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Abstract

Background: Multimodal data, especially imaging and non-imaging data, is being routinely acquired in the
context of disease diagnostics; however, computational challenges have limited the ability to quantitatively
integrate imaging and non-imaging data channels with different dimensionalities and scales. To the best of our
knowledge relatively few attempts have been made to quantitatively fuse such data to construct classifiers and
none have attempted to quantitatively combine histology (imaging) and proteomic (non-imaging) measurements
for making diagnostic and prognostic predictions. The objective of this work is to create a common subspace to
simultaneously accommodate both the imaging and non-imaging data (and hence data corresponding to different
scales and dimensionalities), called a metaspace. This metaspace can be used to build a meta-classifier that
produces better classification results than a classifier that is based on a single modality alone. Canonical Correlation
Analysis (CCA) and Regularized CCA (RCCA) are statistical techniques that extract correlations between two modes
of data to construct a homogeneous, uniform representation of heterogeneous data channels. In this paper, we
present a novel modification to CCA and RCCA, Supervised Regularized Canonical Correlation Analysis (SRCCA), that
(1) enables the quantitative integration of data from multiple modalities using a feature selection scheme, (2) is
regularized, and (3) is computationally cheap. We leverage this SRCCA framework towards the fusion of proteomic
and histologic image signatures for identifying prostate cancer patients at the risk of 5 year biochemical recurrence
following radical prostatectomy.

Results: A cohort of 19 grade, stage matched prostate cancer patients, all of whom had radical prostatectomy,
including 10 of whom had biochemical recurrence within 5 years of surgery and 9 of whom did not, were
considered in this study. The aim was to construct a lower fused dimensional metaspace comprising both the
histological and proteomic measurements obtained from the site of the dominant nodule on the surgical
specimen. In conjunction with SRCCA, a random forest classifier was able to identify prostate cancer patients, who
developed biochemical recurrence within 5 years, with a maximum classification accuracy of 93%.

Conclusions: The classifier performance in the SRCCA space was found to be statistically significantly higher
compared to the fused data representations obtained, not only from CCA and RCCA, but also two other statistical
techniques called Principal Component Analysis and Partial Least Squares Regression. These results suggest that
SRCCA is a computationally efficient and a highly accurate scheme for representing multimodal (histologic and
proteomic) data in a metaspace and that it could be used to construct fused biomarkers for predicting disease
recurrence and prognosis.
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Background
With the plentitude of multi-scale, multi-modal, disease
pertinent data being routinely acquired for diseases such
as breast and prostate cancer, there is an emerging need
for powerful data fusion (DF) methods to integrate the
multiple orthogonal data streams for the purpose of
building diagnostic and prognostic meta-classifiers for
disease characterization [1]. Combining data derived
from multiple sources has the potential to significantly
increase classification performance relative to perfor-
mance trained on any one modality alone [2]. A major
limitation in constructing integrated meta-classifiers that
can leverage imaging (histology, MRI) and non-imaging
(proteomics, genomics) data streams is having to deal
with data representations spread across different scales
and dimensionalities [3].
For instance, consider two different data streams FA(x)

and FB(x) describing the same object x. If FA (x) and FB
(x) correspond to the same scale or resolution and also
have the same dimensionality, then one can envision,
concatenating the two data vectors into a single unified
vector [FA(x), FB(x)] which could then be used to train a
classifier. However when FA(x) and FB(x) correspond to
different scales, resolutions, and dimensionalities, it is
not immediately obvious as to how one would go about
combining the different types of measurements to build
integrated classifiers to make predictions about the class
label of x. For instance, directly aggregating data from
very different sources without accounting for differences
in the number of features and relative scaling, can not
only lead to the curse of dimensionality (too many fea-
tures and not enough corresponding samples [4]), but
can lead to classifier bias towards the modality with
more attributes. A possible solution is to first project
the data streams into a space where the scale and
dimensionality differences are removed; a meta-space
allowing for a homogeneous, fused, multi-modal data
representation.
DF methods try to overcome these obstacles by creat-

ing such a metaspace, on which a proper meta-classifier
can be constructed. Methods leveraging embedding
techniques have been proposed to try and fuse such het-
erogeneous data for the purpose of classification and
prediction [2,3,5-7]. However, all of these DF techniques
have their own weaknesses in creating an appropriate
representation space that can simultaneously accommo-
date multiple imaging and non-imaging modalities. Gen-
eralized Embedding Concatenation [5] is a DF scheme
that relies on dimensionality reduction (DR) methods to
first eliminate the differences in scales and dimensional-
ities between the modalities before fusing them. How-
ever, these DR methods face the risk of extracting noisy
features which degrade the metaspace [8]. Other

variants of the embedding fusion idea, including Con-
sensus embedding [6] and Boosted embedding [3] have
yielded promising results, but come at a high computa-
tional cost. Consensus embedding attempts to combine
multiple low dimensional data projections via a majority
voting scheme while the Boosted embedding scheme
leverages the Adaboost classifier [9] to combine multiple
weak embeddings. In the case of weighted multi-kernel
embedding using graph embedding [7] and support vec-
tor machine classifiers [2], insufficient training data can
lead to overfitting and inaccurate weights to the various
kernels, which can lower the performance of the meta-
classifier [10].
CCA is a statistical DF technique that extracts linear

correlations, by using cross-covariance matrices,
between 2 data sources, X and Y. It capitalizes on the
knowledge that the different modalities represent differ-
ent sets of descriptors for characterizing the same
object. For this reason, the mutual information that is
most correlated between the two modalities will provide
the most meaningful transformation into a metaspace.
In recent years, CCA has been used to fuse heteroge-
neous data such as pixel values of images and the text
attached between these images [11], assets and liabilities
in banks [12], and audio and face images of speakers
[13].
Regularized CCA (RCCA) is an improved version of

CCA which in the presence of insufficient training data
prevents overfitting by using a ridge regression optimi-
zation scheme [14]. Denote p and q as the number of
features in X and Y, and n as the sample size. When n <
<p or n < <q, the features in X and Y tend to be highly
collinear. This leads to ill-conditioned matrices Cxx and
Cyy, which denote the covariance matrix of X with itself
and Y with itself, such that their inverses are no longer
reliable resulting in an invalid computation of CCA and
an unreliable metaspace [15]. The condition placed on
the data to guarantee that Cxx and Cyy will be invertible
is n ≥ p + q + 1 [16]. However, that condition is usually
not met in the bioinformatics domain, where samples
(n) are usually limited, and modern technology has
enabled very high dimensional data streams to be routi-
nely acquired resulting in very high dimensional feature
sets (p and q). This creates a need for regularization,
which works by adding small positive quantities to the
diagonals of Cxx and Cyy to guarantee their invertibility
[17]. RCCA has been used to study expressions of genes
measured in liver cells and compare them with concen-
trations of hepatic fatty acids in mice [18]. However, the
regularization process required by RCCA is computa-
tionally very expensive. Both CCA and RCCA also fail
to take complete advantage of class label information,
when available [19].
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In this paper, we present a novel efficient Supervised
Regularized Canonical Correlation Analysis (SRCCA)
DF algorithm that is able to incorporate a supervised
feature selection scheme to perform regularization.
Mainly, it makes better use of labeled information that
in turn allows for significantly better stratification of the
data in the metaspace. While SRCCA is more expensive
than the overfitting-prone CCA, it provides the needed
regularization while also being computationally cheaper
than RCCA. SRCCA first produces an embedding of the
most correlated data in both modalities via a low
dimensional metaspace. This representation is then used
in conjunction with a classifier (K-Nearest Neighbor
[20] and Random Forest [21] are used in this study) to
create a highly accurate meta-classifier.
Along with CCA and RCCA, SRCCA is compared

with 2 other low dimensional data representation tech-
niques: Principal Component Analysis (PCA) and Partial
Least Squares Regression (PLSR). PCA [22] is a linear
DR method that reduces high dimensional data to domi-
nant orthogonal eigenvectors that try to represent the
maximal amount of variance in the data. PLSR [23] is a
DR method that uses one modality as a set of predictors
to try to predict the other modality. Tiwari et al. [24]
employed PCA in conjunction with a wavelet based
representation of different MRI protocols to build a
fused classifier to detect prostate cancer in vivo. PLSR
has been used with heterogeneous multivariate signaling
data collected from HT-29 human colon carcinoma cells
stimulated to undergo programmed cell death to
uncover aspects of biological cue-signal-response sys-
tems [25].
In this work, we apply SRCCA to the problem of pre-

dicting biochemical recurrence in prostate cancer (CaP)
patients, following radical prostatectomy, by fusing his-
tologic imaging and proteomic signatures. Biochemical
recurrence is commonly defined as a detectable eleva-
tion of Prostate Specific Antigen (PSA), a key biomarker
for CaP [26-28]. However, the nonspecificity of PSA
leads to over-treatment of CaP, resulting in many unne-
cessary treatments, which are both stressful and costly
[29-33]. Even the most widely used prognostic markers
such as pathologist assigned Gleason grade [34], which
attempts to capture the morphometric and architectural
appearance of CaP on histopathology, has been found to
be a less than perfect predictor of biochemical recur-
rence [35]. Additionally, Gleason grade has been found
to be subject to inter-, and intra-observer variability
[36-38]. While some researchers have proposed quanti-
tative, computerized image analysis approaches [1,39,40]
for modeling and predicting Gleason grade (a number
that goes from 1 to 5 based on morphologic appearance
of CaP on histopathology), it is still not clear that an
accurate, reproducible grade predictor from histology

will also be accurate in predicting biochemical recur-
rence and long term patient outcome [41].
Recent studies have shown that proteomic markers

can be used to predict aggressive CaP [42,43]. Techni-
ques such as mass spectrometry hold promise in their
ability to identify protein expression profiles that might
be able to distinguish more aggressive from less aggres-
sive CaP and identify candidates for biochemical recur-
rence [44-46]. However, more and more, it is becoming
apparent that a single prognostic marker may not pos-
sess sufficient discriminability to predict patient out-
come which suggests that the solution might lie in an
integrated fusion of multiple markers [47]. This then
begs the question as to what approaches need to be
leveraged to quantitatively fuse imaging and non-ima-
ging measurements to build an integrated prognostic
marker for CaP recurrence. The overarching goal of this
study is to leverage SRCCA to construct a fused quanti-
tative histologic, proteomic marker, and a subsequent
meta-classifier, for predicting 5 year biochemical recur-
rence in CaP patients following surgery.
Our main contributions in this paper are:

• A novel data fusion algorithm, SRCCA, that builds
an accurate metaspace representation that can
simultaneously represent and accommodate two het-
erogeneous imaging and non-imaging modalities.
• Leveraging SRCCA to build a meta-classifier to
predict risk of 5 year biochemical recurrence in
prostate cancer patients following radical prostatect-
omy by integrating histological image and proteomic
features.

The organization of the rest of the paper is as follows: In
the methods section, we first review the 4 statistical meth-
ods, PCA, PLSR, CCA and RCCA. Next, we introduce our
novel algorithm, Supervised Regularized Canonical Corre-
lation Analysis (SRCCA). We then discuss the DF algo-
rithm for metaspace creation and the computational
complexities for CCA, RCCA and SRCCA. In the Experi-
mental Design section, we briefly discuss the prostate can-
cer dataset considered in this study and the subsequent
proteomic and histologic feature extraction schemes
before moving on to the experiments performed on the
dataset where we try to determine the ability of PCA,
PLSR, CCA, RCCA and SRCCA to identify patients at risk
for biochemical recurrence following surgery. The results
are discussed in the subsequent section and the conclud-
ing remarks are presented at the end of the paper.

Methods
Review of PCA and PLSR
Principal Component Analysis (PCA) and Partial Least
Squares Regression (PLSR) are common statistical
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methods used to analyze multi-modal data and they are
briefly discussed in the following sections. However,
further information, explaining how these two methods
can be viewed as special cases of the generalized eigen-
problem, can be found in [48].
Principal Component Analysis (PCA)
PCA [22] constructs a low dimensional subspace of the
data by finding a series of linear orthogonal bases called
principal components. Each component seeks to explain
the maximal amount of variance in the dataset. Denote
two multidimensional variables, X Î ℝn × p and Y Î
ℝn×q, where p and q are the number of features in X
and Y and n the number of overall samples. PCA is
usually performed on the data matrix, Z Î ℝn×(p+q),
obtained by concatenating the individual modalities
such that: Z = [X Y] [24]. Z̄ ∈ �

n × (p+q) is then obtained
by subtracting the means of all features for a certain
sample from its original feature value in Z so that the
resultant Z̄ has rows with a 0 mean. Z̄ is further bro-
ken using singular value decomposition into [22]:

Z̄ = UEVT (1)

where E Î ℝn×n is a diagonal matrix containing the
eigenvalues of the eigenvectors which are stored in U Î
ℝp×p, and VT Î ℝm×n. The eigenvalues stored in E
explain how much variance of the original Z̄ is stored
in the corresponding eigenvector, or principal compo-
nent. Using these eigenvalues as a rank, the top d
embedding components can be chosen to best represent
the original data in a lower dimensional subspace.
Partial Least Squares Regression(PLSR)
PLSR [49] is a statistical technique that generalizes PCA
and multiple regression. The general underlying model
behind PLSR is [23]:

X = TPT + E (2)

Y = TCT + F (3)

where T Î ℝn×l is a score matrix, P Î ℝp×l and C Î
ℝq×l are loading matrices for X and Y, and E Î ℝn×p and
F Î ℝn×p are the error terms. PLSR is an iterative pro-
cess and works by continually approximating, and
improving the approximation of the matrices T, P and C
[50].

Review of CCA and RCCA
Canonical Correlation Analysis (CCA)
CCA [51] is a way of using cross-covariance matrices to
obtain a linear relationship between the two multidi-
mensional variables, X Î ℝn×p and Y Î ℝn×q. CCA
obtains two directional vectors wx Î ℝp×1 and wy Î
ℝq×1 such that Xwx and Ywy will be maximally

correlated. It is defined as the optimization problem
[11]:

ρ = max
wx,wy

wT
x Cxywy√

wT
x CxxwxwT

y Cyywy
(4)

where Cxy Î ℝp×q is the covariance matrix of the
matrices X and Y, Cxx Î ℝp×p is the covariance matrix
of the matrix X with itself and Cyy Î ℝq × q is the covar-
iance matrix of the matrix Y with itself. The solution to
CCA reduces to the solution of the following two gener-
alized eigenvalue problems [52]:

CxyC
−1
yy Cyx = λCxxwx (5)

CyxC
−1
xx Cxy = λCyywy (6)

where l is the generalized eigenvalue representing the
canonical correlation, and wx and wy are the corre-
sponding generalized eigenvectors. CCA can further
produce exactly min{p, q) orthogonal embedding com-
ponents (sets of wxX and wyY) which can be sorted in
order of decreasing correlation, l.
Regularized Canonical Correlation Analysis (RCCA)
RCCA [53,54] corrects for noise in X and Y by first
assuming that X and Y are contaminated with noise, Nx

Î ℝn×p and NY Î ℝn×q. We assume that these noise vec-
tors in the p and q columns of NX and NY, respectively,
are gaussian, independent and identically distributed.
For this reason, all combinations of the covariances of
the p columns of NX and q columns of NY will be 0
except the covariance of a particular column vector with
itself. This variance of each column of NX and NY is
labeled lx and ly and these labels are called the regular-
ization parameters. The matrix Cxy will not be affected
but the matrices Cxx and Cyy become Cxx + lx Ix and
Cyy + lx Ix. The solution to RCCA now becomes the
solution to these generalized eigenvalue problems [52]:

Cxy(Cyy + λy Iy)−1Cyx = λ(Cxx + λx Ix)wx (7)

Cyx(Cxx + λx Ix)−1Cxy = λ(Cyy + λy Iy)wy (8)

The regularization parameters next have to be chosen.

For i Î {1, 2, . . . , n}, let wi
x and wi

y denote the weights

calculated from RCCA when samples Xi and Yi are
removed. lx and ly are varied in a certain range θ1 ≤ lx,
ly ≤ θ2 and chosen via a grid search [55] optimization
of the following cost function [18]:

max
λx ,λy

[corr ({Xiw
i
x}n

i=1, {Yiw
i
y}n

i=1)] (9)
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where corr (·, ·) refers to the Pearson’s correlation
coefficient [56]. The above cost function essentially mea-

sures the change in the produced wi
x and wi

y when a

sample i is omitted and seeks the optimal lx and ly
where this change is minimized. lx and ly are chosen
using the embedding component with the highest l and
then adjusted for the remaining dimensions [18].

Extending RCCA to SRCCA
Supervised Regularized Canonical Correlation Analysis
(SRCCA) chooses lx and ly using a supervised feature
selection method (t-test, Wilcoxon Rank Sum Test and
Wilks Lambda Test are used in this study). Denote �1

and �2 as class 1 and class 2 and μ1 and μ2, σ 2
1 and

σ 2
2 , n1 and n2 as the means, variances, and sample sizes

of �1 and �2 . The data in the metaspace, Xwx or Ywy,
can be split using its labels into the n1 samples that
belong to �1 and the n2 samples that belong to class
�2 , where n1 + n2 = n. These two partitions can then
be used to calculate the discrimination level between
the samples of the two classes in the metaspace repre-
sentation. In this study, we implement RCCA with the
t-test (SRCCATT), the Wilcoxon Rank Sum Test
(SRCCAWRST) and the Wilks Lambda Test (SRCCAWLT)
to try to choose more appropriate regularization para-
meters, lx and ly, that can more successfully stratify the
samples in the metaspace compared to the parameters
chosen by RCCA. Similar to RCCA, for SRCCA, lx and
ly are chosen using the embedding component with the
most discriminatory score as chosen by the feature
selection schemes below and then adjusted for the
remaining dimensions.
SRCCATT
The t-test [57] is a parametric test that assumes the dis-
tributions of the two samples are normal and tests
whether these distributions have the same means. The
t-score, which measures the number of standard devia-
tions the two means of n1 samples of �1 and n2 sam-
ples of �2 are away from each other, is maximized
using a grid search algorithm as:

max
λx,λy

||μ1 − μ2 ||√
σ 2

1
n1

+ σ 2
2

n2

. (10)

SRCCAWRST

Wilcoxon Rank Sum Test [58] sorts both the samples in
order from lowest value to highest value. It then uses
their respective ranks within the population to calculate
the discriminatory score:

max
λx,λy

{(
n2∑
i=1

bi − n2(n2 + 1)
2

)
,

(
n1n2 −

n2∑
i=1

bi +
n2(n2 + 1)

2

)}
, (11)

where bi represents the rank of the sample i ∈ �2

with respect to the rest of the samples.
SRCCAW LT

In an ideal metaspace representation, samples from each
class will be grouped together while the samples from
different classes will be grouped separately. The WLT
[59] capitalizes on this knowledge and calculates the
ratio of within class variance of both samples to the
total variance of both samples combined. Wilks Lambda
(Λ) is minimized using a grid search algorithm as:

min
λx,λy

n1σ
2
1 + n2σ

2
2

nσ 2
. (12)

Data Fusion in the context of CCA, RCCA and SRCCA
DF is performed as described in Foster et al. [60]. When
the Xwx and Ywy are maximally correlated, each modal-
ity represents similar information, and thus either Xwx

or Ywy can be used to represent the original two modal-
ities in the metaspace. Moreover, X and Y are both
descriptors of the same object and thus, the most rele-
vant information is the data that exists and is correlated
in both modalities. Thus, a high correlation of Xwx and
Ywy is indicative that meaningful data, measuring the
object of interest, is being added to the metaspace.
In order of decreasing l, the top d embedding compo-

nents, up to � = min{p, q} can be chosen to represent
the two modalities in a metaspace. However, the lower
embedding components will have a lower l, and thus a
lower correlation between Xwx and Ywy which might
imply that non-relevant data is being added to the meta-
space. To avoid this issue, a threshold, l0, can be
selected such that only embedding components with l ≥
l0 will be included in the metaspace.

Computational Complexity
Given � = min{p, q}, CCA has a computational com-
plexity of �! (based on the source code in [61]). The
regularization algorithm requires a grid search process
for each ordered pair (lx, ly). Assume v potential lx and
ly sampled evenly between θ1 and θ2. RCCA requires a
training/testing cross-validation strategy, at each ordered
pair (lx, ly), to find the optimal lx and ly. It will
require CCA to be performed an order of n times at
each of the v intervals leading to a complexity of vn�!.
SRCCA only requires a CCA factorization once at each
of the v intervals leading to a complexity of v�!.
The computational complexities for each of the CCA

schemes are summarized in Table 1. Table 1 indicates
that SRCCA is an order of n times faster compared to
RCCA. However, SRCCA is also more complex com-
pared to CCA and will have a longer execution time.
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Experimental Design
Data Description
A total of 19 prostate cancer patients at the Hospital at the
University of Pennsylvania were considered for this study.
All patient identifiers are stripped from the data at the
time of acquisition. The data was deemed to be exempt
for review by the internal review board at Rutgers Univer-
sity and the protocol was approved by the University of
Pennsylvania internal review board. Hence, the data was
deemed eligible for use in this study. All of these patients
had been found to have prostate cancer on needle core
biopsy and subsequently underwent radical prostatectomy.
10 of these patients had biochemical recurrence within 5
years following surgery (BR) and the other 9 did not (NO
BR). The 19 patient studies were randomly chosen from a
larger cohort of 110 patient studies at the University of
Pennsylvania all of whom had been stage and grade
matched (Gleason score of 6 or 7) and had undergone
gland resection. Of these 110 cases, 55 had experienced
biochemical recurrence within 5 years while the other 55
had not. The cost of the mass spectrometry to acquire the
proteomic data limited this study to only 19 patient sam-
ples. Following gland resection, the gland was sectioned
into a series of histological slices with a meat cutter. For
each of the 19 patient studies, a representative histology
section on which the dominant tumor nodule was obser-
vable was identified. Mass Spectrometry was performed at
this site to yield a protein expression vector. The represen-
tative histologic sections were then digitized at 40 × mag-
nification using a whole slide digital scanner.
In the next two sections, we briefly describe the con-

struction of the proteomic and histologic feature spaces.
Subsequently we describe the strategy for combination
of quantitative image descriptors from the tumor site on
the histological prostatectomy specimen and the corre-
sponding proteomic measurements obtained from the
same tumor site, via mass spectrometry. The resultant
meta-classifier, constructed in the fused meta-space, is
then used to distinguish the patients at 5 year risk of
biochemical recurrence following radical prostatectomy
from those who are not.
Proteomic Feature Selection
Prostate slides were deparaffinized, and rehydrated
essentially as described in [62]. Tumor areas previously

defined on a serial H&E section were collected by nee-
dle dissection, and formalin cross-links were removed
by heating at 99°C. The FASP (Filter-Aided Sample Pre-
paration) method [63] was then used for buffer
exchange and tryptic digest. After peptide purification
on C-18 StageTips [64] samples were analyzed using
nanoflow C-18 reverse phase liquid chromatography/
tandem mass spectrometry (nLC-MS/MS) on an LTQ
Orbitrap mass spectrometer. A top-5 data-dependent
methodology was used for MS/MS acquisition, and data
files were processed using the Rosetta Elucidator proteo-
mics package, which is a label-free quantitation package
that uses extracted ion chromatograms to calculate pro-
tein abundance rather than peptide counts. A high
dimensional feature vector was obtained, denoted jP Î
ℝ19 × 953, characterizing each patient’s protein expres-
sion profile following surgery. This data underwent
quantile normalization, log(2) transformation, and mean
and variance normalization on a per-protein basis.
Quantitative Histologic Feature Extraction
In prostate whole-mount histology, denoted jH Î ℝ19 ×

151 (Figure 1 (a), (f)), the objects of interest are the
glands (shown in Figure 1 (b), (g)), whose shape and
arrangement are highly correlated with cancer progres-
sion [1,39,65,66]. We briefly describe this process below.
Prior to extracting image features, we employ an auto-
matic region-growing gland segmentation algorithm pre-
sented by Monaco et al. [67]. The boundaries of the
interior gland lumen and the centroids of each gland,
allow for extraction of 1) morphological and 2) architec-
tural features from histology as described briefly below.
More extensive details on these methods are in our
other publications [5,39,68].
Glandular Morphology The set of 100 morphological
features [1], (denoted jM Î ℝ19 × 100), of attributes, con-
sists of the average, median, standard deviation, and
min/max ratio for features such as gland area, maximum
area, area ratio, and estimated boundary length (See
Table 2).
Architectural Feature Extraction 51 architectural
image features, which have been shown to be predictors
of cancer [69], (denoted jA Î ℝ19 × 51), were extracted
in order to quantify the arrangement of glands present
in the section (See Table 2). Voronoi diagrams, Delau-
nay Triangulation and Minimum Spanning Trees were
constructed on the digital histologic image using the
gland centroids as vertices, the gland centroids having
previously been identified via the scheme in [68].

Fusing Proteomic, Histologic Features for Predicting
Biochemical Recurrence in CaP Patients Post-Surgery
Experiment 1 - Comparing SRCCA with CCA and RCCA
We performed CCA, RCCA, and SRCCA on selected
multimodal combinations, jP and jJ , where J Î {M, A,

Table 1 The computational complexities of all 3 DF
methods used in this study

Method Complexity

CCA �!

RCCA vn�!

SRCCA v�!

� = min{p, q}, which represents the number of features in the lower
dimensional modality, n is the sample size and v is the interval spacing over
which l1 and l2 will be chosen in the range {θ1, θ2}.
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H}. jP was reduced to 25 features as ranked by the t-
test, with a p-value cutoff of p = .05, using a leave-one-
out validation strategy. For CCA, jP and jJ were used
as the two multidimensional variables, X and Y, as men-
tioned above in Section 2. For RCCA and SRCCA, jP

and jJ were used in a manner similar to CCA except
they are tested with regularization parameters lx and ly
evenly spaced from θ1 = .001 to θ2 = .2 with v = 200.
The top d = 3 embedding components (which were

experimentally found to meet the criteria of l0 = .99 for
all SRCCA on all 3 multimodal combinations) were pro-
duced from CCA, RCCA, SRCCATT, SRCCAWRST, and
SRCCAWLT. The classification accuracies were deter-
mined with the classifiers K-Nearest Neighbor, denoted

via jKNN [20], with K = 1, and Random Forest, denoted
via jRF [21], with 50 Trees. Both these classifiers were
used because of their high computational speed. Accura-
cies were determined using leave-one-out validation,
which was implemented because of the small sample
size. In this process, 18 samples were used for the initial
feature pruning, determining the optimal regularization
parameter and training the classifier while the remaining
sample was used as the testing set for evaluating the
classifier. This procedure was repeated till all the sam-
ples were used in the testing set.
Experiment 2 - Comparing SRCCA with PCA and PLSR
In addition to the steps performed in Experiment 1,
metaspaces were also produced with PCA and PLSR. jP

Figure 1 Multi-modal patient data (top row: relapsed case, bottom row: non-relapsed case). (a), (f) Original prostate histology section
showing region of interest, (b), (g) Magnified ROI showing gland segmentation boundaries, (c), (h) Voronoi Diagram (d), (i) Delaunay
Triangulation depicting gland architecture, (e), (j) Plot of the proteomic profile obtained from the dominant tumor nodule regions (white box in
(a), (f) respectively) via mass spectrometry.

Table 2 Description of 25 Proteomic Features, 100 Morphological, and 51 Architectural

Proteomic # Description

Proteins Identified 25 Some include: CSNK2A1 protein, Dihydroxyacetone kinase,

Dynamin-2, Glycogenin-1, Mitochondrial PDHA1, Mu-crystallin

homolog, Nit protein 2, Nucleolin, Synaptonemal complex protein 1

Putative uncharacterized protein RPL3

Morphological Description

Gland Morphology 100 Area Ratio, distance Ratio, Standard Deviation of Distance,

Variance of Distance, Distance Ratio, Perimeter, Ratio,

Smoothness, Invariant Moment 1-7, Fractal Dimension, Fourier

Descriptor 1-10 (Mean, Std. Dev, Median, Min/Max of each)

Architectural Description

Voronoi Diagram 12 Polygon area, perimeter, chord length: mean, std. dev., min/max ratio, disorder

Delaunay Triangulation 8 Triangle side length, area: mean, std. dev., min/max ratio, disorder

Minimum Spanning Tree 4 Edge length: mean, std. dev., min/max ratio, disorder

Nearest Neighbors 27 Density of nuclei, distance to nearest nuclei
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and jJ were concatenated and PCA was then performed
on this new data matrix. For PLSR, a regression of jJ on
jP was performed.
Similarly, using the top d = 3 embedding components

produced from PCA, PLSR, SRCCATT, SRCCAWRST, and
SRCCAWLT, the classification accuracies of jKNN , with
K = 1, and jRF , with 50 Trees, were determined using
leave-one-out validation.
Experiment 3 - Comparing classifier accuracy for PCA, PLSR
and CCA variants using metaspace representations
Using the 10 different values for d Î {1, 2, ..10}, and the
3 fusion schemes considered (jP , jM ), (jP , jA ), and
(jP , jH ), 30 different embeddings were obtained for
PCA, PLSR, CCA, RCCA, SRCCATT, SRCCAWRST, and
SRCCAWLT. The maximum and median of these 30 dif-
ferent measurements for each classifier were calculated.
In addition, we denote as a1(i), the classification accu-

racy obtained by the DF scheme i, where i Î {PCA,
PLSR, CCA, RCCA} and a2(j) as the accuracy obtained
by the DF scheme i, where j Î {SRCCATT, SRCCAWRST,
SRCCAWLT}. A two paired student t-test was employed
to identify whether there were statistically significant
improvements in the 3 SRCCA variants by comparing
the classification accuracies with the null hypothesis:

Ho : α1(i) = α2(j) (13)

for all i Î {PCA, PLSR, CCA, RCCA} and for all j Î
{SRCCATT, SRCCAWRST, SRCCAWLT}.
Experiment 4 - Computational consideration for RCCA and
SRCCA
We measured the 3 individual single run completion
times for RCCA and SRCCA to fuse (jP , jM ), (jP , jA

), and (jP , jH ), with the null hypothesis:

Ho : completion time of RCCA = completion time of SRCCA (14)

These experiments were performed on a quadcore
computer with a clock speed of 1.8 GHz, and the pro-
grams were written on MATLAB(R) platform.

Results and Discussion
Experiment 1
Across both classifiers for d = 3, the 3 SRCCA variants,
SRCCATT, SRCCAWRST, SRCCAWLT, had a combined
median classification accuracy of 80% compared to 60%
for CCA and 42% for RCCA. SRCCA also performed
better in all 36 of 36 direct comparisons with CCA and
RCCA (see Tables 3 and 4). The higher classification
accuracy results indicate that SRCCA produces a meta-
space, where the samples are more stratified, compared
to CCA and RCCA. This also seems to indicate that the
supervised scheme of choosing regularization para-
meters, by the 3 SRCCA variants, is a more appropriate

scheme for classification purposes compared to the
ridge regression scheme used by RCCA.
These results, which seem to suggest that SRCCA out-

performs the other two CCA based approaches for this
dataset, CCA and RCCA, are observable in the embed-
ding plots of Figure 2, which show the metaspace pro-
duced by CCA, RCCA, SRCCATT, SRCCAWRST and
SRCCAWLT with d = 2 components. It may be seen that
because CCA lacks regularization, the corresponding
covariance matrices are singular and lack inverses. For
this reason, in Figure 2 the embedding components are
not orthogonal but are highly correlated to each other
and yield the same information. RCCA overcomes this
regularization problem but still does not produce the
same level of discrimination between patient classes com-
pared to the 3 variations of SRCCA. Note that SRCCATT,
SRCCAWRST and SRCCAWLT chose similar regularization
parameters, lx and ly, and have similar embedding plots.

Experiment 2
We see that SRCCATT, SRCCAWRST, SRCCAWLT are
able to outperform PCA and PLSR in all 36 of 36 direct
comparisons (see Tables 5 and 6). Even though, across
both classifiers for d = 3, PCA and PLSR have median
classification accuracies of 64% and 61%, which is higher
than the accuracies for CCA and RCCA, it is still much
lower than the 80% for SRCCATT, SRCCAWRST,
SRCCAWLT. These results also seem to indicate that
SRCCATT, SRCCAWRST, SRCCAWLT could also create a
more appropriate metaspace than, not only CCA and
RCCA, but also PCA and PLSR.

Table 3 Experiment 1: Classification Accuracy with K-
Nearest Neighbor

Dataset (jP , jJ ) CCA RCCA SRCCATT SRCCAWRST SRCCAWLT

(jP , jM ) 53% 37% 80% 79% 79%

(jP , jA ) 58% 47% 74% 68% 74%

(jP , jH ) 63% 47% 74% 74% 74%

Classification accuracies obtained for fusing (jP , jM ), (jP , jA ), and (jP , jH ),
with CCA, RCCA, SRCCATT, SRCCAWRST, and SRCCAWLT using the top d = 3
components, using jKNN with K = 1 neighbor and leave-one-out validation to
identify patients at the risk of biochemical recurrence from those who are not.

Table 4 Experiment 1: Classification Accuracy with
Random Forest

Dataset (jP , jJ ) CCA RCCA SRCCATT SRCCAWRST SRCCAWLT

(jP , jM ) 37% 42% 83% 81% 84%

(jP , jA ) 74% 30% 81% 77% 83%

(jP , jH ) 62% 42% 91% 89% 93%

Classification accuracies obtained for fusing (jP , jM ), (jP , jA ), and (jP , jH ),
with CCA, RCCA, SRCCATT, SRCCAWRST, and SRCCAWLT using the top d = 3
components, using jRF with 50 trees and leave-one-out validation to identify
patients at the risk of biochemical recurrence from those who are not.
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Experiment 3
In Tables 7 and 8 we see that the maximum and median
jKNN and jRF of the 3 SRCCA variants for fusion of (jI

, jJ ) were much higher than the corresponding values
of PCA, PLSR, CCA or RCCA. We also see that
SRCCAWLT attains a maximum classifier accuracy of
93.16% (see Table 7). In Tables 9 and 10, the 3 SRCCA
variants are statistically significantly better than PCA,
PLSR, CCA or RCCA even at the p = .001 level using
either classifiers, jKNN or jRF . We further see that
SRCCAWLT tends to marginally outperform SRCCATT

and SRCCAWRST. However given the small sample size
it is difficult to draw any definitive conclusions about
which of SRCCATT, SRCCAWRST, or SRCCAWLT might
be the better SRCCA variant.

In Figures 3 and 4, we see the classification accuracies
of the 7 DF methods, PCA, PLSR, CCA, RCCA,
SRCCATT, SRCCAWRST, or SRCCAWLT over a range of
d Î {1, 2, ..10} embedding components for the fusion
(jP , jH ). Importantly, we see that the SRCCATT,
SRCCAWRST, and SRCCAWLT all outperform PCA,
PLSR, CCA and RCCA for a majority of the embedding
dimensions, across both the jKNN and jRF classifiers.

Experiment 4
Figure 5 reveals that the completion time of SRCCA is
significantly lower than the completion time of RCCA.
Even though the differences in these times are visibly
different, a p-value of 1.9 × 10-3 even with just 3

Figure 2 2-dimensional representation of (jP , jA ). 2-dimensional representation of (jP , jA ) using (a) CCA, (b) RCCA, (c) SRCCATT, (d)
SRCCAWRST and (e) SRCCAWLT where the X and Y axes are the two most significant embedding components produced by the 3 different
algorithms. CCA (a) suffers from lack of regularization, RCCA (b) is regularized but does not produce the best metaspace while the three
variations of SRCCA (c)(d)(e) result in the best embedding components in terms of classification accuracy distinguished via best fit ellipses with
one outlier.

Table 5 Experiment 2: Classification Accuracy with K-
Nearest Neighbor

Dataset (jP , jJ ) PCA PLSR SRCCATT SRCCAWRST SRCCAWLT

(jP , jM ) 68% 57% 80% 79% 79%

(jP , jA ) 63% 47% 74% 68% 74%

(jP , jH ) 53% 53% 74% 74% 74%

Classification accuracies obtained for fusing (jP , jM ), (jP , jA ), and (jP , jH ),
with CCA, RCCA, SRCCATT, SRCCAWRST, and SRCCAWLT using the top d = 3
components, using jKNN with K = 1 neighbor and leave-one-out validation to
identify patients at the risk of biochemical recurrence from those who are not.

Table 6 Experiment 2: Classification Accuracy with
Random Forest

Dataset (jP , jJ ) PCA PLSR SRCCATT SRCCAWRST SRCCAWLT

(jP , jM ) 64% 75% 83% 81% 84%

(jP , jA ) 50% 64% 81% 77% 83%

(jP , jH ) 64% 67% 91% 89% 93%

Classification accuracies obtained for fusing (jP , jM ), (jP , jA ), and (jP , jH ),
with CCA, RCCA, SRCCATT, SRCCAWRST, and SRCCAWLT using the top d = 3
components, using jRF with 50 trees and leave-one-out validation to identify
patients at the risk of biochemical recurrence from those who are not.
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samples, indicates that SRCCA appears to be statistically
significantly faster compared to RCCA.
Note that the canonical factorization stage is the most

time consuming part of the of the algorithm. The Fea-
ture Selection stage computation, in comparison, is not
as time consuming. SRCCATT, SRCCAWRST, and
SRCCAWLT (whose results are reported in Figure 5) all
have similar execution times.

Conclusions
In this paper, we presented a novel data fusion (DF)
algorithm called Supervised Regularized Canonical Cor-
relation Analysis (SRCCA) that, unlike CCA and RCCA,
is (1) able to fuse with a feature selection (FS) scheme,
(2) regularized, and (3) computationally cheap. We
demonstrate how SRCCA can be used for quantitative
integration and representation of multi-scale, multi-
modal imaging and non-imaging data. In this work we
leveraged SRCCA for the purpose of constructing a
fused quantitative histologic-proteomic classifier for pre-
dicting which prostate cancer patients are at risk for 5
year biochemical recurrence following surgery. We have
demonstrated that SRCCA is able to (1) produce a
metaspace, where the samples are more stratified than

Table 8 Experiment 3: Median jKNN and jRF of DF schemes across d Î {1, 2, ..10}
Classifier PCA PLS CCA RCCA SRCCATT SRCCAWRST SRCCAWLT

jKNN 52.63% 57.89% 57.89% 47.37% 68.42% 68.42% 68.42%

jRF 51.58% 62.37% 58.42% 37.37% 72.89% 69.47% 74.21%

Median classification accuracies obtained for fusing (jP , jM ), (jP , jA ), and (jP , jH ), with PCA, PLSR, CCA, RCCA, SRCCATT, SRCCAWRST, and SRCCAWLT across d Î
{1, 2, ...10} components, using two classifiers, jKNN , with K = 1, and jRF , with 50 trees, and leave-one-out validation to identify patients at the risk of biochemical
recurrence from those who are not.

Table 9 Experiment 3: Statistical Significance (p-value) of
SRCCA for jKNN

Classifier SRCCATT SRCCAWRST SRCCAWLT

PCA 5.9 × 10-10 9.0 × 10-09 4.7 × 10-8

PLS 6.0 × 10-7 9.2 × 10-5 2.2 × 10-6

CCA 3.0 × 10-8 1.3 × 10-6 4.0 × 10-9

RCCA 4.0 × 10-10 4.5 × 10-10 7.1 × 10-11

p-values for the twelve comparisons of every scheme in {PCA, PLSR, CCA,
RCCA} to every scheme in {SRCCATT, SRCCAWRST, SRCCAWLT} for fusing (jP , jM

), (jP , jA ), and (jP , jH ) across d Î {1, 2, ...10} components, using two
classifiers, jKNN , with K = 1, and leave-one-out validation to identify patients
at the risk of biochemical recurrence from those who are not.

Table 10 Experiment 3: Statistical Significance (p-value)
of SRCCA for jRF

Classifier SRCCATT SRCCAWRST SRCCAWLT

PCA 1.7 × 10-13 4.7 × 10-12 1.4 × 10-10

PLS 1.3 × 10-5 8.5 × 10-3 1.6 × 10-4

CCA 6.8 × 10-7 5.4 × 10-6 2.1 × 10-7

RCCA 3.4 × 10-9 1.8 × 10-9 3.6 × 10-16

p-values for the twelve comparisons of every scheme in {PCA, PLSR, CCA,
RCCA} to every scheme in {SRCCATT, SRCCAWRST, SRCCAWLT} for fusing (jP , jM

), (jP , jA ), and (jP , jH ) across d Î {1, 2, ...10} components, using two
classifiers, jRF , with 50 trees, and leave-one-out validation to identify patients
at the risk of biochemical recurrence from those who are not.

Table 7 Experiment 3: Maximum jKNN and jRF of DF schemes across d Î {1, 2, ..10}
Classifier PCA PLS CCA RCCA SRCCATT SRCCAWRST SRCCAWLT

jKNN 84.21% 84.21% 73.68% 68.42% 84.21% 84.21% 84.21%

jRF 84.21% 84.21% 80.20% 68.42% 91.05% 88.95% 93.16%

Maximum classification accuracies obtained for fusing (jP , jM ), (jP , jA ), and (jP , jH ), with PCA, PLSR, CCA, RCCA, SRCCATT, SRCCAWRST, and SRCCAWLT across d
Î {1, 2, ..10} components, using two classifiers, jKNN , with K = 1, and jRF , with 50 trees, and leave-one-out validation to identify patients at the risk of
biochemical recurrence from those who are not.

Figure 3 Classification accuracies of (jP , jH ) across dimensions d Î {1, 2, ..10} using the classifier jKNN . Accuracies were obtained for
fusing (jP , jH ), with PCA, PLSR, CCA, RCCA, SRCCATT, SRCCAWRST, and SRCCAWLT across d Î {1, 2, ...10} components, using jKNN , with K = 1,
and leave-one-out validation to identify patients at the risk of biochemical recurrence from those who are not.
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the metaspace produced by CCA or RCCA, (2) better
identify patients at the risk of biochemical recurrence
compared to Principal Component Analysis (PCA), Par-
tial Least Squares Regression (PLSR), CCA or RCCA, (3)
perform regularization, all the while being statistically
significantly faster compared to RCCA.
While the fused prognostic classifier for predicting

biochemical recurrence in this work appears to be pro-
mising, we also acknowledge the limitations of this
work: (1) As previously mentioned, the cost of mass
spectrometry limited this study to only 19 datasets. By
using a minimum sample size derivation model [70,71],
we were able to determine that our fused SRCCA classi-
fier would yield an accuracy of 93%, more than 95% of
the time if our dataset were expanded to 56 studies. We
intend to evaluate our classifier on such a cohort in the
future. (2) Ideally, a randomized cross validation strategy
should have been employed for the training and evalua-
tion of the classifier. Unfortunately, this was also limited

by the size of the cohort. While both parametric and
non-parametric feature selection strategies were
employed in this work, the availability of a larger dataset
for classification in conjunction with SRCCA would
allow for employment of parametric selection strategies,
assuming that the underlying distribution can be esti-
mated. For small sample datasets, a non-parametric fea-
ture selection strategy might be more approrpriate. In
future work, we also plan to apply SRCCA in the con-
text of data fusion for other imaging and non-imaging
datasets in the context of other problem domains and
applications.
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Figure 4 Classification accuracies of (jP , jH ) across dimensions d Î {1, 2, ..10} using the classifier jRF . Accuracies were obtained for
fusing (jP , jH ), with PCA, PLSR, CCA, RCCA, SRCCATT, SRCCAWRST, and SRCCAWLT across d Î {1, 2, ...10} components, using jKNN , with K = 1,
and leave-one-out validation to identify patients at the risk of biochemical recurrence from those who are not.

Figure 5 Computational run times for SRCCA and RCCA for
fusing (jP , jM ), (jP , jA ), and (jP , jH ). SRCCA significantly
outperforms RCCA across all fusion experiments. SRCCA
significantly outperforms RCCA across all fusion experiments.

Golugula et al. BMC Bioinformatics 2011, 12:483
http://www.biomedcentral.com/1471-2105/12/483

Page 11 of 13



References
1. Madabhushi A, Agner S, Basavanhally A, Doyle S, Lee G: Computer-aided

prognosis: Predicting patient and disease outcome via quantitative
fusion of multi-scale, multi-modal data. CMIG 2011.

2. Lanckriet GRG, Deng M, Cristianini N, Jordan MI, Noble WS: Kernel-based
data fusion and its application to protein function prediction in yeast.
Proceedings of the Pacific Symposium on Biocomputing 2004, 300-311.

3. Tiwari P, Viswanath S, Lee G, Madabhush A: Multi-Modal Data Fusion
Schemes for Integrated Classification of Imaging and Non-imaging
Biomedical Data. ISBI 2011, 165-168.

4. Duda RO, Hart PE: Pattern Classification and Scene Analysis John Wiley &
Sons, New York; 1973.

5. Lee G, Monaco J, Doyle S, Masters S, Feldman M, Tomaszewski J,
Madabhushi A: A knowledge representation framework for integration,
classification of multi-scale imaging and non-imaging data: Preliminary
results in predicting prostate cancer recurrence by fusing mass
spectrometry and histology. ISBI 2009, 77-80.

6. Viswanath S, Rosen M, Madabhushi A: A consensus embedding approach
for segmentation of high resolution in vivo prostate magnetic
resonance imagery. SPIE Med Imag 2008, 6915(1), 69150U.

7. Tiwari P, Kurhanewicz J, Rosen M, Madabhushi A: Semi Supervised Multi
Kernel (SeSMiK) Graph Embedding: Identifying Aggressive Prostate
Cancer via Magnetic Resonance Imaging and Spectroscopy. MICCAI 2010,
6363:666-673.

8. Wu Y, Chang EY, Chang KCC, Smith JR: Optimal Multimodal Fusion for
Multimedia Data Analysis. ACM Conference on Multimedia 2004, 572-579.

9. Freund Y, Schapire RE: A decision-theoretic generalization of on-line
learning and an application to boosting. Proceedings of the Second
European Conference on Computational Learning Theory London, UK:
Springer-Verlag; 1995, 23-37.

10. Lewis DP, Jebara T, Noble WS: Support vector machine learning from
heterogeneous data: an empirical analysis using protein sequence and
structure. Bioinformatics 2006, 22(22):2753-2760.

11. Hardoon DR, Szedmak S, Shawe-Taylor J: Canonical correlation analysis: an
overview with application to learning methods. Neural Comput 2004,
16(12):2639-2664.

12. Simonson DG, Stowe JD, Watson CJ: A Canonical Correlation Analysis of
Commercial Bank Asset/Liability Structures. Journal of Financial and
Quantitative Analysis 1983, 18(01):125-140.

13. Chaudhuri K, Kakade SM, Livescu K, Sridharan K: Multi-View Clustering via
Canonical Correlation Analysis. Proceedings of the 26th Annual International
Conference on Machine Learning 2009, 129-136.

14. Bie TD, Moor BD: On the Regularization of Canonical Correlation Analysis.
ICA 2003 2003.

15. Gou Z, Fyfe C: A canonical correlation neural network for
multicollinearity and functional data. Neural Networks 2004, 17(2):285-293.

16. Eaton ML, Perlman MD: The Non-Singularity of Generalized Sample
Covariance Matrices. The Annals of Statictics 1973, 1(4):710-717.

17. Hoerl AE, Kennard RW: Ridge Regression: Biased Estimation for
Nonorthogonal Problems. Technometrics 1970, 12:55-67.

18. Gonzalez I, Dejean S, Martin PGP, Baccini A: CCA: An R Package to Extend
Canonical Correlation Analysis. Journal of Stat Software 2008, 23(12):1-14.

19. Kakade SM, Foster DP: Multi-View Regression via Canonical Correlation
Analysis. In Proceedings of Conference on Learning Theory 2007, 82-96.

20. Cover T, Hart P: Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on 1967, 13:21-27.

21. Breiman L: Random Forests. Machine Learning 2001, 45:5-32.
22. Hotelling H: Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology 1933, 24(7):498-520.
23. Wold S, Sjostrom M, Eriksson L: PLS-regression: a basic tool of

chemometrics. Chemometrics and Intelligent Laboratory Systems 2001,
58(2):109-130.

24. Tiwari P, Kurhanewicz J, Viswanath S, Sridhar A, Madabhushi A: Multimodal
Wavelet Embedding Representation for data Combination (MaWERiC):
Integrating Magnetic Resonance Imaging and Spectroscopy for Prostate
Cancer Detection. NMR in Biomedicine 2011.

25. Janes KA, Kelly JR, Gaudet S, Albeck JG, Sorger PK, Lauffenburger DA: Cue-
signal-response analysis of TNF-induced apoptosis by partial least
squares regression of dynamic multivariate data. Journal of computational
biology a journal of computational molecular cell biology 2004, 11(4):544-561.

26. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC:
Natural History of Progression After PSA Elevation Following Radical
Prostatectomy. JAMA: The Journal of the American Medical Association 1999,
281(17):1591-1597.

27. Roberts SG, Blute ML, Bergstralh EJ, Slezak JM, Zincke H: PSA doubling time
as a predictor of clinical progression after biochemical failure following
radical prostatectomy for prostate cancer. Mayo Clinic Proceedings 2001,
76(6):576-81.

28. Pisansky TM, Kozelsky TF, Myers RP, Hillman DW, l Blute M, Buskirk SJ,
Cheville JC, Ferrigni RG, Schild SE: Radiotherapy for Isolated Serum
Prostate Specific Antigen Elevation After Prostatectomy For Prostate
Cancer. The Journal of Urology 2000, 163(3):845-850.

29. Chrouser K, Lieber M: Extended and saturation needle biopsy for the
diagnosis of prostate cancer. Current Urology Reports 2004, 5:226-230.

30. Welch H, Fisher E, Gottlieb D, Barry M: Detection of prostate cancer via
biopsy in the medicare-seer population during the PSA era. Journal of
the National Cancer Institute 2007, 99:1395-1400.

31. Veenstra TD: Global and targeted quantitative proteomics for biomarker
discovery. Journal of Chromatography B 2007, 847:3-11.

32. Chan DW, Sokoll LJ: Prostate-specific antigen: update 1997. Journal of the
International Federation of Clinical Chemistry 1997, 9:120-125.

33. Partin AW, Oesterling JE: The clinical usefulness of percent free-PSA.
Urology 1996, 48:1-3.

34. Gleason DF: Classification of prostatic carcinomas. Cancer Chemother Rep
1966, 50:125-128.

35. Stephenson AJ, Kattan MW, Eastham JA, Bianco FJ, Yossepowitch O,
Vickers AJ, Klein EA, Wood DP, Scardino PT: Prostate cancer specific
mortality after radical prostatectomy for patients treated in the prostate-
specific antigen era. Journal of Clinical Oncology 2009, 27:4300-4305.

36. Montironi R, Mazzuccheli R, Scarpelli M, Lopez-Beltran A, Fellegara G,
Algaba F: Gleason grading of prostate cancer in needle biopsies or
radical prostatectomy specimens: contemporary approach, current
clinical significance and sources of pathology discrepancies. BJU
International 2005, 95(8):1146-1152.

37. Allsbrook WC, Mangold KA, Johnson MH, Lane RB, Lane CG, Amin MB,
Bostwick DG, Humphrey PA, Jones EC, Reuter VE, Sakr W, Sesterhenn IA,
Troncoso P, Wheeler TM, Epstein JI: Interobserver reproducibility of
Gleason grading of prostatic carcinoma: Urologic pathologists. Human
Pathology 2001, 32:74-80.

38. King CR: Patterns of prostate cancer biopsy grading: Trends and clinical
implications. International Journal of Cancer 2000, 90(6):305-311.

39. Doyle S, Hwang M, Shah K, Madabhushi A, Tomaszewski J, Feldman M:
Automated Grading of Prostate Cancer using Architectural and Textural
Image Features. IEEE International Symposium on Biomedical Imaging (ISBI)
2007, 1284-87.

40. Tabesh A, Teverovskiy M, Pang HY, Kumar V, Verbel D, Kotsianti A, Saidi O:
Multifeature Prostate Cancer Diagnosis and Gleason Grading of
Histological Images. Medical Imaging, IEEE Transactions on 2007,
26(10):1366-1378.

41. Sved PD, Gomez P, Manoharan M, Kim SS, Soloway MS: Limitations Of
Biopsy Gleason Grade: Implications For Counseling Patients With Biopsy
Gleason Score 6 Prostate Cancer. The Journal Of Urology 2004, 172:98-102.

42. Fredolini C, Liotta LA, Petricoin EF: Application of proteomic technologies
for prostate cancer detection, prognosis, and tailored therapy. Critical
Reviews in Clinical Laboratory Sciences 2010, 47(3):125-138.

43. Ornstein DK, Tyson DR: Proteomics for the identification of new prostate
cancer biomarkers. Urologic Oncology: Seminars and Original Investigations
2006, 24(3):231-236.

44. Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG,
Morrison RS: Biomarkers: Mining the Biofluid Proteome. Molecular &
Cellular Proteomics 2005, 4(4):409-418.

45. Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ,
Schellhammer PF, Yasui Y, Feng Z, Wright GL: Serum Protein
Fingerprinting Coupled with a Pattern-matching Algorithm Distinguishes
Prostate Cancer from Benign Prostate Hyperplasia and Healthy Men.
Cancer Research 2002, 62(13):3609-3614.

46. Al-Ruwaili JA, Larkin SE, Zeidan BA, Taylor MG, Adra CN, Aukim-Hastie Cl,
Townsend PA: Discovery of Serum Protein Biomarkers for Prostate
Cancer Progression by Proteomic Analysis. Cancer Genomics - Proteomics
2010, 7(2):93-103.

Golugula et al. BMC Bioinformatics 2011, 12:483
http://www.biomedcentral.com/1471-2105/12/483

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/16966363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16966363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16966363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15516276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15516276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15036345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15036345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11393495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11393495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11393495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10687990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10687990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10687990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15161572?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15161572?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17848671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17848671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10174623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8973692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5948714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15877724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15877724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15877724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11172298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11172298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15201746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15201746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15201746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20858067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20858067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16678055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16678055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22220320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20335524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20335524?dopt=Abstract


47. Tolonen TT, Tammela TL, Kujala PM, Tuominen VJ, Isola JJ, Visakorpi T:
Histopathological variables and biomarkers enhancer of zeste
homologue 2, Ki-67 and minichromosome maintenance protein 7 as
prognosticators in primarily endocrine-treated prostate cancer. BJU
International 2011.

48. Borga M, Landelius T, Knutsson H: A Unified Approach to PCA, PLS, MLR
and CCA. 1997, Tech. rep., Report LiTH-ISY-R-1992, ISY, SE-581 83 Linkoping,
Sweden.

49. Abdi H: Partial least squares (PLS) regression. Encyclopedia of Social
Sciences Research Methods 2003, 1-7.

50. Rosipal R, Kramer N: Overview and Recent Advances in Partial Least
Squares. Subspace, Latent Structure and Feature Selection 2006, 3940:34-51.

51. Hotelling H: Relations between two sets of variants. Biometrika 1936,
28:321-377.

52. Sun L, Ji S, Ye J: A least squares formulation for canonical correlation
analysis. ICML 2008, 33:1024-1031.

53. Vinod HD: Canonical ridge and econometrics of joint production. Journal
of Econometrics 1976, 4(2):147-166.

54. Leurgans SE, Moyeed RA, Silverman BW: Canonical Correlation Analysis
when the Data are Curves. Journal of the Royal Statistical Society Series B
(Methodological) 1993, 55(3):725-740.

55. Guo Y, Hastie T, Tibshirani R: Regularized linear discriminant analysis and
its application in microarrays. Biostatistics 2007, 8:86-100.

56. Yates RD, Goodman D: Probability and Stochastic Processes: A Friendly
Introduction for Electrical and Computer Engineers John Wiley and Sons;
2005.

57. Jafari P, Azuaje F: An assessment of recently published gene expression
data analyses: reporting experimental design and statistical factors. BMC
Medical Informatics and Decision Making 2006, 6:27.

58. Thomas JG, Olson JM, Tapscott SJ, Zhao LP: An efficient and robust
statistical modeling approach to discover differentially expressed genes
using genomic expression profiles. Genome Res 2001, 11:1227-1236.

59. Hwang D, Schmitt WA, Stephanopoulos G, Stephanopoulos G:
Determination of minimum sample size and discriminatory expression
patterns in microarray data. Bioinformatics 2002, 18:1184-1193.

60. Foster DP, Kakade SM, Zhang T: Multi-view dimensionality reduction via
canonical correlation analysis. Technical Report TR-2008-4, TTI-Chicago 2008.

61. Borga M, Friman O, Lundberg P, Knutsson H: Blind Source Separation of
Functional MRI Data. SSBA 2002.

62. Heaton K, Master S: Peptide Extraction from Formalin-Fixed Paraffin-
Embedded Tissue. Current Protocols in Protein Science, supplement 65, Unit
23.5 2011.

63. Wisniewski JR, Zougman A, Nagaraj N, Mann M: Universal sample
preparation method for proteome analysis. Nature Methods 2009,
6(5):359-362.

64. Rappsilber J, Mann M, Ishihama Y: Protocol for micro-purification,
enrichment, pre-fractionation and storage of peptides for proteomics
using StageTips. Nature Protocols 2007, 2(8):1896-1906.

65. Doyle S, Feldman M, Tomaszewski J, Shih N, Madabhushi A: Cascaded
Multi-Class Pairwise Classifier (CascaMPa) For Normal, Cancerous, And
Cancer Confounder Classes In Prostate Histology. IEEE International
Symposium on Biomedical Imaging (ISBI) 2011, 715-718.

66. Sparks R, Madabhushi A: Novel Morphometric based Classification via
Diffeomorphic based Shape Representation using Manifold Learning.
International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Volume 6363 Springer Verlag, Beijing, China: Springer
Verlag; 2010, 658-665.

67. Monaco J, Tomaszewski J, Feldman M, Moradi M, Mousavi P, Boag A,
Davidson C, Abolmaesumi P, Madabhushi A: Detection of Prostate Cancer
from Whole-Mount Histology Images Using Markov Random Fields.
Workshop on Microscopic Image Analysis with Applications in Biology (in
conjunction with MICCAI) New York, NY; 2008.

68. Monaco J, Tomaszewski J, Feldman M, Hagemann I, Moradi M, Mousavi P,
Boag A, Davidson C, Abolmaesumi P, Madabhushi A: High-throughput
detection of prostate cancer in histological sections using probabilistic
pairwise Markov models. Medical Image Analysis 2010, 14(4):617-629.

69. Basavanhally A, Ganesan S, Agner S, Monaco J, Feldman M, Tomaszewski J,
Bhanot G, Madabhushi A: Computerized image-based detection and
grading of lymphocytic infiltration in HER2+ breast cancer
histopathology. IEEE Transactions on Biomedical Engineering 2010,
57:642-653.

70. Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C, Golub TR,
Mesirov JP: Estimating Dataset Size Requirements for Classifying DNA
Microarray Data. Journal of Computational Biology 2003, 10(2):119-142.

71. Basavanhally A, Doyle S, Madabhushi A: Predicting Classifier Performance
With a Small Training Set: Applications to Computer-Aided Diagnosis
and Prognosis. IEEE International Symposium on Biomedical Imaging (ISBI)
IEEE, Rotterdam, NL: IEEE; 2010, 229-232.

doi:10.1186/1471-2105-12-483
Cite this article as: Golugula et al.: Supervised Regularized Canonical
Correlation Analysis: integrating histologic and proteomic
measurements for predicting biochemical recurrence following prostate
surgery. BMC Bioinformatics 2011 12:483.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Golugula et al. BMC Bioinformatics 2011, 12:483
http://www.biomedcentral.com/1471-2105/12/483

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/16603682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16603682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16790051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16790051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11435405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11435405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11435405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12217910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12217910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17703201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17703201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17703201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20493759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20493759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20493759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12804087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12804087?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Review of PCA and PLSR
	Principal Component Analysis (PCA)
	Partial Least Squares Regression(PLSR)

	Review of CCA and RCCA
	Canonical Correlation Analysis (CCA)
	Regularized Canonical Correlation Analysis (RCCA)

	Extending RCCA to SRCCA
	SRCCATT
	SRCCAWRST
	SRCCAW LT

	Data Fusion in the context of CCA, RCCA and SRCCA
	Computational Complexity
	Experimental Design
	Data Description
	Proteomic Feature Selection
	Quantitative Histologic Feature Extraction

	Fusing Proteomic, Histologic Features for Predicting Biochemical Recurrence in CaP Patients Post-Surgery
	Experiment 1 - Comparing SRCCA with CCA and RCCA
	Experiment 2 - Comparing SRCCA with PCA and PLSR
	Experiment 3 - Comparing classifier accuracy for PCA, PLSR and CCA variants using metaspace representations
	Experiment 4 - Computational consideration for RCCA and SRCCA


	Results and Discussion
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


