, which is

dependent on the activation of the SYK signaling pathway (35).

However, in myocardial ischemia–reperfusion (IR) injury,

Dectin-1 activation on monocytes was found to promote M1

polarization, which suggests that CLRs may mediate both pro-

and anti-inflammatory functions in different situations.

Therefore, it is of great importance to determine how CLRs

regulate the polarization of macrophages and subsequently

influence adaptive immunity in bladder cancer. The immune

functions of dendritic cells in the tumor microenvironment are

also dependent on the varied phenotypes, which can be divided

into immature dendritic cells and conventional type I dendritic

cells. The immature phenotypes of dendritic cells display a

disability of antigen presentation to activate the effector T

cells, which further fosters an immunosuppressive milieu

(147). In contrast, conventional dendritic cells can effectively

activate the T-cell immune response and synergize the efficacy of

ICB therapy (148). The results of our analysis show that high

levels of expression of CLRs are significantly associated with

higher levels of dendritic cell infiltration, which suggests that

CLRs in bladder cancer may also participate in the regulation of

immune response by modulating dendritic cell differentiation

and function. Wang et al. (149) found that the activation of

Dectin-1 on dendritic cells could induce the secretion of IL-33,

which is a great anti-tumor immunity mediator. This function is

dependent on the SYK/NRF-1/NF-kB signaling pathway. This

study indicated that Dectin-1-mediated DC activation might be

a potential target for improving ICB therapy. Similarly, another

study identified that Dectin-1 activation on dendritic cells could

further induce IL-9 secretion and Th9 immune response, which

exerts powerful anti-cancer immunity functions (150). In

addition, Dectin-2 and Dectin-3 have been found to have a

similar role in fungal infection (128). However, in a multicenter

study, IL-9 was found to be an immunosuppressive factor in the

bladder microenvironment in muscle-invasive bladder cancer,

which mainly depleted the activity of NK cells and CD8+ T cells

and further induced immune evasion (151). Although it is not

clear if the upregulation of IL-9 in bladder cancer is derived from

CLR-mediated dendritic cell activation, we still need to
Frontiers in Immunology 15
acknowledge that CLR-regulated dendritic cell functions may

not always be anti-tumoral, and further research is required to

elucidate this issue.

In addition to the direct modulation of immune cells in the

tumor microenvironment by CLRs, chemokines play an

indispensable role in the regulation of immune cells in the

tumor microenvironment. Immune cells function by

trafficking into the tumor site and making contact with each

other, a process largely dependent on a subfamily of cytokines

called chemokines. Through binding to their receptors, the

chemokines can be recruited to the region under the

requirement of the distinct environment (152, 153).

Considering the significant association that we found between

CLR expression and the infiltration of various immune cells in

the microenvironment, we can speculate that CLRs may also

regulate the expression and function of immune cells in bladder

cancer by regulating the secretion and alteration of chemokines.

Surprisingly, in the analysis of differentially expressed genes

(Figures 3A–D), we found that a range of chemokines were

significantly upregulated in bladder cancer patients in the CLR-

high group compared with those in the CLR-low group.

Expression of the CXC subfamily chemokines (CXCL9,

CXCL10, and CXCL13) and of the CC subfamily chemokine

CCL18 was consistently found to be higher in bladder cancer

patients in the CLR-high group than in the patients in CLR-low

group. CXCL9 and CXCL10 are predominantly produced by

monocytes under the stimulation of IFN-g (154, 155) whereas

CXCR3 is the main receptor bound by the ligands CXCL9 and

CXCL10 (156). Notably, the expression of CXCR3 is also mainly

regulated by IFN-g (157). On recognition of CXCL9 and

CXCL10, the CXCR3-induced axis will mediate the

recruitment, activation, and differentiation of various immune

cells and thus regulate the immune reactivity of a range of crucial

immune cells, including NK cells, cytotoxic lymphocytes, and

macrophages (155). Regarding immune cell differentiation, the

CXCL9/10/CXCR3 axis was found to be able to regulate the Th1

response (158, 159), T-cell differentiation (158), and M2

macrophage differentiation (160). Furthermore, the

inducement of Th1-cell activation and differentiation promotes

anti-cancer immunity by activating NK cells, macrophages, and

cytotoxic T cells (161, 162). In bladder cancer, the tumor-

associated dendritic cells were found to secrete CXCL9,

increasing PD-L1 expression in the tumor cells via the

CXCR3/STAT3/AKT signaling pathway, thus resulting in the

inhibition of anti-tumor adaptive immunity (163). Nevertheless,

Kubon et al. (164) found that the low levels of expression of

CXCL9 and PD-L1 were unfavorable prognostic factors in non-

muscle-invasive bladder cancer, which suggested that the anti-

tumor effect of CXCL9-mediated immune function may depend

in part on the progression of tumorigenesis. In addition,

CXCL10 was found to be released in large amounts in CD14+

cells after BCG induction therapy in bladder cancer patients. In

vitro experiments verified that CXCL10 can enhance the
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migration and recruitment of effector NK cells and T cells

following BCG-induced CXCR3 upregulation (165). Therefore,

we may wonder whether CLRs can also modulate the immune

response in bladder cancer through control of the CXC or CC

chemokines. Guo et al. (166) demonstrated that lung-infiltrated

dendritic cells and neutrophils can secrete CXCL9 and CXCL10

to recruit plasmacytoid dendritic cells to the lung in response to

fungal infection of A. fumigatus, which is dependent on Dectin-1

activation. This study indicated that Dectin-1 could induce the

production of CXC ligands to recruit immune cells, and this

process may also exist in the context of cancer. However, the

exact downstream signaling pathway remains unclear. As with

CCL18 in bladder cancer, the biological functions seemed to be

different from those of CXCL chemokines. Liu et al. (167) found

that CCL18 could promote the development of bladder cancer

through induction of EMT. Another study found that CCL18

could promote the invasiveness and metastasis of urothelial

carcinoma through activation of the phosphatidylinositol-3-

kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)

signaling pathway (168). Although the relationship between

CCL subfamily chemokines and CLRs is still unknown, we

may suspect that the CLRs also participate in the development

of bladder cancer.

To sum up, based on the results of our analysis – certain

CXC and CC chemokines are significantly upregulated in

bladder cancer patients with high levels of expression of CLRs

and differentially expressed immune cells and immune-

checkpoint molecules in the tumor microenvironment – we

hypothesize that CLRs may also modulate immune functions

through the regulation of chemokines in the tumor

microenvironment in bladder cancer.

The protein–protein interactive networks
centered by C-type lectin receptors and
potential regulatory mechanisms

In addition to the above discussion and hypothesis, which

are primarily based on the identified signaling pathway and

common immune modulatory functions, we also analyzed

interactions between the CLRs and other potential protein

chaperones, which could be physical or functional

relationships. Therefore, we utilized the STRING analysis to

perform a protein–protein interaction network analysis to

discover more potential functional mechanisms of CLRs and

better understand the biological functions of CLRs. In Figure 3I,

the different nodes represent different individual proteins

derived from a single gene locus, and the colored lines

represent protein–protein interactions with different

mechanisms. First, we can see that there are multiple

interactions among the four CLRs, which suggests co-

expression or a synergistic effect of the four CLRs. Notably,

multiple studies have illustrated a range of protein–protein

interactions between CLRs. Dectin-3 and Dectin-2 can form

heterodimers, which increases their capacity to recognize their
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ligands, a-mannans, result in stronger binding, which helps to

induce greater immune responses against fungal infection (169).

In addition, a fusion protein screening platform was utilized to

detect a tight and direct interaction between Dectin-1 and

Dectin-2, which synergically modulates the immune response

during the process of allergic inflammation in the skin (170).

Following these findings, more research is needed to elucidate

the interactive working mechanisms of CLRs in the bladder

microenvironment in bladder cancer.

Besides the internal protein–protein interactions between

the CLRs, the interactions between CLRs and other proteins are

also of great importance and may possess potent biological

functions. Intriguingly, in the map of protein–protein

interactions, we can see two toll-like receptors (TLRs). TLRs

are identified as another class of pattern recognition receptors

mainly expressed on the innate immune cells, such as dendritic

cells and macrophages (171). By sensing the conserved ligands

expressed on bacterial and fungal pathogens and the endogenous

damage-associated molecules, TLRs exert crucial functions in

inducing innate immunity and thereby activate the subsequent

adaptive immunity in infection and cancer (172). Based on the

pivotal immunoregulatory roles played by TLRs in cancer, the

strategy of combining TLR agonists with immunotherapy has

been identified as a promising treatment option to trigger a

stronger anti-cancer immune response (173). Interestingly, we

can see from the networks map that the four CLRs have tight

protein–protein interactions with the TLRs TLR2 and TLR4. On

stimulation of certain agonists, the activation of both TLR2 and

TLR4 can trigger the myeloid differentiation primary response

88 (MyD88) signaling pathway in antigen-presenting cells,

including dendritic cells and macrophages, which subsequently

initiates strong inflammatory responses through production of a

wide range of pro-inflammatory cytokines and expression of

iNOS (174). In bladder cancer, TLR2 and TLR4 would be

activated by the cell wall component of M. tuberculosis, further

inducing the inflammatory responses and laying the theoretical

foundation for the anti-cancer effect of BCG intravesical

instillation therapy in bladder cancer (175). Notably, a range

of elegant experiments have verified the interactions between

CLRs and TLRs. Ferwerda et al. (176) found that Dectin-1 could

synergize with TLR2 and TLR4, with enhanced TNF-a
production in macrophages, inducing stronger innate

immunity. Moreover, Yadav et al. (177) illustrated that

Dectin-1 can function in cooperation with TLR2 to promote a

stronger immune response from macrophages against

mycobacterial infection. In addition, Dectin-1 and Dectin-2

were found to be involved in anti-cancer immune responses in

bladder cancer patients treated with BCG (178). Therefore, it is

of great importance to explore whether the co-regulation of

TLRs and CLRs can result in a better immune response to BCG

therapy and ICB therapy in bladder cancer. In addition, the

upregulation of TLR4 and TLR2 was found to be positively

associated with increases in PD-L1 or PD-L2 in infection and
frontiersin.org

https://doi.org/10.3389/fimmu.2022.911325
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.911325
cancer (179–181). Furthermore, TLR4 has been shown to be able

to drive PD-L1 overexpression in lung cancer through the ERK

and PI3K signaling pathways (182, 183). Considering what we

have found in our analysis on the correlation between CLRs and

immune-checkpoint molecules – high levels of expression of

CLRs are significantly associated with PD-L1 expression – we

may speculate that the synergy effect between CLRs and TLRs

may serve as an indirect pathway to induce the upregulation of

PD-L1 in bladder cancer. Notably, we also found that FCER1G

has a tight connection with the CLRs and their downstream

factors in the network map. FCER1G represents a high-affinity

immunoglobulin epsilon receptor subunit that participates in

the formation of the fragment crystallizable region (FcR) of

immunoglobul in (184) . Through binding with the

immunoglobulins, the immune cells subsequently exert crucial

cellular effector functions, including phagocytosis, inflammatory

responses, and immune cell activation (185). A range of studies

have demonstrated the involvement of FCER1G in various

cancers (184, 186, 187). Moreover, high levels of expression of

FCER1G have been found to be a positive biomarker of

improved response to immunotherapy in glioma (188). In the

case of bladder cancer, bioinformatic analysis revealed that

FCER1G is a potential key immunoregulator in the

microenvironment of bladder cancer (189). Therefore, we may

speculate that CLRs also modulate immune responses in

cooperation with FCER1G. Liang et al. (190) found that

thymic stromal lymphopoietin can induce the upregulation of

FcR gamma subunit-related receptors epigenetically through

demethylation of FCER1G, which subsequently induce Th2

and Th17 immune responses and further activate allergic
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responses. Notably, Dectin-2 was found to play a crucial role,

in cooperation with FcRg, in mediating this immune function.

Thus, we may also focus on the potential interactive relationship

between CLRs and FCER1G and how this interaction might

influence the anti-cancer immunity in bladder cancer.

In conclusion, the protein–protein interaction network

centered on CLRs in bladder cancer is very complex. Multiple

synergistic and antagonistic interactions are interwoven with

each other, making the process of CLR-mediated anti-fungal

immunity more complex, and it may have further significant

impacts on ICB therapy efficacy. We may need to explore more

CLR-interacted targets and internal regulatory mechanisms,

which may help us find more effective synergistic strategies in

combination with ICB therapy in bladder cancer. Our

hypothesis and theory concerning the specific cell types and

pathways are summarized in Figure 7.

Non-fungal ligands recognized by C-type
lectin receptors and the potential regulatory
functions in bladder cancer

The common binding ligands for CLR recognition are

carbohydrate ligands derived from fungi. For example, Dectin-

1 mainly recognizes b-glucans, and Dectin-2, Dectin-3, and

Mincle mainly recognize a-mannans (191). However, in

addition to the fungal ligands, CLRs can also recognize a range

of non-fungal ligands, which may also induce crucial immune

responses and thus participate in the development of bladder

cancer. Sin3-associated protein 130 (SAP130) is a component

derived from a small nuclear ribonucleoprotein that is released

from dead cells. Notably, Mincle has been found to recognize
FIGURE 7

Graphical representation of our hypothesis and theory.
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SAP130 as the damage-associated molecule pattern (DAMP) for

the induction of inflammatory immune responses (192). Seifert

et al. (193) demonstrated that the expression of SAP130 in

pancreatic cancer can be upregulated following receptor-

interacting protein (RIP)-driven cellular necroptosis, which

was recognized by Mincle on the macrophages, further

fostering an immunosuppressive milieu represented by the

upregulation of MDSCs and M2 macrophages and a reduction

in T-cell infiltration. This study indicated that non-fungal

DAMP ligation with Mincle could serve as an upstream

driving force to induce immune escape and oncogenesis. As

for Dectin-1, one study identified vimentin as an endogenous

non-fungal ligand recognized by Dectin-1 in monocytes, with

activation of vimentin leading to arterial inflammation,

manifested by O2 production, and subsequent promotion of

cholesterol upregulation and lipid oxidation in atherosclerosis

(194). In addition, vimentin has been identified as an oncogene

in a range of cancers (195). Importantly, vimentin has been

found to be an important biomarker for the process of

epithelium–mesenchyme transition in bladder cancer (196,

197). Furthermore, the expression of vimentin was found to be

positively correlated with indoleamine 2,3-dioxygenase 1 (IDO-

1), which exerts crucial regulatory functions on T-cell functions

in bladder cancer (198). Therefore, Dectin-1 may also modulate

T-cell function through vimentin activation in bladder cancer,

but further experiments are required to verify this hypothesis.

Moreover, the non-fungal ligands recognized by CLRs also

include viral ligands. Recently, Dectin-2 expressed on dendritic

cells was found to be a key sensor for influenza hemagglutinin,

which facilitates the induction of the immune response during

influenza infection (199). Moreover, other kinds of viruses have

been found to be recognized by CLRs and thus initiate

inflammatory responses (200–202). Because the application of

oncolytic virus therapy in cancer has been another major

milestone, following the success of ICB therapy, and has

achieved surprising efficacy in multiple cancers (203, 204), we

may focus on CLRs as novel potential targets in oncolytic virus

therapy in bladder cancer. Furthermore, it has also been found

that Dectin-1 can recognize the N-glycan structure derived from

tumor cells, that is, tumor-associated molecule patterns

(TAMPs), thus triggering anti-tumor immune responses (205).

A wide range of TAMPs have been identified in bladder cancer

(206), which suggests that TAMPs may be another possible non-

fungal ligand for CLR activation. Overall, in addition to the

classical fungal ligands, non-fungal ligands deserve our attention

for their great capabilities in inducing immune responses.

The site of mycobiome-immune interactions in
the bladder

To more precisely illustrate the process of anti-fungal

immunity mediated by CLRs in bladder cancer, we need to

further discuss the immune interactions among the mycobiome,
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CLRs, and immune cells from an anatomical perspective. The

urothelium, commonly referred to as the mucosal layer of the

bladder, presents the greatest degree of impenetrability (207).

This layer forms the first line of defense against any potentially

threatening pathogens and toxins. Abundant immune cells,

including dendritic cells, macrophages, monocytes, T cells, and

NK cells, reside in the submucosa and lamina propria (208–210).

Therefore, when the urothelium is intact, there are few

opportunities for the fungi colonizing the urothelium to come

into contact with the resident immune cells, which maintains

homeostasis and the immune equilibrium of the bladder.

However, in bladder cancer, this immune-balanced state can

be disrupted and subsequent mycobiome immune interactions

can be activated. Although this process has not been clearly

modeled before, we can utilize similar models to model this

process. Based on the growth of the primary tumor, we speculate

that the division between the Ta or Tis stage and the ≥ T1 stages

is largely determined by the site of the immune interaction. A

tumor stage of ≥ T1 means that the tumor mass has spread to the

lamina propria or further, which can provide more direct

anatomical channels for the contact between the mycobiome

and bladder-residing immune cells, especially CLR-expressing

immune cells. Previous studies have shown that, in infection of

uropathogenic Escherichia coli in the bladder, the superficial

urothelial cells fall off, thus depleting the infected cells, along

with the intracellular bacteria. However, this process also allows

the bacteria to invade deeper under the urothelium, where they

can interact with the resident immune cells and induce

subsequent immune responses (211). Moreover, Wang et al.

(33) found that the decrease in Dectin-3 expression can impair

the phagocytic capabilities of the gut-residing macrophages and

significantly upregulate the fungal burden of C. tropicalis, which

further aggravates the severity of dextran sulfate sodium (DSS)-

induced colitis. It should be noted that this process is dependent

on damage to the normal intestinal mucosa and impairment of

the tissue repair system. The authors further demonstrated that a

defect in CARD9 expression can impair the ability of dendritic

cells and macrophages to kill invading commensal fungi, which

can lead to the accumulation of MDSC and promote the

development of colon cancer (40). Combining these findings,

we can conclude that the impairment of the intact mucosal

barrier is indispensable to mycobiome immune interactions,

which mainly occur in the submucosa and lamina propria. We

hypothesize that this process may be aggravated in T1–4 bladder

cancer, when the urothelium is badly damaged by the invasive

tumor mass. Nevertheless, for tumors at the Ta or Tis stage, pre-

existing bladder inflammation or mucosal injury due to bladder

catheterization may also provide opportunities for mycobiome

immune interactions.

Recently, Fu et al. (212) discovered a novel pro-tumoral

mechanism that depends on intratumoral bacteria. The tumor-

resident intracellular bacteria can enhance the metastatic
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capabilities of cancer cells through the reorganization of the

actin cytoskeleton and the promotion of mechanical stress

resistance. This study suggests that the low biomass of the

intratumoral microbiota could exert crucial biological

functions in the process of carcinogenesis. Despite the lack of

information on the existence and composition of the

intratumoral microbiota, especially fungal species, we

hypothesize that, if intratumoral fungi exist, then the tumor-

infiltrated immune cells would also interact actively with the

intracellular mycobiome and their expressed ligands.

Notably, the discussion above focuses on the fungi with a

direct attachment to epithelial cells, whereas the anatomical and

functional characteristics of the bladder determine that the urine

in the bladder can be another source of urinary fungal

microbiota. First, the effectiveness of bladder instillation of

BCG in bladder cancer shows that the bacterial components or

other immunogenic substances in the free-flowing liquid in the

bladder possess sufficient tissue permeability to infiltrate the

tumor or urothelium tissue and induce the inflammatory

responses that can kill the tumor cells (213). As discussed,

emerging evidence challenges the traditional idea that urine is

sterile, and the bacterial burden was found to be significantly

upregulated in the urine samples of bladder cancer patients

compared with non-neoplastic patients. More importantly,

increased bacterial richness is positively associated with the

risk of progression and recurrence (46). Notably, in addition

to microbes, microbial fragments and DNA can also be detected

in the urine and may serve as the interactive ligands for CLR

recognition. To conclude, the site of interaction between the

mycobiome and immune cells is typically the submucosa or

intratumoral region, but more experiments are required to

model this process more precisely.

The potential association between C-type
lectin receptors expression and fungal
mycobiome distribution in bladder cancer

Based on our hypothesis, the interaction between CLRs and

the fungal mycobiome is the dominant component of the

antifungal immune response in bladder cancer and the

subsequent anti-tumor immune response and determines the

efficacy of ICB therapy. Therefore, it is of great importance to

elucidate the association between CLR expression and the

mycobiome. Consider, for example, Dectin-1, which is a

primary sensor of commensal or pathogenic fungi in humans

(78). A decrease in or complete absence of the Dectin-1 signaling

pathway has been reported to lead to increased susceptibility to

fungal infection and related diseases (214). Moreover,

polymorphism or deficiency of Dectin-1 has been found to

induce abnormal activation of immune responses and to alter

the fungal mycobiome (215, 216). Notably, the deficiency of

Dectin-3 or the CARD9/SYK axis in dendritic cells and

macrophages resulted in a fungal dysbiosis represented by an
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increase of C. tropicalis, which subsequently led to an

accumulation of MDSC, thus promoting tumor progression

(33, 40). In summary, adequate innate immune cell infiltration

with sufficient CLRs expression is important in the homeostasis

of mucosal fungi, and absent or low levels of expression of

specific CLRs can result in the abnormal expression of certain

commensal fungi and subsequently exert pro-tumoral

immune functions.

Interestingly, a significant increase in Dectin-1 was found in

bladder cancer tumor tissues compared with normal tissues at

the transcriptional level (Figure 2A). This phenomenon raises a

new question: is the increase in Dectin-1 expression due to the

infiltration of immune cells in turn due to the fungal mycobiome

or is it due to the endogenous expression of Dectin-1 in cancer

cells? Liu et al. (217), in mice models, investigated the alteration

of the expression of Dectin-1 and its downstream adaptor

proteins during the host response to pulmonary infection with

A. fumigatus and found that stimulation of fungal conidia could

significantly increase the expression of Dectin-1 in myeloid cells.

Moreover, another study has shown that, during the process of

fungus-induced inflammation, taurine chloramine, which is an

inflammatory product derived from activated neutrophils, can

upregulate the expression of Dectin-1 on the macrophages,

thereby increasing their phagocytic capacity (218). Collectively,

the expression of Dectin-1 can be upregulated directly by

modulation of the fungal mycobiome or indirectly by fungus-

induced inflammation-derived products. Given the possibility of

the existence of a fungal mycobiome in the bladder, the

significantly upregulated expression of Dectin-1 may be due to

the enhancement of the function and infiltration of immune cells

under the modulation of the mycobiome.

Chiba et al. (205) found that Dectin-1 expressed on immune

cells can also sense the N-glycan structure of tumor cells and

thus activate anti-cancer immune responses, which indicates

that the fungal ligand may not be the only stimulator for CLR

activation and that TAMPs may also be ligands at CLRs and

regulate their expression or activation. Notably, a range of

tumor-derived glycans have been found in bladder cancer,

including the glycans Lewis X (LeX), Sialyl Lewis X (SLeX),

Sialyl Tn (STn), and N-glycolyl GM3 (NGcGM3) (206).

Therefore, the upregulation of Dectin-1 in bladder cancer may

also be under the regulation of these TAMPs without the

participation of the fungal mycobiome, but the interactions

between CLRs and TAMPs in bladder cancer must be

researched further.

Notably, in another study, the authors explored the tumoral

expression of Dectin-1 and found that Dectin-1 has a

predominant expression in the tumor cells of clear cell renal

cell carcinoma (ccRCC) and that high levels of expression of

Dectin-1 are associated with a worse prognosis (219). This

suggests that CLRs, in addition to exerting their immune

functions as a result of their expression on immune cells, may
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also mediate the regulation of tumorigenesis through non-

classical approaches. Therefore, another possibility arises:

significantly increased expression of Dectin-1 in tumor tissue

in bladder cancer may result in the endogenous overexpression

of Dectin-1 on the tumor cells. However, despite the verification

of the tumoral expression of Dectin-1, the concrete biological

functions and signaling mechanisms are still unknown.

Therefore, further research is required to elucidate the

modulatory functions exerted by the tumor cell expressed CLRs.
Discussion and future directions

From the limited available sequencing data on the urinary

mycobiome, we can see that the commensal fungi residing in the

bladder are highly diverse and heterogeneous, providing a

complex crosstalk network interacting with the host immune

system. Although we can draw no definitive conclusion about

the relationship between the urinary mycobiome and urological

diseases, research on similar organs and immune status may be

relevant. The organ whose commensal microbiota has been most

widely studied is the gastrointestinal tract, especially the gut.

Wang et al. (40) found that in CARD9 deficiency the commensal

fungus C. tropicalis can pass through the mucosal barrier and

induce MDSC infiltration, which ultimately facilitates colon

tumorigenesis. CARD9 is the most commonly required

adaptor for the activation of innate immune responses on

recognition of fungal ligands from CLRs (220, 221). Our

results show that the commensal fungi and CLR-mediated

immune surveillance jointly maintain a delicate mucosal

immune balance in the gut. This relationship resembles a

scale, with both sides in balance, and strengthening or

weakening of either side can cause the collapse of the whole

system. Similarly, on the basis of the existence of the commensal

fungi in the bladder, we found that members of the CLR family

are actively expressed in the bladder at both mRNA and protein

levels. Among all of the CLRs, Dectin-1 displayed the greatest

role in enrichment, and transcriptional expression of Dectin-1

and Dectin-2 was at significantly higher levels in tumor tissue

than in normal tissue (Figure 2). IHC showed that the level of

expression of both Mincle and Dectin-3 varies greatly among

individuals. However, it is apparent that in normal urothelial

tissue CLRs are mostly expressed on the mucosa, which may

serve as an immune barrier and protect against potential fungal

invasion. Further studies are required to determine the

dominant fungi during the carcinogenesis of bladder cancer.

In addition, dynamic alterations in spatial distribution and

internal components should be closely monitored to further

understand the process of CLR–fungi crosstalk.

Anti-pathogen immune responses can be considered

biphasic, comprising primary innate immunity and secondary

specific adaptive immunity (222). On recognition of fungal

ligands or carbohydrate antigens, the CLRs, which are mainly
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expressed on the cell surface of myeloid cells, trigger the

downstream signaling pathways and activate a range of

transcription factors, including NF-kB. The subsequent

production of various pro-inflammatory factors can induce the

recruitment of the leukocytes and activate innate immunity,

including phagocytosis (191, 223). In addition, with the

activation of innate immunity, phagocytic cells can engulf

fungal pathogens or infected cells and prime them into fungi-

derived antigen protein to present to T cells, which subsequently

induce Th1, Th17, and T follicular helper (TFH) immune

responses (30, 224). Despite the indirect antigen presentation

activation of adaptive immunity, CLRs can also be directly

expressed on lymphocytes, such as B cells, NK cells, and gd T

cells, to induce pro-inflammatory responses (225, 226).

Although we cannot conclude from this that the CLR-related

biological functions are caused by the mycobiome in the bladder,

which participate in the formation of urological malignancy, we

may at least suspect that, during the tumorigenesis of bladder

cancer, the CLRs exerted some immune-regulatory functions,

which may be a contributory factor for anti-cancer immunity in

bladder cancer and should not to be ignored. After performing

the gene-related pathway analysis, we explored the association

between CLR expression and crucial immune cell infiltration.

For innate immunity, we focused on myeloid phagocytic cells.

We found that the expression of all CLRs had a median positive

correlation with dendritic cell infiltration and a weak positive

correlation with macrophage infiltration.

Future studies should address three areas. The first is the

specific fungal community and compositional alterations in

different stages of bladder cancer, which may help us to find

the most crucial functional fungi in immune regulatory

networks in bladder cancer. The second is interactions

between the commensal fungi and CLRs in bladder cancer and

the exact mechanisms. In vitro and in vivo experiments may help

us to further understand this process, leading to the

development of more effective targeting agents. The third is

the pathological process that occurs in bladder cancer patients in

the real world. This can be achieved by using advanced gene-

sequencing techniques and by conducting a range of

clinical trials.
Methods

Analysis of C-type lectin receptor mRNA
and protein expression levels

To elucidate the expression of CLRs in normal and

malignant bladder tissue, we utilized UALCAN (University of

Alabama at Birmingham Cancer data analysis; University of

Alabama at Birmingham, Birmingham, AL, USA; http://ualcan.

path.uab.edu/) to compare the transcriptional levels in normal

tissue and primary tumor tissue. The data were derived from
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TCGA database (normal tissue, n = 19; primary tumor tissue,

n = 8). Clinical information of the enrolled bladder cancer

patients could be downloaded from UCSC Xena (University of

California, Santa Cruz, Santa Cruz, CA, USA; https://tcga.

xenahubs.net). To observe and analyze the expression levels

and location of CLR family receptors in normal bladder tissue

and bladder cancer tumor tissue, we used the HPA to acquire

IHC images of CLR (Dectin-3 and Mincle) staining in both types

of tissues.
Differentially expressed gene acquisition
and pathway enrichment prediction

Data relating to a total of 408 bladder cancer patients were

extracted from the TCGA database. To screen DEGs based on

the differentiated expression of CLRs, patients were divided into

two subgroups: a CLR-low group (G1) and a CLR-high group

(G2), based on the median expression of CLR. We performed a

hierarchical clustering analysis of mRNAs, and constructed

volcano plots of significant DEGs based on the fold-change

values and adjusted p-values. Red dots represent overexpressed

mRNAs and blue points down-expressed mRNAs with statistical

significance. To predict potential downstream pathways and

possible biological functions, we performed GO analysis of

significantly upregulated mRNAs. The biological process (BP),

cellular component (CC), and molecular function (MF) of

potential targets were clustered based on ClusterProfiler

package in R version 3.18.0 (The R Foundation for Statistical

Computing, Vienna, Austria).
Immune infiltration analysis

To further determine the correlations between CLRs and

immune cell infiltration in the bladder cancer tumor

microenvironment, we utilized TIMER, analyzing the

correlations between the transcriptional expression of CLRs

and macrophages, dendritic cells, and neutrophils. In addition,

we used specific markers of other immune cells, such as CD8+ T

cells, MDSCs, and B cells, for comparison with the expression of

CLRs to comprehensively explore the correlations between CLRs

and immune infiltration. CD8+ T cells were represented by the

expression of CD8A and CD8B. B cells were represented by the

expression of CD19, CD79A, and CD209. MDSCs were

represented by the expression of ITGAM and CD33.
Immune-checkpoint blockade therapy
response prediction analysis

To evaluate the relationship between CLR expression and

immunotherapy efficacy in bladder cancer patients, we
Frontiers in Immunology 21
downloaded data from the TCGA database. To divide the

enrolled patients into two groups, the CLR-low group and the

CLR-high group, data on the expression of CLR genes were

extracted. The TIDE algorithm was utilized to predict the

potential response to immune checkpoint blockade

therapy (227).
Statistical analysis

All statistical comparisons between the two groups were

performed with the Student’s t-test. Spearman’s correlation was

utilized to determine the correlation between quantitative

variables without a normal distribution. A p-value of < 0.05

was considered statistically significant.
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Heatmap of the correlation between CLRs and multiple cytokines (A). The
abscissa and ordinate represent the genes, respectively. Colors represent
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relation. *p < 0.05, **p < 0.01. The correlation between the expression of
the CLRs and the two key downstream transcription factors: PRDM1 and

c-MAF (B).
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urinary microbiome associated with bladder cancer. Sci Rep (2018) 8:12157.
doi: 10.1038/s41598-018-29054-w
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Olędzka G, Nowikiewicz T. Case report: Echinocandin-resistance candida
glabrata FKS mutants from patient following radical cystoprostatectomy due to
muscle-invasive bladder cancer. Front Oncol (2021) 11:794235. doi: 10.3389/
fonc.2021.794235

93. Takemura K, Takazawa R, Kohno Y, Yoshida S, Kato H, Tsujii T. Vesical
fungus balls (fungal bezoars) by candida albicans mimicking urothelial carcinoma
in a patient with diabetic neurogenic bladder. Urol Case Rep (2018) 18:50–1.
doi: 10.1016/j.eucr.2018.03.005

94. Curdy N, Lanvin O, Laurent C, Fournié JJ, Franchini DM. Regulatory
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