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Abstract

Neuromodulators such as monoamines are often expressed in neurons that also release at

least one fast-acting neurotransmitter. The release of a combination of transmitters provides

both “classical” and “modulatory” signals that could produce diverse and/or complementary

effects in associated circuits. Here, we establish that the majority of Drosophila octopamine

(OA) neurons are also glutamatergic and identify the individual contributions of each neuro-

transmitter on sex-specific behaviors. Males without OA display low levels of aggression

and high levels of inter-male courtship. Males deficient for dVGLUT solely in OA-glutamate

neurons (OGNs) also exhibit a reduction in aggression, but without a concurrent increase

in inter-male courtship. Within OGNs, a portion of VMAT and dVGLUT puncta differ in locali-

zation suggesting spatial differences in OA signaling. Our findings establish a previously

undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples

aggression from OA-dependent courtship-related behavior. These results indicate that dual

neurotransmission can increase the efficacy of individual neurotransmitters while maintain-

ing unique functions within a multi-functional social behavior neuronal network.

Author summary

Neurons communicate with each other via electrical events and the release of chemical

signals. An emerging challenge in understanding neuron communication is the realiza-

tion that many neurons release more than one type of chemical signal or neurotransmit-

ter. Here we ask how does the release of more than one neurotransmitter from a single

neuron impact circuits that control behavior? We determined the monoamine octopa-

mine and the classical transmitter glutamate are co-expressed in the Drosophila adult

CNS. By manipulating the release of glutamate in OA-glutamate neurons, we demon-

strated glutamate has both separable actions and complementary actions with OA on
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aggression and reproductive behaviors respectively. Aggression is a behavior that is highly

conserved between organisms and present in many human disease states, including

depression and Alzheimer’s disease. Our results show that aggressive behavior requires

the release of both neurotransmitters in dual-transmitting neurons and suggests within

this set of neurons, glutamate may provide a new therapeutic target to modulate aggres-

sion in pathological conditions.

Introduction

The classical view of information transfer for many decades was that each neuron released a

single neurotransmitter, leading to the ‘one neuron, one transmitter’ hypothesis [1], formal-

ized by John Eccles as Dale’s Principle [2]. Dale himself, however, recognized the possibility

that neurons can release more than one molecule [3] and indeed, research from multiple sys-

tems and neuronal populations have established that many if not most, neurons release more

than one neurotransmitter [4–7]. Dual neurotransmission has the potential to transform the

way we consider the computation and transmission of information by neurons, circuits and

networks. Presynaptically, the release of two neurotransmitters could impact information

transfer by several mechanisms that are not mutually exclusive including; attenuating signals

by modulating presynaptic autoreceptors, transmitting spatially distinct signals by segregating

specific vesicle populations to different axon terminals, or conveying similar information

through the release of both neurotransmitters from the same synaptic vesicle [8–11]. In addi-

tion, one vesicular neurotransmitter transporter can increase the packaging of the other neuro-

transmitter into the same synaptic vesicle (SV), a process called vesicular synergy [4, 12, 13].

At post-synaptic targets, the release of two transmitters can enhance the strength of the same

signal and/or convey unique signals through spatially-restricted receptor expression and sec-

ond messenger cascades [7, 14]. While recent studies have provided insight into these phe-

nomena at the cellular level [11, 12, 15, 16], the behavioral relevance of co-transmission in

normal as well as pathological conditions is an area of considerable complexity and interest.

The genetic tools of Drosophila provide the ability to genetically dissect the signaling prop-

erties of dual transmission on behavioral networks in general and upon the circuits that con-

trol aggression in particular. Aggression is a hardwired behavior that has evolved in the

framework of defending or obtaining resources [17, 18]. Monoamines such as serotonin

(5-HT), dopamine (DA), norepinephrine (NE) and octopamine (OA), the invertebrate homo-

logue of NE, have powerful modulatory effects on aggression in systems ranging from insects

and crustaceans to humans [19–23]. In humans, aggressive behavior can be expressed at

extreme levels and out of context due to medical, neurologic and or psychiatric disorders

including depression and schizophrenia [24–26]. Pharmacological agents that selectively

manipulate monoamine signaling are used to treat anxiety and depression, yet these drugs are

often ineffective, and in the case of serotonin/norepinephrine reuptake inhibitors (SNRIs) can

induce side effects including increased aggression and impulsivity [25, 27–29].

At least two difficulties arise in targeting monoamines to achieve successful outcomes. First,

monoamines can be released from synaptic vesicles (SVs) into the presynaptic cleft and by

extrasynaptic release from large dense core vesicles (LDCVs) [30–33]. Thus, monoamines are

recognized both as neurotransmitters and as neuromodulators that signal via diffusion [34,

35]. The second difficulty is that their effects are likely exerted through interactions with neu-

ropeptides (neuropeptide Y and oxytocin are two examples) and with neurotransmitters

including GABA and glutamate [5, 14, 36, 37]. Due in part to recent studies suggesting the
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expression of vesicular glutamate transporters (VGLUTs) can be altered by psychiatric medi-

cations [38–41] and the importance of dopamine neuron glutamate co-transmission on the

schizophrenia resilience phenotype in mice [42], we generated new tools to identify and

manipulate glutamate function in monoamine-expressing neurons.

We found that the majority of OA neurons within the Drosophila nervous system also

express the vesicular neurotransmitter transporter for glutamate (dVGlut). Functionally, gluta-

mate (GLU) co-expression could convey the same information by promoting the synaptic vesi-

cle packing of OA or GLU may convey distinct information that is separate from the function

of OA. In Drosophila, OA synthesis and release are essential for conserved social behaviors;

males without OA display low levels of aggression and high levels of inter-male courtship [43–

47]. We demonstrate that males deficient for dVGLUT solely in OA-glutamate neurons

(OGNs) also exhibit a reduction in aggression, but without a concurrent increase in inter-male

courtship. These results indicate both OA and dVGLUT are required in dual-transmitting

neurons to promote aggression. However, only OA is required for the suppression of inter-

male courtship and thus the function of dVGLUT in OGNs is not limited to vesicular synergy.

To ask if the separable effects of OA on courtship circuitry may be attributable to spatially

distinct OA signals, we conditionally expressed a new epitope-tagged version of the Drosophila
vesicular neurotransmitter transporter for monoamines (V5-tagged VMAT) in OGNs. While

the majority of V5-VMAT and dVGLUT expression colocalize, VMAT is detected in distinct

puncta without dVGLUT suggesting the possibility of separable signal transmission. Together,

these results demonstrate the complex behavior of aggression requires both dVGLUT and OA

in dual-transmitting neurons and suggests within monoamine neurons, GLU may provide a

therapeutic target to modulate aggression in pathological conditions.

Results

dVGLUT is co-expressed in OA neurons

The co-expression of vesicular neurotransmitter transporters has been primarily used to iden-

tify dual-transmitting neurons[48–52]. To examine glutamatergic transmitter expression, we

generated a monoclonal dVGLUT antibody and validated its specificity using a new dVGlut
allele, dVGlutSS1. In homozygous dVGlutSS1 progeny, dVGLUT protein is not detectable (S1

Fig, Methods), thus demonstrating the specificity of the dVGLUT antibody. As dVGLUT

expression is widespread and mainly found in synaptic terminals (S1 Fig), we used the

Gal4-UAS system to identify monoamine neurons that express GLU. In this study, we focused

specifically on OA neurons that co-express dVGLUT (OA-glutamate neurons (OGNs)).

Cell bodies of OGNs were visualized by a UAS-dsRed.NLS reporter under control of

dVGlut-gal4 (hereafter referred to as dVGlut>dsRed). OGNs were identified by antibodies to

tyrosine decarboxylase 2 (TDC2) and tyramine β-hydroxylase (TβH) as OA is synthesized

from the amino acid tyrosine via the action of Tdc and Tβh in invertebrates [46]. OGNs from

10 dVGlut>dsRed Tdc2-labeled male brains were quantified by the multi-point ImageJ tool

followed by manual verification of each optical section. Within the brain, OA neurons that co-

express glutamate are found in the subesophageal zone (SEZ), the periesophageal neuropils

(PENP), the anterior (ASMP) and posterior superior medial protocerebrum (PSMP), and the

protocerebral bridge (Fig 1A–1E, S1 Table). Co-expression occurs in each region of interest

(Fig 1A–1E). Tβh and dVGlut>dsRed co-localization (S2 Fig) provides further support that

glutamate is found in OA-expressing neurons.

In the adult ventral nervous system (VNS), the thoracic Tdc2+ neurons that innervate skel-

etal muscles express glutamate (S3 Fig). In the abdominal ganglia, all but 2–3 Tdc2+ neurons

express dVGlut (S3 Fig) consistent with the previous finding of OA-glutamate co-expression
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in abdominal neurons [53]. After detecting no reporter expression from a Tβh-gal4 driver,

dVGLUT cell body expression in OGNs was detected in brains from tdc2-gal4;UAS-dsRed
adults (S4 Fig). In total, this analysis reveals that of the ~100 OA neurons in the Drosophila
adult nervous system, about 70% express dVGLUT.

dVGLUT is not required for OA neuron identity

To reduce glutamate function solely in OGNs, a UAS-driven inverted repeat transgene

targeting dVGlut (UAS-dVGlut-RNAi) was expressed under control of the tdc2-gal4 driver

(hereafter tdc2>dVGlut-RNAi) (Fig 2A and 2B). The effectiveness of this UAS-dVGlut-RNAi
line has been verified at the transcript level through RT-qPCR ([12] and S5 Fig) and function-

ally as the frequency of miniature excitatory postsynaptic potentials (mEPSP) were reduced by

this dVGlut RNAi in presynaptic glutamatergic larval motor neurons [12]. As the loss of

VGLUT2 in vertebrate dopamine-glutamate dual transmitting neurons impairs survival and

Fig 1. OA neurons co-express glutamate. (A) OA-glutamate co-expression in a dVGlut>dsRed male brain labeled with anti-Tdc2 (green).

Anti-brp (nc82, blue) labels the neuropil. Scale bar = 10 μm. (B-B’) Dorsal (B) and ventral (B’) confocal sections of neurons co-expressing OA

and dVGlut in the SEZ. Non-dVGlut positive neurons are indicated (B inset, arrowhead). (B”) Quantification of OGN SEZ co-expression.

(C-C’) OGNs in the PENP and quantification. (D-D’) dVGlut>dsRed neurons expressing Tdc2 in the ASMP and quantification. (E-E’) Neurons

co-expressing OA and glutamate in the PSMP and quantification. Scale bar = 20 μm for panels B-E.

https://doi.org/10.1371/journal.pgen.1008609.g001
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Fig 2. Male aggression requires dVGLUT function in OGNs. (A) dVGLUT reduction in OGNs through RNAi. (B) Behaviors for control and experimental male pairs

were scored for thirty minutes beginning with the first lunge. (C) Schematic illustrating the brain and VNS OGNs. (D) Latency to lunge increased in tdc2>dVGlut-
RNAi males (all statistical tests are Kruskal-Wallis with Dunn’s multiple comparisons test, (�p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001). (E) tdc2>dVGlut-RNAi
males displayed a decrease in the average number of lunges. (F) Wing threats were reduced in tdc2-dVGlut-RNAi males. (G) tdc2-dVGlut-RNAi males did not exhibit

inter-male courtship (unilateral wing extensions = UWE). (H) Schematic illustrating the addition of tsh>Gal80 limits dVGLUT reduction to brain OGNs. (I) Latency

to lunge by tdc2-gal4/tsh>Gal80;UAS-dVGlut-RNAi males is significantly longer than controls. (J) Lunge number by tdc2-gal4/tsh>Gal80;UAS-dVGlut-RNAi males

decreases as compared to controls. (K) Wing threat number was rescued to UAS-dVGlut-RNAi control levels. (L) Male-male UWE was rescued to control levels. N

values for each genotype, panels D, I. Error bars denote s.e.m.

https://doi.org/10.1371/journal.pgen.1008609.g002
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differentiation in vitro [49, 54], we examined OGNs in tdc2>dsRed>dVGlut-RNAi adults and

did not observe obvious changes in OGN survival nor distribution (S5 Fig). In addition, OGN

neurotransmitter differentiation was retained as tdc2>dVGlut-RNAi>dsRed neurons express

Tdc2 (S5 Fig). Neurons labeled by this tdc2-gal4 whether in the brain or VNS are all Tdc2+

(S6A and S6B Fig).

Reducing glutamate in OGNs decreases male aggression and inter-male

courtship

We and others previously demonstrated OA is required for two distinct social male behaviors;

the promotion of aggression, and the inhibition of intermale courtship [43, 46, 55, 56]. To

address whether dVGLUT performs a related or separable role in these OA-dependent behav-

iors, we quantified changes in aggression and intermale courtship. Fights between pairs of

tdc2>dVGlut-RNAi males, and transgenic controls were recorded and multiple agonistic

parameters quantified including: latency to the first lunge, number of lunges, and number of

agonistic wing threats (Fig 2A, [57, 58]). As behavioral patterns are scored for 30 minutes after

the first lunge, each male pair has the same amount of time to exhibit aggressive events or

inter-male courtship (Fig 2B).

Males with decreased dVGLUT in OGNs neurons exhibited a significant reduction in

aggression as measured by lower numbers of lunges and wing threats, and an increase in the

latency to initiate aggression (Fig 2D–2F). These aggression deficits are the same as in males

that lack OA [43, 46, 47]. Importantly, the locomotor activity of tdc2>dVGlut-RNAi adults

during the aggression assay did not differ from dVGlut-RNAi controls (S7A Fig).

Interactions between control male pairings within a fight can include low levels of intermale

courtship as measured by unilateral wing extensions (UWE, the courtship song motor pat-

tern). Males without OA exhibit high levels of inter-male courtship[43, 55, 56] and previously,

we determined the function of three OA-FruM+ neurons is required to suppress intermale

courtship [55]. If dVGLUT is only needed to enhance monoamine vesicular packaging and

thus modulate OA function, we would expect males with reduced dVGlut levels to display the

same behavioral deficits, i.e. high levels of inter-male courtship. However, tdc2>dVGlut-RNAi
males did not exhibit inter-male courtship (Fig 2G). These results suggest; 1) dVGLUT is

required in OGNs to promote aggression, and 2) dVGLUT is not required to suppress inter-

male courtship.

Aggression requires dVGLUT function in OA-GLU brain neurons

In the adult, motor neurons innervating leg and wing muscles express glutamate [59]. There-

fore, the observed behavioral deficits in tdc2>dVGlut-RNAi males may reflect impairments at

the neuromuscular junction. To address this possibility, we spatially restricted expression of

the dVGlut-RNAi transgene to the brain using the teashirt-lexA 8xlexAop2-IVS-Gal80 (hereaf-

ter tsh>Gal80) transgenic combination (Fig 2H). The tsh>Gal80 transgenic combination was

effective at blocking Gal4-mediated transcription in the entire VNS including in OGNs that

innervate muscles required for courtship and wing threat behaviors (S8 Fig).

With dVGlut function maintained in motor neurons, it was possible all aggressive behav-

iors would return to control levels. However, latency to initiate aggression remained longer in

males with reduced dVGLUT in brain OGNs (tdc2>tsh>Gal80>dVGlut-RNAi) and lunge

number remained lower when compared to controls (Fig 2I and 2J). Wing threat numbers

were at levels lower than one control (Fig 2K) which likely reflects the incompleteness of

dVGlut RNAi interference. In contrast, providing dVGLUT function in OGN VNS neurons

restored intermale courtship to control levels (Fig 2L). Although total behavioral events by

Male aggression requires signals from dual-transmitting neurons
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experimental males (lunges, wing threats, intermale courtship) per minute decreased, overall

activity did not (S7 Fig) nor did male-female courtship (Fig 3). These results indicating GLU

transport in brain OGNs is required to initiate aggression and for the lunge pattern itself may

reflect deficits in the detection of male pheromones as we previously described for OA [43].

Specifically, the suppression of intermale courtship requires the function of three OA-FruM

+ neurons located in the brain [55] and, aggression requires pheromonal information from

Gr32a-expressing chemosensory neurons located in the mouth to OA SEZ neurons [43].

Fig 3. dVGLUT function is required in VNS OGNs for male-female courtship. (A) Male (arrow) to female

courtship. (B) Schematic illustrating the addition of tsh>Gal80 limits dVGLUT reduction to brain OGNs. (C-F) All

parameters of male to female courtship were rescued by restoring glutamate function to OGNs within the VNC. (C)

The latency to initiate courtship towards a female returned to control levels in males with reduced dVGLUT in brain

OGNs. (D) The courtship index was restored to control levels in tdc2-gal4/tsh>Gal80;dVGlut-RNAi males. (E)

tdc2-gal4/tsh>Gal80;dVGlut-RNAi males exhibited the same latency to copulation as controls. (F) The copulation

success of males with a dVGLUT reduction in brain OGNs was not significantly different from controls. N values for

each genotype located on panel A. All statistical tests are Kruskal-Wallis with Dunn’s multiple comparisons test,

(�p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001.

https://doi.org/10.1371/journal.pgen.1008609.g003
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Finally, males with reduced dVGLUT in brain OGNs (tdc2>tsh>Gal80>dVGlut-RNAi)
performed all measured male-female courtship parameters including latency to court, court-

ship index, latency to copulation and copulation success at levels indistinguishable from con-

trols (Fig 3). Together, these results indicate dVGlut in OGNs is required in males both for

aggression and courtship toward a female and at the behavioral level, the functional require-

ment for dVGLUT in OGN motor neurons vs. central brain neurons is spatially separable.

Removal of glutamate in OGNs using the B3RT-vGlut conditional allele

The experiments above used two different approaches to reduce neurotransmitter levels, but

not eliminate dVGLUT. To completely remove glutamate transporter function in OGNs, a

conditional allele of dVGlut, B3RT-dVGlut-LexA (hereafter B3RT-dVGlut), was developed via

genome editing. Genome edits to the dVGlut locus included flanking the dVGlut coding exons

with B3 recombination target sites (B3RTs) [60] in the same orientation and inserting the cod-

ing sequences of the LexA transcription factor immediately downstream of the 3’ B3RT (Fig

4A). With B3RT-dVGlut, glutamate function can be temporally and spatially controlled using

Gal4 drivers of interest to express the B3 recombinase that in turn catalyzes the in vivo excision

of DNA between the B3RTs (Fig 4B). Two outcomes result after B3 recombinase-mediated

excision; 1) a dVGlut null allele is generated solely in the neurons of interest, and 2) a dVGlut-
LexA driver is created that allows visualization of glutamatergic neurons when a LexAop

reporter is present.

To assess the functionality of dVGlut within the B3RT-dVGlut chromosome pre- and post-

excision, the B3RT-dVGlut chromosome was crossed with the null allele, dVGlutSS1 (S1 Fig).

In the absence of a Gal4 driver, vGlutSS1/B3RT-vGlut progeny are fully viable and no LexAop-

driven reporter gene expression is detected (Fig 4C). In contrast, when B3 recombinase

(UAS-B3) is expressed in the nervous system by the pan-neuronal driver, n-syb-Gal4, dVGLUT

expression is eliminated and vGlutSS1/B3RT-dVGlut;UAS-B3/n-syb-Gal4 progeny are inviable

(data not shown). These results establish that the B3RT-dVGlut genome edits preserve

dVGLUT function prior to excision, but after excision, as expected with removal of the entire

dVGLUT protein-coding sequence, a dVGlut null allele is generated.

To verify the functionality of the B3RT-dVGlut chromosome in Tdc2+ neurons, we crossed

tdc2-gal4 with B3RT-dVGlut;UAS-B3. Following B3-mediated excision in Tdc2+ neurons, the

resulting dVGlut-lexA driver is active in OGNs demonstrating the dVGlut coding region was

removed. The excision of dVGlut and substitution with LexA in the adult nervous system was

confirmed by co-localization of nuclear markers (Fig 4D and 4D’). This result provides addi-

tional confirmation the majority of Tdc2+ neurons are glutamatergic. In addition, nuclear

reporters were used to confirm the loss of dVGLUT does not obviously alter OGN differentia-

tion (S9 Fig).

To completely remove dVGLUT function, we used the dVGlutSS1 null allele in combination

with the B3RT-dVGlut conditional null allele. Due to the requirements for GLU in OA-GLU

motor neurons, we crossed the tsh>Gal80 transgenes onto the B3RT-dVGlut chromosome.

Males with homozygous null dVGlut mutations in brain OGNs were generated by driving B3

recombinase with tdc2-gal4 (dVGlutSS1/B3RT-dVGlut tsh>Gal80;UAS-B3/tdc2-gal4). As

expected, the complete loss of GLU in brain OGNs reduced male aggression. Specifically, the

latency to initiate aggression increased, and lunge numbers decreased (Fig 4E and 4F). Not

unexpectedly, the complete elimination of dVGLUT function resulted in aggression deficits

significantly worse when compared to the RNAi approach (Fig 4I) including now a reduction

in wing threat number (Fig 4G) which demonstrates an advantage in using the conditional

null B3RT-dVGlut allele. Finally, and significantly, the number of inter-male wing extensions

Male aggression requires signals from dual-transmitting neurons
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Fig 4. B3-mediated elimination of dVGLUT in OGNs reduces male aggression. (A,B) Schematic of the B3RT-dVGlut-LexA conditional allele. B3RTs

flank dVGlut coding exons (A) and excise the entire dVGlut coding sequence in a specific subset of neurons upon expression of the B3 recombinase (B).

After excision, a dVGlut null loss-of-function allele and dVGlut-LexA driver is created (B). (C) Control brain demonstrating without a source of Gal4-driven

B3 recombinase, excision and therefore LexA expression does not occur. (D-D’) tdc2-gal4 driven B3 recombinase-mediated excision effectively removes

dVGlut resulting in B3RT-LexA-driven mCherry expression is in the majority of OA neurons (yellow). As expected, a few Tdc2+ neurons do not express

dVGLUT (arrowhead, green). LexAop reporter expression that does not also show UAS expression may be observed as a result of excisions that occurred

during development in former Tdc2+ neurons. (E) Latency to lunge increased in males lacking dVGLUT function (B3RT-dVGlut tsh>Gal80/dVGlutSS1;
UAS-B3) in OGNs. (F) Males without dVGLUT function lunged significantly less when compared to controls. (G) Wing threat number decreased in

experimental males. (H) No significant differences in male-male courtship. (I) Aggression is significantly reduced by the complete loss of dVGLUT in OGNs

as compared to the RNAi-based dVGLUT reduction. All statistical tests are Kruskal-Wallis with Dunn’s multiple comparisons test, (�p<0.05, ��p<0.01,
���p<0.001, ����p<0.0001. Error bars denote s.e.m. N values for each genotype, panel E.

https://doi.org/10.1371/journal.pgen.1008609.g004
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did not differ from controls (Fig 4H) nor from males with a reduction of dVGlut in brain

OGNs (Fig 2K). In summation, the dVGlutSS1/B3RT-dVGlut null combination elegantly and

independently validates the aggression phenotypes based on dVGlut RNAi-based reduction,

demonstrates the applicability of a powerful new conditional genetic tool, and confirms that

dVGLUT function in OGNs is not required to regulate intermale courtship.

Reducing GLU by EAAT1 overexpression recapitulates the decrease in

aggression

At this point, GLU function within OGNs has been altered by reducing glutamate transport

into synaptic vesicles. Whether the aggression phenotypes of OGN dVGLUT mutant males are

due to deficits in the concentration of GLU into synaptic vesicles, the packaging of OA, or a

reduction of released GLU is not clear. After release, glutamate is rapidly removed from synap-

ses by excitatory amino acid transporters (EAATs) [61, 62]. Therefore, to reduce GLU signal-

ing after release, we increased expression of the only high-affinity glutamate transporter in

Drosophila, EAAT1 (Fig 5A) [63, 64].

EAAT1 is expressed in glia throughout the nervous system [64]. By examining 2–10 indi-

vidual EAAT1-GFP clones in ~40 brains, we determined OGN neuronal cell bodies and arbor-

izations are consistently enmeshed by EAAT1-expressing glia (Fig 5B and 5C). To reduce

Fig 5. Reducing glutamate function through EAAT1 overexpression decreases male aggression. (A) Glutamate function was reduced by increasing

EAAT1 expression in EAAT1-expressing glia. (B, C) GFP-expressing EAAT1 glia (hs-flp; EAAT1-gal4/UAS>stop>CD8:GFP) enwrap Tdc2+ neuron cell

bodies (arrowhead) and endings (arrow). Higher magnification of dashed box in C. Scale bar = 30 um. (D) The latency to lunge by EAAT1>Eaat1 males

was increased as compared to controls. (E) A decrease in lunge number was exhibited by EAAT1>Eaat1 males as compared to controls. (F) Locomotor

activity during the aggression assay did not differ. All statistical tests are Kruskal-Wallis with Dunn’s multiple comparisons tests. N values for each

genotype are in panel D.

https://doi.org/10.1371/journal.pgen.1008609.g005
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glutamate signaling after release, EAAT1 expression was increased via a transgene (EAAT1--
gal4;UAS-EAAT1). While a loss of EAAT1 impairs larval movement [65], overexpression of

EAAT1 has been used in adult long-term memory formation assays which requires locomo-

tion [66]. Similar to the dVGLUT loss-of-function results above, the aggressive behavior of

males with reduced GLU signaling by EAAT1 overexpression (EAAT1-gal4;UAS-EAAT1) was

altered in two parameters: the latency to initiate lunging increased and lunge number

decreased (Fig 5D and 5E). Locomotor activity during the aggression assay did not differ (Fig

5F). Although future experiments will be needed to determine if the promotion of aggression

requires dVGLUT packaging of OA in synaptic vesicles and OGN glutamate signaling to

downstream targets, results from this section support the hypothesis that OGN-mediated

aggression requires GLU.

OA and Glu signal to a shared aggression-promoting circuit

If Glu and OA convey signals to separable aggression-promoting circuits, a loss of both neuro-

transmitters would reduce aggression greater than the loss of either alone (Fig 6A). If, however,

Glu and OA signal to a shared circuit or circuits that converge, a loss of both transmitters

would reduce aggression to the same levels as the loss of one alone. To address this question,

Fig 6. OA and Glu signal to a shared aggression-promoting circuit. (A) OGNs could signal to separate aggression-promoting

circuits (resulting in aggression deficits greater than the single mutant) or to a shared or converged circuit. (B-E) dVGlut was

reduced in OGNs of TβhM18 males (TβhM18;tdc2>dVGlut-RNAi). (B) Latency to lunge increased in TβhM18;tdc2>dVGlut-RNAi
males compared to the transgenic control but not TβhM18 males. (C) Lunge number by males with reduced dVGLUT and lacking

OA was not significantly different than TβhM18 males. (D) TβhM18;tdc2>dVGlut-RNAi males displayed lower wing threat numbers

compared to the transgenic control but not TβhM18 males. (E) Males with reduced dVGLUT and lacking OA (blue column)

displayed an increase in inter-male courtship at levels higher than the control but not significantly different from TβhM18 mutants

(green column). All statistical tests are Kruskal-Wallis with Dunn’s multiple comparisons test, (�p<0.05, ��p<0.01, ���p<0.001,
����p<0.0001. Error bars denote s.e.m.

https://doi.org/10.1371/journal.pgen.1008609.g006
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we incorporated the previously described null allele TβhnM18 [67] and generated TβhnM18;
tdc2>dVGlut-RNAi males. Additive deficits did not occur when males without OA and

dVGLUT in OGNs were compared to males lacking only OA (Fig 6B–6D) indicating that both

signals, at least partially, converge onto a shared aggression-promoting pathway.

TβhnM18;tdc2>vGlut-RNAi males displayed levels of male-male courtship that are not sig-

nificantly different from TβhnM18 males (blue column, Fig 6E). This result further supports

previously published data that OA is required to suppress intermale courtship [43, 55, 56].

Here, increased levels of inter-male courtship due to the absence of OA supersedes or relieves

the lack of UWE due to a reduction in dVGlut function (Fig 2). At this point, it is possible the

UWE phenotype occurs via OA-modulated circuitry that involves other neurotransmitters

[56] or the actions of OA occur at spatially distinct locations.

Spatial segregation of VMAT and dVGLUT within OGN

To compare localization of the two transporters within OGNs, we generated a conditionally

expressible epitope-tagged version of VMAT, RSRT>STOP>RSRT-6XV5-VMAT, via genome

editing. RSRT>STOP>RSRT-6XV5-VMAT has two insertions: 1) a STOP cassette between

VMAT coding exons 5 and 6 and, 2) six in-frame tandem copies of a V5 epitope tag within

exon 8 which is common to both VMAT-A and VMAT-B isoforms (Fig 7A). The effectiveness

of the STOP cassette is confirmed by the lack of V5 expression prior to STOP cassette excision

by Gal4-driven R recombinase (S11 Fig) and the effectiveness of the epitope multimerization

strategy has also been determined [68]. The conditionality of the RSRT>STOP>RSRT-
6XV5-VMAT allele permits visualization of VMAT in subsets of neurons at expression levels

driven by the endogenous promoter.

To focus on transporter distribution within OGNs, we expressed RSRT>STOP>RSRT-
6XV5-VMAT under control of the split Gal4 combination of tdc2-Gal4-AD and dVGlut-
Gal4-DBD (tdc2-dVGlut-gal4) which drives expression in OGNs (Fig 7B, S6C–S6F Fig).

V5-VMAT was visualized in tdc2-dVGlut-gal4; V5-VMAT UAS-R by an antibody to V5 and

dVGLUT using mAb dVGLUT (S10 Fig). Fig 7C illustrates that as expected, a large fraction of

the V5-VMAT puncta in the AL or SEZ (S11 Fig) either co-localize with dVGLUT or are in

close proximity (arrowheads). High resolution images in Fig 7D and 7H, however, reveal

V5-VMAT puncta without dVGLUT (arrows). As OA can be found in SVs as well as LDCVs

[69, 70], we incorporated a synaptic marker (UAS-Synaptotagmin (Syt):HA) and re-examined

V5-VMAT and dVGLUT expression in the AL and SEZ (Fig 7F, S11D Fig). We found

V5-VMAT puncta that either co-localize or are in close proximity to Syt:HA and dVGLUT

(Fig 7F–7J, S11D–S11H Fig). While the behavioral significance of potential OA synaptic

release on aggression circuitry remains to be determined, previous work has demonstrated

amine-dependent behaviors can be altered by shifting the balance of OA release from SVs to

LDCVs [70]. In addition, as mentioned above, we have previously shown that three

OA-FruM+ neurons are required to suppress intermale courtship and recent work has identi-

fied a small subset of OA receptor OAMB-expressing neurons that when silenced, decrease

aggression and increase intermale courtship [56]. The SEZ areas of V5-VMAT and dVGLUT

puncta highlighted in Figs 7 and 8 are consistent with projections made by OA-FruM+ neu-

rons which are also OGNs (S12 Fig) raising the possibility of distinct OA and GLU inputs to

key downstream targets.

Due to the large number of tdc2-dVGlut-gal4 neurons, we repeated the experiment using

the OA-specific MB113C-split-gal4 to drive V5-VMAT in ~2 OGNs (Fig 8A and 8B) [71]. Fig

8C illustrates that as expected, many V5-VMAT puncta in the SEZ either co-localize with

dVGLUT or are in close proximity (arrowheads). High resolution images in Fig 8D and 8H,
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however, indicate small, but distinct regions that contain V5-VMAT puncta without dVGLUT

(arrows). Within the areas of dVGLUT and V5-VMAT possible colocalization, this level of

analysis does not indicate whether the two transporters segregate into adjacent but distinct

puncta, nor are questions of transporter colocalization on the same vesicles addressed. Never-

theless, our results demonstrate that within OGNs, V5-VMAT and dVGLUT puncta can differ

in localization suggesting the aggression vs. intermale courtship phenotype differences may be

due to spatial differences in signaling by glutamate and octopamine.

Discussion

Addressing the functional complexities of ‘‘one neuron, multiple transmitters” is critical to

understanding how neuron communication, circuit computation, and behavior can be

Fig 7. Spatial segregation of VMAT and dVGLUT within OGNs. (A) Schematic of the RSRT>STOP>RSRT-6XV5-VMAT conditional allele. RSRTs flank a STOP

cassette inserted between VMAT coding exon 5 and 6. Upon Gal4-driven expression of the R recombinase enzyme, the STOP cassette is excised and V5-tagged VMAT

expression under control of the endogenous promoter is expressed. (B) Representative brain showing V5-VMAT expression in OGNs after excision by tdc2-dVGlut-gal4
driven R recombinase. The brain is labeled with anti-V5 (magenta) and mAb dVGLUT (green in panels C,D). Scale bar is 30 μm. (C) Higher magnification of the antennal

lobe region showing dVGLUT expression (green) with V5-VMAT (magenta). Scale bar is 10 μm. (D) The region in the dashed box in C showing puncta with dVGLUT

and V5-VMAT colocalization (arrowheads) and puncta with only V5-VMAT (arrows). (E) Schematic showing the regions of the brain that are depicted in C and F. (F)

Antennal lobe region of a representative brain with a synaptic marker incorporated (UAS-synaptotagmin;HA, tdc2-dVGlut split gal4/UAS-R RSRT-STOP-RSRT-6XV5-
vMAT). The brain is labeled with anti-HA (blue), anti-V5 (magenta), and mAb dVGLUT (green). Scale bar is 20 μm. (G-J”’) Higher magnification of the SEZ region of the

AL in F showing dVGLUT expression (green), V5-VMAT (red), and Syt:HA (blue). Arrowheads indicate puncta with dVGLUT, V5-VMAT and Syt:HA and arrows

indicate puncta with only V5-VMAT and Syt:HA. The stack for panels C and D contains two optical sections at 0.45 μm. Stacks for panels G-J contain 7 optical sections at

0.5 μm.

https://doi.org/10.1371/journal.pgen.1008609.g007
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regulated by a single neuron. Over many decades, significant progress has been made elucidat-

ing the functional properties of neurons co-expressing neuropeptides and small molecule neu-

rotransmitters, where the neuropeptide acts as a co-transmitter and modulates the action of

the neurotransmitter [5, 6, 72]. Only recently have studies begun to examine the functional sig-

nificance of co-transmission by a fast-acting neurotransmitter and a slow-acting monoamine.

In this study, we demonstrated that OA neurons express dVGLUT and utilized a new

genetic tool to remove dVGLUT in OA-glutamate neurons. Quantifying changes in the com-

plex social behaviors of aggression and courtship revealed that dVGLUT in brain OGNs is

required to promote aggressive behavior and a specific behavioral pattern, the lunge. In con-

trast, males deficient for dVGLUT function do not exhibit an increase in inter-male courtship.

These results establish a previously undetermined role for dVGLUT in OA neurons located in

the adult brain and reveal glutamate uncouples aggression from inter-male courtship. It has

been suggested that classical neurotransmitters and monoamines present in the same neuron

modulate each other’s packaging into synaptic vesicles or after release via autoreceptors [9, 49,

73–75]. For example, a reduction of dVGLUT in DA-glutamate neurons resulted in decreased

AMPH-stimulated hyperlocomotion in Drosophila and mice suggesting a key function of

Fig 8. Spatial segregation of VMAT and dVGLUT within two OGNs. (A-A’) Representative brain showing V5-VMAT expression in

two OGNs after excision by MB113C-split-gal4 driven R recombinase. The brain is labeled with anti-V5 (magenta) and mAb dVGLUT

(green). Scale bar is 50 μm. The inlet in A which is from a separate brain demonstrates this OA neuron driver also expresses dVGLUT

(green). (B-E) Higher magnification of the SEZ boxed region in A’. Arrowheads point to puncta with V5-VMAT and dVGLUT, arrows

indicate V5-VMAT only puncta. Scale bar is 10 μm. (C-E) The regions in the dashed boxes in B showing puncta with dVGLUT and

V5-VMAT colocalization (arrowheads) and puncta with only V5-VMAT (arrows). Panels B-E contain stacks of four optical sections at

0.45 μm. Scale bar for panels C-E is 5 μm.

https://doi.org/10.1371/journal.pgen.1008609.g008
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dVGLUT is the mediation of vesicular DA content [12, 49, 76]. In this study, the independent

behavioral changes suggests enhancing the packaging of OA into vesicles is not the sole func-

tion of dVGLUT co-expression and suggests differences in signaling by OA from OGNs on

courtship-related circuitry.

Co-transmission can generate distinct circuit-level effects via multiple mechanisms. One

mechanism includes spatial segregation; the release of two neurotransmitters or a neurotrans-

mitter and monoamine from a single neuron occurring at different axon terminals or presyn-

aptic zones. Recent studies examining this possible mechanism have described; (i) the release

of GLU and DA from different synaptic vesicles in midbrain dopamine neurons[15, 77] and

(ii) the presence of VMAT and VGLUT microdomains in a subset of rodent mesoaccumbens

DA neurons[78]. In this study, we expressed a new conditionally expressed epitope-tagged ver-

sion of VMAT in OGNs and visualized endogenous dVGLUT via antibody labeling. Within

OGNs, the colocalization of VMAT and dVGLUT puncta was not complete suggesting the

observed behavioral phenotype differences may be due to spatial differences in OA signaling.

A second mechanism by which co-transmission may generate unique functional properties

relies on activating distinct postsynaptic receptors. In Drosophila, recent work has identified a

small population of male-specific neurons that express the alpha-like adrenergic receptor,

OAMB, as aggression-promoting circuit-level neuronal targets of OA modulation indepen-

dent of any effect on arousal[56] and separately knockdown of the Rdl GABAa receptor in a

specific doublesex+ population stimulated male aggression [79]. Future experiments identify-

ing downstream targets that express both glutamate and octopamine receptors would be infor-

mative, as well as using additional split-Gal4 lines to determine if segregation of transporters is

a hallmark of the majority of OGNs. Finally, a third possible mechanism is Glu may be co-

released from OGNs and act on autoreceptors to regulate presynaptic OA release (reviewed in

[75]).

Deciphering the signaling complexity that allows neural networks to integrate external sti-

muli with internal states to generate context-appropriate social behavior is a challenging

endeavor. Neuromodulators including monoamines are released to signal changes in an ani-

mal’s environment and positively or negatively reinforce network output. In invertebrates, a

role for OA in responding to external chemosensory cues as well as promoting aggression has

been well-established [43, 47, 56, 80–83]. In terms of identifying specific aggression circuit-

components that utilize OA, previous results determined OA neurons directly receive male-

specific pheromone information [43] and the aSP2 neurons serve as a hub through which OA

can bias output from a multi-functional social behavior network towards aggression[56]. The

ability of OA to bias behavioral decisions based on positive and negative reinforcement was

also recently described for food odors [84]. In vertebrates, it has been proposed that DA-GLU

cotransmission in the NAc medial shell might facilitate behavioral switching [85]. Our finding

that the majority of OA neurons are glutamatergic, suggests that the complex social behavior

of aggression may rely on small subsets of neurons that both signal the rapid temporal coding

of critical external stimuli as well as the frequency coding of such stimuli resulting in the

enhancement of this behavioral network. One implication of our finding regarding the separa-

ble OA-dependent inhibition of inter-male courtship is the possibility of identifying specific

synapses or axon terminals that when activated gate two different behavioral outcomes. A sec-

ond implication is that aggressive behavior in other systems may be modified by targeting

GLU function in monoamine neurons.

Finally, monoamine-expressing neurons play key roles in human behavior including

aggression and illnesses that have an aggressive component such as depression, addiction, anx-

iety, and Alzheimer’s [86, 87]. While progress is being made in addressing the functional com-

plexities of dual transmission, the possible pathological implications of glutamate co-release by
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monoamine neurons remains virtually unknown. Analyzing the synaptic vesicle and release

properties of monoamine-glutamate neurons could offer new possibilities for therapeutic

interventions aimed at controlling out-of-context aggression.

Methods

Drosophila husbandry and stocks

All flies were reared on standard cornmeal-based fly food. Unless noted otherwise, during

developmental and post-eclosion, flies were raised at 25˚C, ~50% humidity and a 12:12hr

light-dark cycle (1400±200 lx white fluorescent light) in humidity and temperature-controlled

incubators. A list of stocks can be found in S1 Data.

Aggression assays

Male pupae were isolated and aged individually in 16 x 100mm borosilicate glass tubes con-

taining 1.5ml of standard food medium as previously described [88]. A dab of white or blue

acrylic paint was applied to the thorax of two-day old males under CO2 anesthesia for identifi-

cation purposes. Flies were returned to their respective isolation tubes for a period of at least

24 hours to allow recovery. For aggression testing, pairs of 3–5 day old, socially naïve adult

males were placed in 12-well polystyrene plates (VWR #82050–930) as described previously

[43]. All assays were run at 25˚C and ~45–50% humidity levels.

Scoring and statistics

All aggression was assayed within first two hours of lights ON time (Zeitgeber hours 0–2) and

scored manually using iMovie version 8.0.6. Total number of lunges, wing threats, and unilat-

eral wing extensions were scored for a period of 30 minutes after the first lunge according to

the criteria established previously [43, 88]. The time between the aspiration of the flies into the

chamber and the first lunge was used for calculating the latency to lunge. Male-male courtship

was the number of unilateral wing extensions (singing) followed by abdomen bends or

repeated wing extensions. All graphs were generated with Graphpad Prism and Adobe Illustra-

tor CS6. For data that did not meet parametric assumptions, Kruskal-Wallis Test with Dunn’s

multiple comparison was used unless otherwise specified. A standard unpaired t-test was per-

formed in the case of only two comparisons and a modified chi-square test to compare copula-

tion success.

Activity levels

Activity levels were measured by tracking the flies in each assay using the OpenCV module in

the Python programming language to analyze the video and then output XY-coordinate and

distance data. The distance traveled was calculated for each fly by determining the starting

location followed by the second location after a 250-ms time interval and then taking the sum

of the distance traveled in each interval. To calculate pixels moved per second, the distance

data was divided by the total time spent tracking.

Immunohistochemistry

Adult male dissected brains were fixed in 4% paraformaldehyde (Electron Microscopy Sci-

ences) for 25 minutes and labeled using a modification of protocols previously described [55].

The following primary antibodies were used: anti-bruchpilot (mAb nc82, 1:30, Developmental

Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the

Department of Biology, University of Iowa (Iowa City, IA).), monoclonal rabbit anti-GFP
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(1:200, Molecular Probes), rat anti-HA 3F10 (1:100, Roche), mAb dVGLUT (1:15), anti-TβH

(1:400, [89]), rat anti-V5 (1:200, Biorbyt), and rabbit anti-TDC2 (1:100, Covalab). Secondary

antibodies conjugated to Alexa 488, Alexa 594, or Alexa 647 (Molecular Probes) were used at a

concentration of 1:200. Labeled brains were mounted in Vectashield (Vector Labs, #H1000).

Images were collected on an Olympus Fluoview FV1000 laser scanning confocal mounted on

an inverted IX81 microscope and processed using ImageJ (NIH) and Adobe Photoshop

(Adobe, CA).

qPCR

Total RNA from ~40 heads using Direct-zol RNA Miniprep Pluskit (Zymo Research)and

treated with DNase I per the manufacturer’s protocol. RNA concentrations were measured

with a ND-1000 nanodrop spectrometer. Reverse transcription was accomplished using iScript

cDNA Synthesis kit (Bio-Rad Laboratories). RT-PCR was performed using 300 ng cDNA

added to iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories) and primers in a 20 μL

reaction volume. All samples were run in triplicate using a Stratagene Mx3005P qPCR System

(Agilent Technologies). Expression of ribosomal protein 49 (Rp49) was used as the reference

control to normalize expression between genotypes. Expression levels were determined using

the ΔΔCT method and results from control (UAS-dVGlut-RNAi/+) and experimental (nsyb-
Gal4/UAS-dVGlut-RNAi) groups were normalized relative to a transgenic control (nsyb-
Gal4/+). The following primers were used: Rp49 Forward: 50-CATCCGCCCAGCATACAG-

3’ Rp49 Reverse: 5’-CCATTTGTGCGACAGCTTAG-3’ dVGlut Forward: 5’-GCACGGTCAT

GTGGTGATTTG-3’ dVGlut Reverse: 5’-CCAGAAACGCCAGATACCATGG-3’. Primer

designs for all Rp49 and dVGlut primers used have been described previously [12].

Construction of 20XUAS-His2A-GFP, 13XLexAop2-His2B-mCherry and

20XUAS-R
The 20XUAS-His2A-GFP, 13XLexAop2-His2B-mCherry, and 20XUAS-R expression clones

were assembled using Gateway MultiSite LR reactions as previously described[90] and as indi-

cated in S2 Table. The L1-20XUAS-DSCP-L4 and L1-13XLexAop2-DSCP-L4 entry clones con-

tain 20 copies of UAS and 13 copies of LexAop2 upstream of the Drosophila synthetic core

promoter (DSCP) [91], respectively. The R4-His2A-R3 and R4-His2B-R3 entry clones were

generated as previously described [90] using genomic DNA as templates. The L3-GFP-L2
entry clone was generated from template pJFRC165[60] except the PEST sequence is omitted.

The L3-GFP-L2 and L3-mCherry-HA-L2 entry clones were previously described [92]. The L1-
20XUAS-DSCP-R5 entry clone was previously described [90]. The pDESTp10aw destination

vector was previously described[93]. Injections were performed by Bestgene, Inc.

Construction of UAS-B3
B3 recombinase derived from pJFRC157 [60] was PCR amplified using primers designed to

add the syn21 translational enhancer sequence [94] and remove the PEST domain. The veri-

fied PCR product was cloned into pENTR (Invtrogen) and subsequently transferred to

pBID20xUAS, a derivative of the pBID vector [95] with 20 copies of the UAS binding

sequence. Injection of UAS-B3 was performed by Genetivision into landing site VK31.

Generation of B3RT-vGlut
The B3RT-dVGlut-LexA chromosome was generated via CRISPR/Cas9 genome editing. Both

guide RNAs were incorporated into pCFD4 using previously described methods [96] to
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produce the double guide RNA plasmid pCFD4-vGlut1. The donor plasmid B3RT-dVGlut-
LexA used the pHSG298 backbone (Takara Bio) and was generated using NEBuilder HiFi

(New England Biolabs). The complete annotated sequence of B3RT-dVGlut-LexA is shown in

Supplementary Information. pCFD4-vGlut1/B3RT-dVGlut-LexA injections were performed by

Bestgene, Inc.

To assess the functionality of dVGlut on the B3RT-dVGlut chromosome pre- and post-exci-

sion, the B3RT-dVGlut chromosome was crossed with the homozygous lethal dVGlut null

allele, dVGlutSS1 in the presence and absence of the pan-neuronal driver n-syb-Gal4. In the

absence of a Gal4 driver, dVGlutSS1/B3RT-dVGlut progeny are fully viable and no LexAop-

driven reporter gene expression is detected (Fig 2). When B3 recombinase (UAS-B3) is

expressed in the nervous system by n-syb-Gal4, dVGlutSS1/B3RT-dVGlut;UAS-B3/n-syb-Gal4
progeny are inviable, therefore after excision, as expected with removal of the entire dVGlut

protein-coding sequence, a dVGlut null allele results.

Generation of dVGlutSS1

The dVGlutSS1 allele was generated by CRISPR/Cas9 genome editing with the same guide

RNAs used to generate B3RT-dVGlut LexA. dVGlutSS1 was identified based on failed comple-

mentation with the existing dVGlut2 allele[97]. Sequencing of PCR products from this allele

indicated a deletion of 2442bp that includes dVGlut amino acids 53–523. Genomic DNA

sequence at the breakpoints of the dVGlutSS1 allele are indicated with the deleted region in

bold: GGACCAGGCGGCGGCCACGC. . . . . .AACCTCCGGCCGAGGAGCAA.

Generation of the RSRT-STOP-RSRT-6XV5-vMAT chromosome

RSRT-STOP-RSRT-6XV5-vMAT was generated via CRISPR/Cas9 genome editing. Both

upstream guide RNAs were incorporated into pCFD4-vMAT1 and both downstream guide

RNAs were incorporated into pCFD4-vMAT2 as previously described [96]. The RSRT-
STOP-RSRT-6XV5-vMAT donor plasmid used the pHSG298 backbone (Takara Bio) and was

generated using NEBuilder HiFi (New England Biolabs). The complete annotated sequence of

RSRT-STOP-RSRT-6XV5-vMAT is shown in Supplementary Information. pCFD4-vMAT1/
pCFD4-vMAT2/RSRT-STOP-RSRT-6XV5-vMAT injections into the nos-Cas9 strain TH_attP2
[98] were performed by Bestgene, Inc.

The R and B3 recombinases from yeast recognize sequence-specific recombination target

sites, RSRTs and B3RTs, respectively [60]. These recombinases are highly efficient and highly

specific as they exhibit virtually no cross-reactivity with each other’s recombinase target sites.

When pairs of recombinase target sites are in the same orientation, as is the case for both

B3RT-vGlut-LexA and RSRT-STOP-RSRT-6XV5-vMAT, the recombinases catalyze excision of

the intervening DNA and leave behind a single recombinase target site.

dVGlut antibody

Drosophila anti-dVGLUT mouse monoclonal antibodies (10D6G) were generated (Life Tech-

nologies Europe) using the C-terminal peptide sequence TQGQMPSYDPQGYQQQ of

dVGLUT coupled to KLH.

Supporting information

S1 Fig. Verification of mAb dVGLUT specificity using the null dVGlutSS1 allele. (A)

dVGLUT expression detected by mAb dVGLUT in a heterozygous yw, dVGlutSS1/+ late stage

embryo. (B) dVGLUT expression is not detectable by mAb dVGLUT in a homozygous yw,
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dVGlutSS1/ dVGlutSS1 late stage embryo.

(TIF)

S2 Fig. Multiple optical sections from dVGlut>dsRed male brains labeled with anti-Tβh.

(A-B) Although the Tβh shows weaker immunoreactivity than the anti-Tdc2 antibody, Tβh is

mainly detected in dVGlut>dsRed neurons at dorsal and ventral positions (A’, A”, B’ and B”).

Scale bar = 20 μm.

(TIF)

S3 Fig. (A-A’) Schematic showing the regions (boxes) of the VNS imaged in panels B and C.

(B-C) A male dVGlut>dsRed adult VNS labeled with anti-Tdc2. The majority of dVGLUT

+ neurons within the thoracic VNS (B) and abdominal VNS (C) express Tdc2 with a few

exceptions (arrows). Scale bar = 10 μm.

(TIF)

S4 Fig. (A) Schematic showing the regions imaged in panels B and C (colored boxes). (B-C)

The majority of OA neurons within the PENP (B) and SEZ (C) regions co-express dVGLUT

as visualized in a male tdc2>dsRed adult brain labeled with anti-dVGLUT. Scale bar = 10 μm.

(TIF)

S5 Fig. (A) dVGlut transcript levels were decreased in n-syb-gal4>dVGLUT-RNAi males as

compared to the n-syb-gal4 control (n = 3; p<0.01). (B-C) Representative images of ventral

sections of the SEZ from a tdc2-gal4>dVGLUT-RNAi;UAS-dsRed male brain labeled with anti-

Tdc2. OGN differentiation as measured by Tdc2 expression is not altered by a reduction of

dVGLUT. Scale bar = 10 μm. (D-E) Dorsal sections of the SEZ, PENP and protocerebral

bridge region from the same brain as in B. There are no obvious changes in ventral OGN sur-

vival and differentiation as measured by Tdc2 expression. Scale bar = 20 μm.

(TIF)

S6 Fig. (A) Verification that each tdc2>GFP neuron in the brain and VNS is Tdc2+. The

stack for panel A contains 30 optical sections at 1.0 μm. Scale bar = 20 μm. (B) The stack for

panel B contains 34 optical sections at 1.0 μm. Scale bar = 20 μm. (C-E) Verification that each

tdc2-dVGlut-split>GFP neuron is Tdc2+. The stack for panels C-E contains 56 optical sections

at 0.5 μm. Scale bar = 20 μm. (F) Schematic showing the locations of Tdc+ clusters in C-E.

(TIF)

S7 Fig. (A) The activity levels of controls and tdc2>dVGlut-RNAi males did not differ during

the aggression assay as measured by pixels moved/second. (B) Total behavioral events (lunges,

wing threats, inter-male courtship) per minute was calculated. The average number of behav-

ioral events per minute exhibited by experimental males (tdc2>tsh>Gal80>dVGlut-RNAi)
was slightly higher than controls (��p<0.01)

(TIF)

S8 Fig. (A) The VNS of a tdc2>mtd:HA male, note the Tdc2+ cell bodies. (B) The addition of

tsh>Gal80 blocked the Gal4-mediated expression of mtd:HA in the majority of Tdc2+ VNS

neurons (tdc2/tsh>Gal80;dsRed). Axonal projections from brain Tdc2+ neurons are visualized

in the VNS. (C) Significantly less Tdc2+ VNS neurons are detected in tdc2/tsh>Gal80;dsRed
vs. tdc2>dsRed males. (Mann Whitney, P = 0.001). (D) The addition of tsh>Gal80 does not

alter brain tdc2-gal4 reporter driven expression.

(TIF)

S9 Fig. Neuron survival or distribution is not altered by the complete loss of dVGLUT in

OGNs (A-D) Representative images of dorsal (A-B) and ventral (C-D) optical sections of the
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SEZ region from tdc2-gal4;B3RT-dVGlut/dVGLUTSS1;UAS-B3 lexAop-His2B-mCherry
UAS-His2A-GFP males. OGNs are visualized by the mCherry reporter and white co-colocali-

zation in the merged channel. Scale bar = 20 μm.

(TIF)

S10 Fig. RSRT>stop>6xV5-VMAT is not expressed without Gal4-mediated excision of

the stop cassette. (A-A’) In the presence of a Gal4 driver (tdc2-Gal4-AD dVGlut-Gal4-DBD)

to drive R recombinase (UAS-R) expression, the stop cassette of RSRT>stop>6XV5-VMAT is

excised and V5-VMAT (magenta) is expressed and visualized by anti-V5. dVGLUT (green) is

visualized by mAb dVGLUT. (B-B’) Without the presence of a Gal4 driver, dVGLUT expres-

sion is apparent while expression from RSRT>stop>6XV5-VMAT is not detected by anti-V5.

Scale bar = 30 μm.

(TIF)

S11 Fig. (A) Higher magnification of the SEZ region showing V5-VMAT expression in OGNs

after excision by tdc2-dVGlut-gal4 driven R recombinase. The brain is labeled with anti-V5

(magenta) and mAb dVGLUT (green). Scale bar = 15 μm. (B-B”) Higher magnification of the

SEZ region of the region in the dashed box in panel B. Arrowheads indicate puncta with

dVGLUT and V5-VMAT colocalization. Arrows indicate puncta with only V5-VMAT

(arrows). (C) Schematic indicating the location of the SEZ region. (D) SEZ region of a repre-

sentative brain with a synaptic marker incorporated (UAS-synaptotagmin;HA, tdc2-dVGlut-
gal4/UAS-R RSRT-STOP-RSRT-6XV5-vMAT). The brain is labeled with anti-HA (blue), anti-

V5 (magenta), and mAb dVGLUT (green). Scale bar = 20 μm. (E) Higher magnification of the

SEZ region in D. Scale bar = 10 μm. (F-H) Regions of interest from E showing puncta with

dVGLUT, V5-VMAT and Syt:HA. The stack for panel B contains two optical sections at

0.45 μm. Six optical sections at 0.45 μm were stacked in panels E-H.

(TIF)

S12 Fig. OGNs include the three OA-FruM+ neurons. (A-C) Brains from tdc2-dVGlut-split-
gal4/UAS>stop>CD8:GFP;fru-flp males demonstrate OA-FruM+ neurons are also dVGlut+.

(D) No OGNs in the VNS are FruM+ although as expected the OGN-FruM+ neurons project

into the VNS. Scale bar = 20 μm. (E-G) OGN-FruM+ neurons (arrow) were also identified in

dVGlut-gal4/UAS>stop>CD8:GFP;fru-flp male brains labeled with anti-Tdc2 (magenta). Scale

bar = 20 μm.

(TIF)

S1 Table. Identified OGNs based on OA neuron nomenclature.

(TIF)

S2 Table. Cloning components used for the construction of the 20XUAS-His2A-GFP and

13XLexAop2-His2B-mCherry lines.

(TIF)

S1 Data.

(TIF)
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