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A search for novel andmore efficient therapeuticmodalities of inflammatory bowel disease (IBD) is one of themost important tasks
of contemporary medicine. The anti-inflammatory action of nicotine in IBD might be therapeutic, but its toxicity due to off-target
and nonreceptor effects limited its use and prompted a search for nontoxic nicotinergic drugs.We tested the hypothesis that SLURP-
1 and -2—the physiological nicotinergic substances produced by the human intestinal epithelial cells (IEC) and immunocytes—
can mimic the anti-inflammatory effects of nicotine. We used human CCL-241 enterocytes, CCL-248 colonocytes, CCRF-CEM
T-cells, and U937 macrophages. SLURP-1 diminished the TLR9-dependent secretion of IL-8 by CCL-241, and IFN𝛾-induced
upregulation of ICAM-1 in both IEC types. rSLURP-2 inhibited IL-1𝛽-induced secretion of IL-6 and TLR4- and TLR9-dependent
induction of CXCL10 and IL-8, respectively, in CCL-241. rSLURP-1 decreased production of TNF𝛼 by T-cells, downregulated IL-
1𝛽 and IL-6 secretion by macrophages, and moderately upregulated IL-10 production by both types of immunocytes. SLURP-2
downregulated TNF𝛼 and IFN𝛾R in T-cells and reduced IL-6 production by macrophages. Combining both SLURPs amplified
their anti-inflammatory effects. Learning the pharmacology of SLURP-1 and -2 actions on enterocytes, colonocytes, T cells, and
macrophages may help develop novel effective treatments of IBD.

1. Introduction

A search for novel and more efficient therapeutic modalities
of inflammatory bowel disease (IBD) is one of the most
important tasks of contemporary clinical and experimental
medicine. Both ulcerative colitis (UC) and Crohn’s disease
(CD) are epidemiologically related to smoking [1–4]. Most
patients with UC are nonsmokers, and patients with a history
of smoking usually acquire their disease after they have
stopped smoking [5–7]. Upon cessation of smoking, patients
with UC experience more severe disease progression that
can be ameliorated by returning to smoking [8–10]. In
contrast, patients with CD experience severe disease when

smoking, requiring an immediate and complete cessation
of any tobacco usage [3, 11]. Nicotine administration in
transdermal patches or enema inhibits inflammation asso-
ciated with UC [8, 12–16]. Nicotine also exhibits a local
therapeutic effect in CD [17], despite the fact that smoking
worsens this disease. It is believed that the therapeutic effects
of nicotine in IBD are mediated by the nicotinic acetyl-
choline (ACh) receptors (nAChRs) of gut immune cells that
inhibit production of inflammatory mediators and correct
specific alterations in cell cycle responses [18–20]. We have
previously demonstrated that nicotinic agonists abrogate
PHA-dependent upregulation of TNF𝛼 and IFN𝛾 receptors
(IFN𝛾R) in the human leukemic T-cell line CCRF-CEM
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(CEM) [21] and downregulate lipopolysaccharide- (LPS-)
induced production of the proinflammatory cytokines IL-
6 and IL-18 but upregulated IL-10 in human macrophage-
like U937 cells [22]. On the other hand, recent research has
conclusively demonstrated that dysregulation of intestinal
epithelial cells (IEC) plays an important role in the patho-
genesis of IBD [23], but the therapeutic modalities that can
effectively correct function of these cells remain unknown.
An important role of IEC response to nicotinic drugs in
IBD has been suggested by the presence of fully developed,
functional ACh axis in the intestinal epithelium, with its
nicotinic arm controlling intestinal absorption, permeability,
mucociliary activity, and mucin secretion, as well as IEC
viability, proliferation, migration, and cohesion [24–38].
Therefore, modulation of the nicotinergic anti-inflammatory
pathway is considered as a novel therapeutic target for IBD
[12, 39–41]. Clinical trials of nicotine formulations, however,
revealed severe side effects from therapeutic doses of nicotine
[12, 42], which prompted a search for nontoxic nicotinergic
agents that can mimic anti-inflammatory effects of nicotine
in patients with IBD.

A novel paradigm of cell regulation via nAChRs has
been discovered in studies of the autosomal recessive disease
palmoplantar keratoderma featuring mutation of secreted
mammalian Ly-6/urokinase plasminogen activator receptor-
related protein- (SLURP-) 1 and impaired T-cell activity [43].
SLURP-2 expression was also discovered in the skin [44].
While various subtypes of nAChRs can be involved in the
physiological regulation of cell functions by SLURPs, the
biological effects of SLURP-1 are predominantly mediated
by 𝛼7 nAChR and those of SLURP-2 by non-𝛼7 nAChRs
[45]. Cell function and gene expression studies [46, 47]
suggested that SLURPsmay play important roles in regulating
both epithelial cells and immunocytes. Since nicotine has
been shown to alter expression of SLURP-1 in IEC [48],
we hypothesized that auto/paracrine action of SLURPs on
IEC may, in part, mediate the anti-inflammatory activities of
nicotine in IBD.

In this study, we analyzed the roles of SLURP-1 and -
2 in the physiological regulation of the key elements of the
pathobiology of IBD controlling intestinal inflammation and
facilitating healing of intestinal ulcers. The results demon-
strated that SLURPs can abolish expression of the IBD-related
mediators of inflammation in both IEC and immunocytes.
Learning the pharmacology of the SLURP-1 and -2 actions
on enterocytes, colonocytes, T-cells, and macrophages may
therefore help develop novel effective treatments of UC and
CD.

2. Materials and Methods

2.1. Cells and Reagents. Human IEC: the small intestine
enterocyte cell lineCCL-241 and the colonocyte cell lineCCL-
248, human lymphoblastoid T-cell line CEM, and human
monoblastoid tumor cell line U937 were purchased from
ATCC (Manassas, VA) and grown in the respective ATCC
complete growth media at 37∘C in a humid, 5% CO

2
incu-

bator. To differentiate into macrophages, the U937 cells were

treated with 200 nM PMA (Sigma-Aldrich Corporation, St.
Louis, MO) and allowed to adhere to tissue culture plate
for 3 days [49]. The full length recombinant (r)SLURP-1
and rSLURP-2 were manufactured at Virusys Corporation
(Sykesville, MD), as detailed elsewhere [50]. The previously
characterized anti-SLURP-1 and -2 monoclonal antibodies
336H12-1A3 and 341F10-1F12, respectively [46, 47], were
from Research and Diagnostic Antibodies (North Las Vegas,
NV). Normal mouse IgG (NIgG) was obtained from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA). Primary mouse
antibodies to human ICAM, IL-1𝛽, IL-6, IL-10, TNF𝛼, and
IFN𝛾 receptor (IFN𝛾R) and ELISA kits for measuring human
IL-6 and CXCL10 were purchased from R&D Systems (Min-
neapolis, MN). The IL-8 ELISA kit was from BD Biosciences
(San Jose, CA). Both recombinant IL-1𝛽 and INF𝛾 were from
R&D Systems and both E. coliDNA and LPS from E. coli K12
strain (LPS-EK) were purchased from InvivoGen (San Diego,
CA).

2.2. Quantitative Immunocytochemical Assay (QIA). TheQIA
(a.k.a. in-cell western), a high throughput quantitative assay
of cellular proteins, was performed in situ, as described in
detail elsewhere [46], using the reagents and equipment from
LI-COR Biotechnology (Lincoln, NE). The CCL-241, CCL-
248, CEM, or U937 cells, 1 × 106/well of a 96-well plate,
were incubated in respective growth media with or without
rSLURPs for 16 h, fixed in situ, washed, permeabilized with
Triton solution, incubated with the LI-COR Odyssey Block-
ing Buffer for 1.5 h, and then treated overnight at 4∘C with
a primary antibody. The cells were then washed and stained
for 1 h at room temperature with a secondary antibody, and
expression of the protein of interest was quantitated using the
LI-COROdyssey Imaging System. Sapphire700 (1 : 1000) was
used to normalize for cell number/well.

2.3. Statistical Analysis. Results were expressed as mean ±
SD, and statistical significance was determined by ANOVA
with Dunnett’s posttest using the GraphPad Prism software
(GraphPad Prism Software Inc., San Diego, CA). The differ-
ences were deemed significant when the calculated 𝑃 value
was <0.05.

3. Results

3.1. Anti-Inflammatory Effects of rSLURP-1 and -2 on IEC.
In in vitro experiments utilizing cultured human enterocytes
and colonocytes, CCL-241 and CCL-248, respectively, we
recreated an aspect of IBD pathophysiology involving the
proinflammatory action of IL-1𝛽, IFN𝛾, andToll-like receptor
4- (TLR4-) and TLR9-ligands (i.e., LPS-EK and E. coli
DNA, resp.) on intestinal epithelium [51–53]. TLR4 and
TLR9 regulate cytokine secretion, cell survival, and intestinal
barrier function, and their expression on IEC is upregulated
in IBD [52–57]. We hypothesized that, in response to these
mediators, CCL-241 and CCL-248 cells would express proin-
flammatory molecules eliciting mucosal homing of T-cells
and recruiting other types of inflammatory cells. Exposed
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Figure 1: Anti-inflammatory effects of rSLURP-1 and -2 on IEC. The anti-inflammatory effects of 0.01 𝜇g/mL of rSLURP-1 (S1) and -2 (S2)
on secretion of IL-6, IL-8, and CXCL10 (ELISA) and expression of ICAM-1 (QIA) by CCL-241 and CCL-248 stimulated for 16 h in a humid,
5% CO

2

incubator at a cell density of 1 × 106 cells/well with 100U/mL of IL-1𝛽 (IL-6 assay), 25𝜇g/mL of the TLR9 ligand E. coli DNA (IL-8),
100 ng/mL of the TLR4 ligand LPS-EK (CXCL10), or 100U/mL of INF𝛾 (ICAM-1) were measured as described in Materials and Methods.
Some cells were exposed to S1 or S2 in the presence of 1𝜇g/mL of anti-SLURP-1 or -2 monoclonal antibodies (Ab). Each experiment was
performed in triplicate. Asterisk = 𝑃 < 0.05, compared to untreated cells. Pound sign = 𝑃 < 0.05, compared to an inflammatory stimulant
given alone.

IEC indeed showed upregulated expression of IL-6, IL-8,
CXCL10, and ICAM-1 (Figure 1).

Next, we sought to determine if rSLURP-1 or -2 can
inhibit production of these proinflammatory molecules.
rSLURP-1 significantly (𝑃 < 0.05) diminished the TLR9-
dependent secretion of IL-8 by CCL-241, but not CCL-248,
and the IFN𝛾-induced upregulation of ICAM-1 in both types
of IEC (Figure 1). rSLURP-2 inhibited the IL-1𝛽-induced
secretion of IL-6 and TLR4- and TLR9-dependent induction
of CXCL10 and IL-8, respectively, in CCL-241.The specificity
of these effects was demonstrated by ability of anti-SLURP
antibodies to abolish the inhibitory activity of corresponding
rSLURP. A mixture of both nicotinergic peptides almost
completely inhibited upregulated expression of all tested

inflammatory molecules in both types of IEC (Figure 1),
which is in keeping with the synergistic mechanisms of their
biological action [58, 59].

3.2. Anti-Inflammatory Effects of rSLURP-1 and -2 on
Immunocytes. rSLURP-1 significantly (𝑃 < 0.05) decreased
production of TNF𝛼 by CEM, downregulated IL-1𝛽 and IL-
6 secretion by U937 cells, and moderately upregulated IL-
10 production by both types of immunocytes (Figure 2).
rSLURP-2 significantly (𝑃 < 0.05) downregulated TNF𝛼 and
IFN𝛾R in CEM and reduced IL-6 production by U937 cells
(Figure 2). Combining both rSLURPs amplified their anti-
inflammatory effects.
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Figure 2: Anti-inflammatory effects of rSLURP-1 and -2 on immunocytes. The anti-inflammatory effects of rSLURP-1 (S1) and -2 (S2),
0.01 𝜇g/mL, on production of proinflammatory cytokines and IL-10 by the CEM stimulated with 10𝜇M PHA (a) and by the differentiated
U937 macrophages stimulated with 200 ng/mL LPS (b) incubated for 16 h in a humid, 5% CO

2

incubator at a cell density of 1 × 106 cells/well
were measured by QIA, as detailed in Materials and Methods. Each experiment was performed in triplicate. Asterisk = 𝑃 < 0.05, compared
to intact cells. Pound sign = 𝑃 < 0.05, compared to PHA or LPS given alone.

4. Discussion

Results of the present study demonstrated for the first time
that SLURP proteins can produce anti-inflammatory effects
by abolishing expression of IBD-related mediators of inflam-
mation in both IEC and immunocytes.These findings suggest
that SLURPs may become prototype drugs for the treatment
of IBD, because they mimic the inhibitory effect of nicotine
and some noncanonical nAChR ligands on gut inflammation.
Clinical use of rSLURPs should avoid nicotine-like toxic-
ity, such as off-target and nonreceptor intracellular effects,
because SLURPs are the physiological substances produced
at low levels by IEC [25] and immunocytes [60] that alter cell
functions by acting at nAChRs [46, 47]. Notably, quercetin—
a flavonoid that exhibits its nicotinergic activity through 𝛼3,
𝛼7, and𝛼9 nAChRs [61–64]—produces an anti-inflammatory
effect and ameliorates experimental IBD [65, 66].

Both 𝛼7 and non-𝛼7 subtypes of nAChRs might mediate
anti-inflammatory effects of rSLURP-1 and -2 in IEC, CEM,
andU937 cells. It has been reported that activation of nAChRs
inhibits secretion of IL-1𝛽 and IL-8 in IEC [67, 68]. SLURP
inhibition of the production of proinflammatory cytokines in
the IEC activated by TLR ligandsmay have important clinical
implication, because compounds inhibiting the immune
stimulation involving TLR ligands, especially TLR4, have
been reported to be potentially useful for treatment of IBD
[31]. Both nicotine and SLURP-1 bind with a high affinity to
𝛼7 nAChR [46, 69] and both upregulate local production of
IL-10 (Figure 2 and [70]), which is otherwise decreased in
patients with IBD [71]. T-cells also express𝛼4 and𝛽2 subunits
[20] that could be activated by rSLURP-2. Activation of 𝛼4𝛽2
inhibits immune reactivity [72, 73].

The differences between effects of each rSLURP protein
may be due to their predominant action at distinct nAChR
subtypes expressed on the cell membrane of different kinds
of immunocytes [21, 22] and IEC. By RT-PCR, CCL-241 cells
uniquely express 𝛼3, whereas CCL-248, 𝛼2 and 𝛼5, and both
cells also express 𝛼7 and 𝛼9 nAChRs (data not shown), which

is different from the colonic cell line HT29 that carries 𝛼4-
made nAChR [38]. The variations of the nAChR profiles
among distinct IEC types help explain regional variations of
intestinal responses to smoking/nicotine [4, 70, 74–76].

Previous studies indicated that SLURP-1 can potentiate
the ACh action at 𝛼7 nAChR leading to modifications in
functions of cutaneous epithelial cells [77] and immunocytes
[78]. Since both IEC and immune cells express this nAChR
subtype, the anti-inflammatory effects of SLURP-1 in the gut
may result from its action on both cells types simultaneously.
Additionally, since SLURP-1 has been shown to upregulate
production of ACh by immunocytes [78], this endogenously
produced and secreted agonist may further potentiate the 𝛼7-
mediated anti-inflammatory effect of SLURP-1.

5. Conclusions

Both rSLURP-1 and -2 inhibit production of inflammatory
mediators in human enterocytes, colonocytes, T-cells, and
macrophages. Combining both rSLURP proteins amplifies
the anti-inflammatory effects. The anti-inflammatory effects
of nontoxic nAChR ligands such as SLURPs may there-
fore ameliorate disease in CD and UC patients. Identi-
fication of the predominant types of nAChRs mediating
anti-inflammatory effects of each SLURP protein on IEC
and immunocytes should help elucidate the intracellular
signaling pathways.
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M. McKay, “Dextran sodium sulphate-induced colitis perturbs
muscarinic cholinergic control of colonic epithelial ion trans-
port,” British Journal of Pharmacology, vol. 135, no. 7, pp. 1794–
1800, 2002.
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