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From the Vascular and Endovascular Surgery Society
Development of a convolutional neural network to

detect abdominal aortic aneurysms
Justin R. Camara, MD,a Roger T. Tomihama, MD,a Andrew Pop, BS,a Matthew P. Shedd, BS,a

Brandon S. Dobrowski, BS,a Cole J. Knox, BS,a Ahmed M. Abou-Zamzam Jr, MD,b and

Sharon C. Kiang, MD,b,c Loma Linda, CA
ABSTRACT
Objective: We sought to train a foundational convolutional neural network (CNN) for screening computed tomography
(CT) angiography (CTA) scans for the presence of infrarenal abdominal aortic aneurysms (AAAs) for future predictive
modeling and other artificial intelligence applications.

Methods: From January 2015 to January 2020, a HIPAA (Health Insurance and Accountability Act)-compliant, institutional
review boardeapproved, retrospective clinical study analyzed contrast-enhanced abdominopelvic CTA scans from 200
patients with infrarenal AAAs and 200 propensity-matched control patients with noneaneurysmal infrarenal abdominal
aortas. A CNN was trained to binary classification on the input. For model improvement and testing, transfer learning
using the ImageNet database was applied to the VGG-16 base model. The image dataset was randomized to sets of 60%,
10%, and 30% for model training, validation, and testing, respectively. A stochastic gradient descent was used for opti-
mization. The models were assessed by testing validation accuracy and the area under the receiver operating charac-
teristic curve.

Results: Preliminary data demonstrated a nonrandom pattern of accuracy and detectability. Iterations (#10) of the
model characteristics generated a final custom CNN model reporting an accuracy of 99.1% and area under the receiver
operating characteristic curve of 0.99. Misjudgments were analyzed through review of the heat maps generated via
gradient weighted class activation mapping overlaid on the original CT images. The greatest misjudgments were seen in
small aneurysms (<3.3 cm) with mural thrombus.

Conclusions: Preliminary data from a CNN model have shown that the model can accurately screen and identify CTA
findings of infrarenal AAAs. This model serves as a proof-of-concept to proceed with potential future directions to include
expansion to predictive modeling and other artificial intelligence-based applications. (J Vasc Surg Cases Innov Tech
2022;8:305-11.)
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Abdominal aortic aneurysm (AAA) rupture represents a
life-threatening disease.1,2 Conventional management re-
lies on aneurysm repair, which can be performed by
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open surgery or endovascular repair. Societal recommen-
dations have provided guidance for the management of
AAAs and the decision to intervene depends on the risk
of intervention versus the risk of growth and rupture.3,4

Recent advances in medical imaging technology have
led to the development of software allowing for the anal-
ysis of AAAs.5 However, most current industry-based soft-
ware available are not automated and require human
intervention to initiate aorta localization and measure-
ment of vessel diameters, nor are they able to provide
automatic quantitative analysis of the AAA anatomic
characteristics such as vessel calcification or the pres-
ence of intraluminal thrombus.6

Artificial intelligence (AI) corresponds to the ability of a
computer to perform tasks commonly associated with
human thought. A version of AI termed “machine
learning” allows us to discover patterns and make deci-
sions from large data sets without the need for pro-
grammed instructions or assumptions. Convolutional
neural networks (CNNs) have gained attention in the
305
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medical community for solving computer-based visual
tasks, including image analysis, object identification,
categorization, and segmentation. The application of AI,
specifically CNNs, has been investigated in a wide range
of medical fields, including imaging and biologic anal-
ysis, and could potentially lead to the development of
new approaches for the diagnosis, prognosis, or treat-
ment of patients.7,8

The ever growing medical databank, in the form of clin-
ical, genomic, imaging, and pooled registry data, is only
likely to continue to exponentially increase as each year
passes. As these data increase, the potential application
of analyzing all these data to improve patient care will
improve. Thus, the future of medicine is likely to be
even more data dependent, with the synergy between
medicine and AI technology becoming more pro-
nounced. In the era of personalized medicine and big
data analytics, AI AAA analytical programs would be use-
ful for vascular surgery with the potential ability to
compute large and heterogeneous AAA imaging and
biomarker data sets and to identify patterns even if their
relationships are complex and nonlinear.6-10

The goal of our report was to describe the method and
algorithms used to train a robust foundational CNN, in-
dependent of human manual input, to identify the pres-
ence of infrarenal AAAs from computed tomography
(CT) angiography (CTA) scans, which might allow for
future predictive modeling and other AI applications.

METHODS
The local institutional review board approved this

HIPAA (Health Insurance and Accountability Act)-
compliant study and waived the requirement for written
informed consent. A retrospective review of the hospital’s
electronic medical records system was performed via an
internal radiology database (mPower Clinical Analytics;
Nuance Communications, Inc, Burlington, MA) that con-
tains report and protocol information for CTA abdomen
and pelvis examinations. A total of 398 CTA examinations
of the abdomen and pelvis were performed in which the
archived dictation reported the presence of an aortic
AAA between January 2015 and January 2020. These ex-
aminations were manually reviewed for the presence of
infrarenal AAAs (diameter >3.0 cm in the axial plane),
and 68 were excluded because of a ruptured aneurysm,
the absence of an infrarenal AAA, prior repair of an
infrarenal AAA, image nonavailability in the PACS (pic-
ture archiving and communication system), and/or pro-
tocol errors (ie, absence of intravenous contrast
material). After exclusion of repeated examinations per-
formed on the same patient at $2 different time points,
200 CTA scans containing infrarenal AAAs were identi-
fied. The concurrent presence of thoracic and/or iliac
aneurysmal disease and/or dissection did not preclude
the inclusion of CTA scans in the data set. Subsequently,
demographic and clinical data such as patient date of
birth, patient gender, the presence or absence of hyper-
tension, a history of tobacco use, and scanner type were
collected from the medical records system.
For the development of a propensity-matched control

group, a query of the electronic medical records identi-
fied 4821 CTA scans of the abdomen and pelvis per-
formed between January 2015 and January 2020. From
these examinations, with matching by demographics
and comorbidities similar to those of the study group,
200 propensity-matched nonaneurysmal aorta control
CTA examinations were selected.
All CTAs were performed using a GE Medical Systems

Revolution EVO (GE Healthcare, Milwaukee, WI), GE Med-
ical Systems Discovery CT750 HD (GE Healthcare), GE
Medical Systems LightSpeed VCT (GE Healthcare), GE
Medical Systems LightSpeed16 (GE Healthcare), GE Med-
ical Systems LightSpeed Ultra (GE Healthcare), Siemens
Somatom Definition AS (Siemens Healthcare, Erlangen,
Germany), or Siemens Biograph128 (Siemens Healthcare)
scanners.
Axial reconstructions from all selected CT scans were

exported in noncompressed JPEG format at preset win-
dow widths and levels. The axial reconstructions from
all CT scans were reviewed manually to confirm diag-
nostic image quality. The axial reconstructions from
each CT examination containing an infrarenal AAA
were sorted to a set exclusively containing AAAs. A total
of 6175 axial images containing infrarenal AAAs were
sorted, and a total of 100,249 axial non-AAA images
were sorted.
The aneurysm set was randomized to 60% training (n ¼

3705), 10% validation (n ¼ 618), and 30% testing (n ¼ 1852)
subsets. A numerically balanced non-AAA set was gener-
ated through sampling of non-AAA axial reconstruction
images at fixed intervals. The balanced non-AAA set
was randomized to 60% training (n ¼ 3705), 10% valida-
tion (n ¼ 618), and 30% testing (n ¼ 1852) subsets. The
training and validation subsets were used for model
hyperparameter tuning. The test subsets were used for
evaluation of model performance.

CNN architecture. The VGG-16 neural network archi-
tecture was selected for development of an AAA detec-
tion system owing to its robust performance in a variety
of image recognition tasks.11-15 Transfer learning was
applied to the neural network using ImageNet, a pre-
trained CNN developed using >14 million manually
labeled images in >20,000 categories.16 All axial recon-
struction images were resized to 512 � 512 pixels. The
window widths and levels were kept at the preset export
values. Image augmentation was applied to the
training set during model development using imgaug
(version 0.2.5).17-20

Themodel was trained for 40 epochs with batch sizes of
15 to stable convergence of the loss function in the valida-
tion set. To address class imbalance, the majority class



Fig 1. Flowchart of study process depicting patient selection and study design. AAA, Abdominal aortic aneu-
rysm; CTA, computed tomography angiography.

Table. Patient characteristics used to develop convolutional neural network (CNN) to detect abdominal aortic aneurysms
(AAAs)

Characteristic AAA group (n ¼ 200) Non-AAA group (n ¼ 200) P value

Age, years 73.2 6 10.2 72.1 6 12.1 .359

Male gender 143 (71.5) 144 (72.0) .999

Tobacco use 160 (79.9) 153 (76.5) .891

Hypertension 172 (86.3) 165 (82.7) .878

Data presented as mean 6 standard deviation or number (%).
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(non-AAA) was undersampled to the same size as themi-
nority class (infrarenal AAA).21,22 Model development and
analysis were performed using Keras (version 2.4.3), Ten-
sorFlow (version 2.4.1), imgaug (version0.2.5), Scipy (version
1.2.1), NumPy (version 1.8.2), scikit-learn (version 0.23.1), and
Matplotlib (version 3.2.2). All experiments were performed
using a computer equipped with an NVIDIA Quadro
P5000 GU (graphical processing unit) with 16 GB of
GDDR5 (graphics double data rate 5 synchronous dy-
namic random-access memory) video memory.

Assessment of model performance and statistical
analysis. Following tuning of the model hyperpara-
meters, the model was assessed for overall diagnostic
accuracy at the image level. Statistical calculations for
patient demographic data and risk factors were per-
formed using GraphPad Prism, version 8.4.3 (GraphPad
Software, San Diego, CA). The loss and accuracy of the
training and validation groups were plotted by epoch
to observe for stable convergence of model perfor-
mance. Overall accuracy (number of correctly classified
images per number of total classified images) was
calculated from the test set of images to assess overall
model performance. The area under the receiver oper-
ating characteristic curve (AUC) and F1 score were also
used to evaluate model performance within the test
set of images. A confusion matrix (two-by-two) table
was generated from the test set of images. The sensi-
tivity, specificity, positive predictive value, and negative
predictive value were calculated from the classification
results of the test set. Gradient weighted class activation
maps (heat maps) were generated for analysis of mis-
judgments.23,24 Misjudged images were manually
reviewed to characterize the aneurysm size, presence or
absence and extent of mural thrombus, concurrent
presence of an iliac or a pararenal or suprarenal aneu-
rysm on the misjudged axial images, and/or the pres-
ence of tortuosity resulting in the appearance of an AAA
that would not otherwise be classified on a curvilinear
reformatted image. The plots and figures were gener-
ated using Matplotlib and converted to vector graphic
format in Visio Professional 2019 (Microsoft, Redmond,
WA) or OmniGraffle Pro, version 7.18.1 (The Omni Group,
Seattle, WA).



Fig 2. During training (train) and optimization of the VGG-16 convolutional neural network (CNN), the model
demonstrated significant improvement in overall performance. A, In an early version of the CNN model, as the
number of epochs increased, the loss of function and accuracy curves demonstrated suboptimal fitting for
model performance. B, In the optimized CNN model, as the number of epochs increased, an appropriate
reduction occurred in the loss of function, with an increase in overall accuracy, demonstrating optimal fitting for
model performance. Val, Validation.
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RESULTS
Between January 2015 and January 2020, 200 patients

with AAAs and 200 propensity-matched control patients
with non-AAA aortas were identified. The demographics
of both groups (AAA vs non-AAA) were equally matched
in age (73.2 years vs 72.1 years; P ¼ .359), male gender
(71.5% vs 72.0%; P ¼ .999), tobacco use (79.9% vs 76.5%;
P ¼ .891), and a history of hypertension (86.3% vs 82.7%;
P ¼ .878; Table).
The VGG-16 neural network architecture was trained us-

ing conventional training (60%) and validation (10%) im-
age sets, including 3705 AAA training images and 3705
non-AAA training images and 618 AAA validation images
and 618 non-AAA validation images (Fig 1). During the
training and optimization iterations of the VGG-16 CNN,
the model demonstrated significant improvement in
overall performance. As the number of epochs increased,
the number of times the weights were changed in the
neural network decreased, which, in turn, resulted in sta-
ble convergence with optimal fitting for model perfor-
mance. In addition, an appropriate reduction in the loss
of function and appropriate increase in the overall accu-
racy occurred (Fig 2).
The final trained version of the new CNN model was
tested with conventional testing (30%) image sets: 1852
AAA training images and 1852 non-AAA aorta images.
The final custom CNN model demonstrated a sensitivity
of 98.9% (95% confidence [CI], 98.28%-99.30%), speci-
ficity of 99.3% (95% CI, 98.80%-99.62%), accuracy of
99.1% (95% CI, 98.72%-99.36%), and AUC of 0.99 (Fig 3).
Misjudgments were analyzed through a review of the

heat maps generated via gradient weighted class activa-
tion mapping overlaid on the original CT images. The
highest number of misjudgments was seen for small
AAAs (<3.3 cm) with mural thrombus (Fig 4).

DISCUSSION
The implementation of AI in medicine is undergoing

continuous evolution. Some of the early AI studies in
vascular surgery were implemented to assess the predic-
tive nature of clinical markers for patient outcomes. Tur-
ton et al25 demonstrated that their neural network
correctly predicted the outcomes for 82.5% of individual
cases using four highly significant independent predic-
tors of AAA mortality: preoperative hypotension, intraper-
itoneal rupture, preoperative coagulopathy, and



Fig 3. The final custom convolutional neural network
(CNN) model demonstrated high diagnostic accuracy. A,
The results of model testing in the confusion matrix (two-
by-two) table. B, The model demonstrated an accuracy of
99.1% (95% confidence interval [CI], 98.72%-99.36%) and
area under the receiver operating characteristic (ROC)
curve (AUC) of 0.99.
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preoperative cardiac arrest. Wise et al26 also reported a
neural network-based predictive model that could accu-
rately predict for high mortality risk from attempted
repair of ruptured AAAs.
Recently, the evolution of the CNN has gained attention

in imaging-based surgical subspecialties for solving
computer-based visual tasks. The integration of imaging
and biologic analysis could potentially lead to the devel-
opment of revolutionary approaches for patient manage-
ment.7,8 Imaging is an integral component of the
diagnosis, surveillance, andmanagement of AAAs. CT im-
aging has remained themainstay technique for planning
and monitoring AAAs because it provides a rapid and
accessible method to examine the extent, morphology,
and pathology of AAAs.4,27
In the vascular surgery literature, previous studies
examined the role of semiautomated AAA image anal-
ysis, focusing on image segmentation. Image segmenta-
tion is the process of separating a digital image into
multiple sets (groups of pixels). The pixels are tagged
such that the pixels with the same tag share similar char-
acteristics. This allows for manual labeling of regions of
interest, analysis of sets of shapes, and creation of
three-dimensional images.9 de Bruijne et al28 described
a semiautomated method for aneurysm sac segmenta-
tion that used manual segmentation of the first slice,
with automated detection of the contour in subsequent
slices, allowing for rapid processing of the entire volume
of the AAA. Other investigators have reported similar
computer-based techniques.29-31 Although these were
significant advances in programming techniques, these
programs all require some baseline manual
input. Manual segmentation is also laborious and
time-consuming, requires a trained and experienced
operator, and is subject to inter- and intraoperator
variations.
Automated nonsegmented techniques would be an

invaluable tool for patient management because it
would reduce the analysis time, alleviate the burden of
performing repetitive tasks, and improve reproducibility.9

Recently, Lareyre et al6 described a fully automated pipe-
line to characterize AAAs, including the presence of
intraluminal thrombus and calcifications. This rapid
method was tested on a set of 40 patients with CTA im-
ages and demonstrated a good correlation with the re-
sults obtained from manual segmentation by human
experts.6 Although this was a very robust model that pro-
duced excellent output information, it remains a pro-
grammed model with defined parameters and does
not harness the power of machine learning. Mohammadi
et al32 designed a CNN classifier for the aorta that used a
Hough transform circles algorithm to classify a group of
120 aorta patches according to their diameter, with an
accuracy of 98.33% and a detection rate of 98.62%.
We have described a fully automated, novel, trained

CNN model that demonstrated robust accuracy of
99.1% (95% CI, 98.72%-99.36%) and an AUC of 0.99. The
CNN model was tested using 3600 images from 400 pa-
tients in two propensity-matched cohorts. Our results
were derived from real-world, unaltered, nonsegmented
images that had been obtained using various acquisition
methods, contrast agents, resolution, with differing
concomitant comorbid pathologies, and noise and arti-
facts. With this robust CNN, we have demonstrated a
proof-of-concept model that can be used for a variety
of potential future applications, including the prediction
of growth and rupture, determination of long-term prog-
nosis, and, most importantly, the merging of clinical bio-
markers and imaging data to develop more personalized
therapeutic management plans for this complex patient
population.



Fig 4. Analysis of judgments through review of heat maps generated via gradient weighted class activation
mapping overlaid on original computed tomography (CT) images. A, A correct judgment by the custom con-
volutional neural network (CNN) that identified the abdominal aortic aneurysm (AAA). B, A misjudgment of a
relatively small size aneurysm and presence of mural clot contributed to a false-negative diagnosis.
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Additional work will continue to determine the limita-
tions of our model and increase its accuracy moving for-
ward. Complex aneurysm pathology, including, but not
limited to, thrombus, calcifications, and adjacent and/or
contiguous aneurysms, will need to be analyzed to opti-
mize the algorithm. In the present feasibility model, a
few patients in our propensity-matched control group
had had peripheral artery disease. We attempted to
match the pertinent demographic and comorbidity fac-
tors to the study group as closely as possible to achieve
our objective for our study: to create a de novo founda-
tional CNN model that can accurately delineate AAAs
in the general population for real world, nonbiased appli-
cability. Future investigations are required to improve the
predictive accuracy when confounding imaging vari-
ables are present.
In the era of personalized medicine and big data sci-

ences, machine learning will likely play a vital role in an-
alyses that humans would have difficulty in providing.
Precision medicine provides the opportunity for person-
alized healthcare management to individuals or groups
of patients using large datasets of disease profiles, diag-
nostic or prognostic information, and treatment re-
sponses.33 Before the application of machine learning
to image analysis, human interpretation was required
to transform an image into a binary or categorical vari-
able for analysis. However, with the use of CNN, we
have the ability to objectively break down an image
into large biostatistical datasets. The tidal wave of medi-
cal data in the form of clinical, genomic, imaging, and
pooled registry data is only likely to exponentially in-
crease as precision and personalized medicine matures.
Thus, the future of medicine is likely to be even more
data dependent, with the synergy between medicine
and AI technology becoming more pronounced.34

The present study had several limitations. First, this was
a retrospective, single-center study with a limited num-
ber of queried imaging studies that had met the exclu-
sion criteria (ie, ruptured aneurysm, prior repair of an
infrarenal AAA, and/or protocol errors [absence of intra-
venous contrast material, timing issues]). However, with
the development of our training technique and method,
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we have the tools to continue to optimize our protocol to
train the CNN to potentially mitigate these variables. Sec-
ond, the sample size was underpowered, particularly for
a subanalysis according to aneurysm size and
morphology, quantification of mural thrombus, or quan-
tification of aortic calcifications. The present model was
trained as a binary classifier on a modest GPU with
limited computation power. However, our group will be
moving our future projects to a dedicated AI core labora-
tory with a 10-fold increase in processing power. This will
allow for a more robust analysis of exponentially larger
data sets with multiple categorical and continuous im-
aging variables. Third, the present model is not 100% ac-
curate, demonstrating a <1% misjudgment rate. These
errors had mostly occurred with aneurysms <3.3 cm in
size with mural thrombus. These findings likely resulted
from difficulties in resolving pixel groups with <3 mm
of spatial resolution; a task that is difficult for radiologists
to reliably reproduce without image manipulation such
as imaging magnification and window level changes.

CONCLUSIONS
We have reported preliminary data from a CNN model

that can accurately screen and identify CTA findings of
infrarenal AAAs. This model serves as a proof-of-
concept to proceed with potential future directions,
including expansion to predictive modeling and other
AI-based applications.
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