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Abstract: Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge
claiming millions of lives and affecting the life quality of survivors. Conventional treatments of
bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some
bone cancer cells may remain or recur in the local area after resection, some are highly resistant to
chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic
therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and
highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of
light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular
ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the
tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has
been outlined and summarized, and some envisioned challenges and future perspectives have been
mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer
and inspiration for future studies on PT.

Keywords: phototherapy; photodynamic therapy; photothermal therapy; bone cancer; tumor
therapy; nanoparticles

1. Introduction

Bone cancer is divided into primary bone cancer and metastatic bone cancer, depend-
ing on whether the tumors invading the bone tissue are primary tumors or metastatic
tumors. Primary malignant bone tumors include osteosarcoma, chondrosarcoma, and
Ewing’s sarcoma, among others, which often occur in children and adolescents, accounting
for about 6% of all cancers [1,2]. Among them, osteosarcoma is the second leading cause of
tumor-related deaths in adolescents [3]. The early symptoms of primary bone cancer are
not obvious, and patients often have pathological fractures or severe pain before going to
the doctor. However, the invasion of primary malignant bone tumor progresses rapidly
and can metastasize to other organs, especially the lung, so the early diagnosis and the
treatment of primary bone cancer is difficult [4–7]. Bone metastases often occur in breast
cancer, prostate cancer, lung cancer, liver cancer, kidney cancer, and so on. 65–80% of
patients with breast cancer and prostate cancer develop bone metastases [8–11]. Metastatic
bone cancer usually occurs in the spine and pelvis, accompanied by corresponding motor
dysfunction and neurological symptoms of the affected tissue, as well as pathological
fractures, pain, and other symptoms [12,13]. At present, the clinical treatment of bone
cancer includes wide surgical resection, radiotherapy, and chemotherapy, often used in
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combination [14,15]. However, some tumor cells may remain in the local area after resec-
tion, and some bone tumors are insensitive to radiotherapy and have a tendency to be
resistant to chemotherapy, leading to postoperative recurrence and metastasis [16,17]. In
addition, the limb dysfunction caused by surgery and the damage to other physiological
cells and tissues caused by radiotherapy or chemotherapy, have also seriously affected the
life quality and mental health of patients [18,19]. Therefore, the treatment of bone cancer
and other malignant tumors requires alternatives with an efficient and safe strategy.

Phototherapy (PT) involves the local exposure of patients to light to treat disease,
including photodynamic therapy (PDT) and photothermal therapy (PTT). Both these
therapies have been widely studied for cancer treatments in recent years, as they can
eliminate tumor cells without damaging normal tissues [20,21]. PDT is a minimally invasive
technique of treating tumor disease with photosensitizer (PS) and light activation. The PS
that selectively accumulates in the tumor tissue can be activated by light of a specific non-
thermal wavelength to produce reactive oxygen species (ROS), known as singlet oxygen,
which can oxidize with nearby biological macromolecules in the tumor cells and thus
cause cytotoxicity and cell death [22–24]. PTT is also a minimally invasive and highly
efficient antitumor approach, which is based on photothermal agent (PTA) with high
photothermal conversion efficiency [25,26]. The PTA can gather near the tumor tissue using
targeted recognition technology and convert light energy into heat energy to kill cancer
cells, as the cancer cells are more sensitive to high temperature than normal cells [27–29].
Furthermore, both PDT and PTT can be combined with other treatment methods to ablate
tumors synergistically [30–33]. Given the difficulty of treating bone cancer and the broad
prospects for PT, it is imperative to analyze and summarize the application progress of
PT for bone cancer in the past three decades and present some envisioned challenges and
future perspectives.

2. PDT

PDT was first discovered to damage paramecium cultured in a fluorescent dye, and
then Dougherty et al. developed a variety of available PSs and excitation light sources,
and applied them in the field of oncology in the 1970s [34,35]. At present, PDT has been
proven to have ideal therapeutic effects of cancers, bacterial infections, skin diseases, and so
on [36–38]. PDT has three crucial elements including PS, light source, and oxygen [39,40].
The anti-tumor effect of PDT is achieved by inducing direct cytotoxic effects on cancer cells
(apoptosis, necrosis, and/or autophagy), destroying the tumor vasculature, and causing
local inflammation followed by the systemic immunity [41]. PS can be selectively taken up
by tumor tissues and can accumulate in tumor cells, while normal tissues take up less or
rapidly metabolize the drug [42,43]. After uptake, the local tumor tissue is irradiated with
light of a specific wavelength, and the nontoxic PS is activated to produce a large amount
of highly reactive singlet oxygen, which causes the aforementioned biological responses of
tumor cells and tissues. Finally, the growth of tumor is inhibited or tumor cells are ablated.
In addition, the surrounding normal cells are protected from the PDT-induced cytotoxicity,
because physiological cells in the tumor surrounding tissue are less sensitive to the toxicity
of ROS [44–46]. Therefore, PDT has become an efficient, safe, convenient, and affordable
strategy for tumor treatment.

Since the 1980s, hundreds of PSs have been studied, and some have been used in
clinical trials [47]. There are currently three generations of PSs [48]. Most of the PSs used in
tumor therapy are porphyrins, based on a tetrapyrrole structure which is similar to that of
the protoporphyrin contained in hemoglobin [41]. Hematoporphyrin derivative (HpD), the
most used first-generation PS which later became known as Photofrin, has been applied
for the treatment of lung cancer, bladder cancer, esophageal cancer, and early stage cervical
cancer [49]. However, the maximum absorption of HpD is at ~630 nm, leading to poor
tissue penetration. In addition, the lack of specificity and the cutaneous phototoxicity also
limit the widespread use of HpD, stimulating the development of new PSs [50–52]. The
second-generation PSs include aminolevulinic acid (ALA), benzoporphyrin derivatives
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(BPDs), acridine orange (AO), and chlorins, among others. They have near infrared (NIR)
absorption and high singlet oxygen quantum yield, and thus are characterized by higher
efficiency and better penetration to deeply located tissues [53–55]. The third-generation
PSs generally refer to the modifications of the first- and second-generations based on the
synthesis of substances with higher affinity to the tumor tissue [56,57]. The applications of
targeted recognition technology and nanocarriers have further improved the selectivity
and safety of PS, and are conducive to the combination with other treatment methods
such as chemotherapy, radiotherapy, and immunotherapy [58–60]. Both of the second- and
third-generation PSs are the main directions of current studies.

The light source is another significant component of PDT. Each PS needs a corre-
sponding appropriate light source. At present, light sources include the xenon lamp, light
emitting diode (LED), laser beam, and fiber optic devices [61–63]. Some scholars believe
the use of wavelengths between 600–850 nm is optimal for PDT which is called therapeutic
window, while others think the region between 600 and 1200 nm is appropriate for PDT
and can be called the optical window of tissue. However, the light with an absorption
wavelength exceeding 800 nm will not have enough energy to induce a photodynamic
reaction [41,49]. To improve the penetration capacity of light the light sources can be placed
near the deep tissue via minimally invasive surgeries such as endoscopic techniques and
vertebroplasty (VP). Therefore, the light source should be determined according to each
specific situation [64–66]. The success of PDT depends not only on the choice of PS and
light source, but also on the total light dose and exposure time, as well as other combined
treatment strategies.

3. Application of PDT in Bone Cancer
3.1. Preliminary Studies on the Therapeutic Effect of PDT on Bone Cancer

Possibly due to the poor tissue penetration of the first-generation PSs and the un-
certainty about the effect of PDT on normal musculoskeletal tissues, Photofrin, the first
PS approved by the FDA, was not studied for bone cancer treatment until the end of the
1980s. Fingar et al. applied PDT for chondrosarcoma in rats using Photofrin II. The release
of thromboxane from platelets and endothelial cells in tumors was higher than that in
tumor-free tissue, leading to microvascular damage followed by tumor destruction [67].
This vascular damage was also related to changes in tumor interstitial pressure [68]. Meyer
et al. demonstrated that bone was very resistant to the effects of PDT while muscle and
salivary gland were sensitive to PDT. However, all the normal tissues were noted to heal or
regenerate well after PDT injury [69]. Hourigan et al. proved that giant-cell tumor, dedif-
ferentiated chondrosarcoma, and osteosarcoma were susceptible to in vitro PDT and the
optimal nontoxic incubation concentration of Photofrin was 3 µg/mL [70]. Subsequently, a
large amount of studies on PDT for bone cancer appeared.

3.2. PDT Using New Generations of PSs for Bone Cancer
3.2.1. Dextran-Benzoporphyrin Derivatives (BPD)

Recently, numerous in vitro and animal studies on PDT for bone cancer have been
performed based on the discovery of hundreds of the second- and third-generation PSs.
BPDs for bone cancer therapy are usually used in a liposomal formulation (benzoporphyrin-
derivative monoacid ring A, BPD-MA, Visudyne®) which was approved by the FDA. BPD-
MA was demonstrated to induce long-term chondrosarcoma regression in rats treated with
light irradiation 5 min after BPD injection. The timing for light irradiation was related to
blood flow stasis which played an important role in PDT-induced tumor destruction [71].
PDT using BPD-MA for primary bone cancer was feasible and effective as reported in
the treatment of spontaneous osteosarcomas of the distal radius in dogs [72]. Burch et al.
first applied BPD-PDT for bone metastasis. The results showed that BPD-MA selectively
accumulated in tumors 3 h post-injection and the MT-1 cells, a human breast cancer cell line,
which metastasized to the spine and appendicular bone were eliminated 48 h post-light
delivery [73]. Metastatic lesions of MT-1 cells within porcine vertebrae and long bones
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could also be ablated using BPD-PDT. The average depth of light penetration into trabecular
bone was 0.16 ± 0.04 cm while the necrotic/non-necrotic interface extended 0.6 cm. This
study demonstrated that the light for BPD-PDT has excellent bone penetration [74]. Akens
at al. compared the uptake ratio between BPD-MA and 5-aminolevulinic acid (5-ALA) in
spinal metastases in rats. They found 5-ALA did not demonstrate an appreciable uptake
difference in tumor-bearing vertebrae compared to spinal cord, while BPD-MA could
accumulate specifically in the tumor tissue and reach its highest concentration 15 min
after injection. Thus, they speculated that BPD-MA could be used for PDT to treat bone
metastasis [75]. Later, they also demonstrated that the safe and effective drug-light dose
appeared to be 0.5 mg/kg BPD-MA and less than 50 J light energy for the thoracic spine and
1.0 mg/kg and 75 J for the lumbar spine in rats with bone metastasis of breast cancer [76]. In
addition, PDT using BPD-MA was demonstrated to improve vertebral mechanical stability
during the treatment of rats with spinal metastasis [77]. Wise-Milestone et al. also found
that PDT using BPD-MA promoted new bone formation in non-tumor-bearing vertebrae
and suppressed osteoclastic resorption in tumor-bearing vertebrae, leading to a protection
of the vertebral structure [78].

3.2.2. Acridine Orange (AO)

AO is a basic dye that can accumulate densely in lysosomes and is specifically
taken up by musculoskeletal sarcomas. It is another widely studied PS during last two
decades [79,80]. Kusuzaki et al. performed curettage under fluorovisualization and AO-
PDT for osteosarcoma elimination in mice. At 2 h after intraperitoneal injection of AO,
macroscopic curettage was performed and additional curettage was performed while
observing fluorescence of AO bound to residual tumor fragments using a fluorescence
stereoscope. Then, the tumor-resected area was irradiated by blue light (466.5 nm) for
10 min to kill the residual cells microscopically. The results showed that local tumor re-
currence was significantly inhibited (23%) in the group treated with curettage and PDT,
compared to that (80%) in the control group treated with only curettage [81]. At the same
time, AO with photoexcitation was demonstrated to have a strong cytocidal effect on
multidrug resistance (MDR) mouse osteosarcoma cells [82]. The accumulation of AO in
malignant musculoskeletal tumors was possibly related to the pH gradient. The higher the
malignancy of the tumor, the greater the pH gradient between the intracellular pH and
the extracellular pH or between the intracellular pH and the vacuolar pH are. This acidity
of tumors supports AO accumulation [80]. Moreover, different light sources were proved
to activate AO and induce cytotoxicity of tumor cells. A study of Ueda et al. showed that
strong unfiltered light from a xenon lamp was more effective and feasible than weak fil-
tered blue light for cytocidal effect of osteosarcoma cells using AO-PDT [83]. Satonaka et al.
found that the flash wave light (FWL) xenon lamp needed a lower excitation energy and
shorter excitation time compared to that of the continuous wave light (CWL) xenon lamp
for the cytocidal effect of AO-PDT [84].

3.2.3. Aminolevulinic Acid (ALA)

Due to the poor specificity, there are relatively few reports of ALA used in the treat-
ments of bone cancer [75,76]. However, Dietze et al. confirmed that the intra-articular
application of 5-ALA, a precursor of phototoxic molecules, induced a higher protopor-
phyrin IX (PpIX) accumulation in synovitis tissue compared to non-inflammatory tissue
but lower than that in human sarcoma cells (HS 192.T). The results suggested that 5-ALA
could be used in the treatment of arthritis [85]. Moreover, ALA-PDT could also result in
the death of human osteosarcoma (MG-64) cells in vitro [86]. Coupienne et al. studied
the role of receptor-interacting protein 3 (RIP3) and autophagy in PDT for bone cancer
using 5-ALA. RIP3 up-regulated the apoptotic and autophagic pathways but the resulting
autophagy protected U2OS cells (human osteosarcoma cell line) against PDT-induced cell
death. This study indicated that tumor cells themselves could make protective adjustments
to the cytotoxicity of the PDT [87].
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3.2.4. 5,10,15,20-Tetrakis(meta-hydroxyphenyl)chlorine (mTHPC)

The application of mTHPC-mediated PDT for bone cancer emerged in the past
decade. mTHPC is currently used in the clinic for palliative treatment of head and
neck cancer, traded under the name Foscan® [88]. It could accumulate to higher lev-
els in the high-metastatic 143B cells (human osteosarcoma cell line) than in the parental
low-metastatic HOS cells (human osteosarcoma cell line), and the mTHPC-PDT induced
caspase-dependent apoptosis [88,89]. Meier et al. encapsulated mTHPC into liposomal
structures to improve the drug hydrophilicity. The obtained new PS was labeled Foslip
and could be selectively taken up by 143B and mouse K7M2-derived osteosaroma cell
line (K7M2L2) (Figure 1). PDT using this new PS eliminated tumors in intratibial human
xenografts and syngeneic osteosarcoma mouse models and inhibited lung metastasis [90].

3.2.5. Indocyanine Green (ICG)

ICG is known as a diagnostic drug to check liver function and effective liver blood
flow [91,92]. Recently, it has been widely applied in PDT in various fields because of its ab-
sorption maximum at ~810 nm [93–95]. Funayama et al. investigated the phototoxic effects
of ICG on rat mammary adenocarcinoma (CRL-1666) cells and the therapeutic efficacy of
ICG-PDT in a rat model of spinal metastasis. ICG-PDT exerted immediate and persistent
phototoxic effects on CRL-1666 cells, delayed the deterioration of paralysis, and prolonged
the observation period in the spinal metastasis models [96]. Then, they developed a novel
nanocarrier consisting of poly(L-lactic acid)-block-poly(sarcosine) labeled with ICG. Under
light irradiation, the obtained nanocarrier exhibited tumor selectivity and could be used
for the diagnosis and treatment of spinal metastasis [97].

3.2.6. Methylene Blue (MB)

MB is a second-generation PS derived from phenothiazine and has been found to
kill tumors cells even if they are MDR [98,99]. Matsubara et al. first used MB as a PS
for bone cancer. Under the irradiation of light from a 500 W xenon lamp, MB-PDT had
a strong cytocidal effect on mouse osteosarcoma (LM8) cells in in vitro experiments, but
in vivo studies showed that MB neither selectively accumulated in mouse osteosarcoma
tissue nor inhibited tumor growth [100]. However, Guan et al. claimed that PDT using
MB and red light from the LED source could remarkably kill rat osteosarcoma-derived
UMR106 cells and induce cell apoptosis as well as the collapse of the mitochondrial
membrane. They did not perform co-culture of bone tumor cells and normal cells or in vivo
experiments [101]. Therefore, the specificity and efficiency of MB-PDT for bone cancer
needs further verification. Elfeky et al. used hydroxyapatite nanoparticles to load MB and
tested the obtained PS against human osteosarcoma (Saos-2) cells under the light irradiation
from a diode array laser. They speculated that the nanocarriers for MB could increase the
quantum yield of MB as well as the specificity to cancer cells. The results indicated that
the nanocarriers loaded with MB reduced the dose of MB required for effective PDT and
this modified PDT had a great cytotoxic effect on macrophage cells which could promote
tumor growth [102]. Thus, the nanoformulation is expected to improve the biosafety and
efficacy of PSs.
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Figure 1. Inhibition of intratibial osteosarcoma growth based on PDT using Foscan or Foslip. (A) (a)
Blood flow in control and tumor-bearing hind limbs was measured with a laser Doppler perfusion
imager in the regions of interest (ROI) (as indicated in (b)), and the data are presented as percent
change in perfusion (flux) of tumor compared to normal tissue, *** p < 0.001. (b) Images of hind limb
perfusion. White circles indicate ROI for laser Doppler image analysis. (B) (a) Mean fold change
in size of intratibial 143B cell line-derived tumors in SCID mice and (b) of intratibial K7M2L2 cell
line-derived tumors in syngeneic BALB/c mice. + p < 0.05, +++ p < 0.001, Foscan PDT vs. control;
* p < 0.05, *** p < 0.001, Foslip PDT vs. control. (c,d) Photographs taken at the end of treatment study.
Dotted lines indicate tumor areas. Reproduced from ref. [90] with permission from Wiley Online
Library. Copyright (2017) International Journal of Cancer.
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3.2.7. Chlorin e6 (Ce6)

As the maximum fluorescence excitation and emission wavelength is 403 nm and
669 nm, respectively, and the absorbance peak is at 650 nm, Ce6 can be used not only
for in vivo fluorescence imaging of tumors but also for PDT [103,104]. Mohsenian et al.
developed Mn-doped zinc sulphide (ZnS) quantum dots loaded with Ce6 for the treatment
of chondrosarcoma. Upon exposure of X-rays, the light is generated by the quantum
dots and thus activates Ce6. As X-ray irradiation has better tissue penetration, the ob-
tained nanocarriers themselves can serve as an intracellular light source for PS activation
which is conducive to eliminating deep tumors [105]. Lee et al. designed hyaluronate
dots containing Ce6 with multiligand targeting ability for PDT for bone metastasis. The
dots were chemically conjugated with alendronate (ALN, as a specific ligand to bone)
and cyclic arginine-glycine-aspartic acid (cRGD, as a specific ligand to tumor integrin
αvβ3) for bone and tumor targeting, respectively. The obtained new PS was labeled
(ALN/cRGD)@dHA-Ce6. After intravenous injection, these dots sailed to the bone tumor
site and were specifically taken up by tumor cells. The multiligand targeting ability was
verified by the strong Ce6 fluorescence signal (Figure 2). The bone metastasis in mice
caused by human breast carcinoma (MDA-MB-231) cells was inhibited using PDT based
on this novel PS [106]. The nanoformulation with targeted recognition technology has the
potential for improving the tumor-targeting efficiency of PSs.

Figure 2. (A) Schematic illustration of (ALN/cRGD)@dHA-Ce6. (B) In vivo noninvasive photoluminescent tumor imaging
of free Ce6 (2.5 mg/kg) or each sample (equivalent Ce6 2.5 mg/kg) intravenously injected into MDA-MB-231 tumor-bearing
nude mice. Fluorescent tumor images of the limbs were obtained at 1, 4, and 8 h post-injection. (C) Optical images of tumor
samples extracted from MDA-MB-231 tumor-bearing nude mice. Reproduced from ref. [106] with permission from MDPI
AG. Copyright (2020) Biomedicines.

3.2.8. Chlorophyll Derivatives

Bacteria are similar to cancer cells as both are highly metabolic and rapidly dividing
and can produce lots of porphyrin-derived photosensitizing metabolites [74]. There-
fore, some PSs are first used in bactericidal treatment and then found to be also effec-
tive for bone cancer, such as chlorophyll derivatives [107,108]. Na-pheophorbide A is a
chlorophyll-derived PS with the peak absorption maxima at 410 and 670 nm. PDT with
Na-pheophorbide A induced human osteosarcoma (HuO9) cells apoptosis via activation of
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mitochondrial caspase-9 and -3 pathways [108]. Pd-Bacteriopheophorbide (TOOKAD) is
another chlorophyll derivative and its light absorbance is in the NIR region (763 nm), which
allows deep tissue penetration [109]. At 70–90 days after PDT, TOOKAD was demonstrated
to completely eliminate 50% intratibial metastases caused by implanting human small
cell carcinoma of the prostate (WISH-PC2) cells into proximal tibias of mice [110]. As a
derivative of chlorophyll, Pyropheophorbide-a methyl ester (MPPa) can be metabolized
rapidly and have strong photoelectric sensitivity for PDT. MPPa-PDT was found to induce
human osteosarcoma (MG-63) cells apoptosis via the mitochondrial apoptosis pathway
and autophagy via the ROS-Jnk signaling pathway. The autophagy could further promote
the apoptosis caused by MPPa-PDT [111]. Moreover, MPPa-PDT could block MG-63 cell
cycle and inhibit cell migration and invasion. The PDT-induced apoptosis of MG-63 cells
was accompanied by the change of cellular endoplasmic reticulum stress (ERS) and related
to the Akt/mammalian target of rapamycin (mTOR) pathway [112].

3.2.9. Benzochloroporphyrin Derivatives (BCPDs)

To solve the synthetic problem in the preparation of biologically active BPD-MA and
reduce the toxicity to normal tissues, Yao et al. designed and synthesized a novel PS derived
from benzochloroporphyrin (BCPD) [113]. After marginal resection of subcutaneous mice
tumors caused by the inoculation of a high-metastatic murine osteosarcoma (LM-8) cell line,
BCPD-PDT reduced the local recurrence rate and preserved the adjacent critical anatomic
structures including muscles, nerves, and vessels [114]. In addition, another report from
the same team indicated that BCPD-PDT induced the apoptosis and the cell cycle arrest at
the G2M phase of human Ewing sarcoma (TC-71) cells. The tumor volume in mice with
Ewing sarcoma in the flank or tibia could be reduced and the function of tumor-bearing
limbs was preserved [115].

3.2.10. Other Porphyrin Derivatives

Porphyrin derivatives are the most widely studied PSs, including HpD, BPDs, BCPDs,
and so on. Hematoporphyrin monomethyl ether (HMME), a porphyrin-related PS, could
be selectively taken up by murine osteosarcoma (LM-8 and K7) cells, while could not be
observed in myoblast cells and fibroblast cells. HMME-PDT significantly inhibited subcu-
taneous osteosarcoma growth in mice via caspase cascade pathways [116]. Hiporfin is a
mixture of HpD derivatives and has been approved by the Chinese State Food and Drug
Administration for PDT on the oral cavity and the bladder cancers [117]. Sun et al. found
hiporfin was as efficient as HMME at a lower concentration, and it could be systemically
injected into patients, which is conducive to the PDT for solid tumors. Hiporfin-PDT
exhibited cytotoxicity in osteosarcoma in vitro and in vivo by inducing cell apoptosis and
necroptosis. However, the resulting cell autophagy played a protective role for tumor
cells [118]. Moreover, in order to obtain a PS more active than Photofrin, Serra et al. synthe-
sized 5,15-bis(3-Hydroxyphenyl)porphyrin for PDT [119]. PDT using this new PS reduced
tumor size via increasing cell necrosis in murine cranial and vertebral osteosarcomas, which
provided a potential platform for surgically inoperable osteosarcoma [120]. Moreover, PpIX
is another porphyrin derivative which has been extensively studied in PDT for cancers. The
encapsulation of PpIX using silica nanoparticles (SiNPs) improved the efficacy compared
to the naked PpIX. Although the encapsulation reduced the PpIX toxicity to tumor cells,
the chemicals used for SiNPs synthesis increased the cytotoxicity and thus PDT using
PpIX-SiNP significantly inhibited the viability of osteosarcoma cells [121]. In addition to
nanoformulation, PSs or PS-carriers can also be internalized by stem cells to further enhance
the ability of targeted delivery, as stem cells have the unique ability to home and engraft in
tumor stroma. In a report from Duchi et al., Meso-tetrakis(4-sulfonatophenyl)porphyrin
(TPPS) was first loaded by fluorescent core-shell poly methyl methacrylate nanoparticles
(FNPs), and then the obtained nanocarriers were uploaded by human mesenchymal stem
cells (MSCs). Under laser irradiation, the nanocarrier-laden MSCs underwent cell death
and released a large amount of ROS to trigger cell death of osteosarcoma cells [122].
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3.2.11. Photodynamic Molecular Beacons (PMBs)

As many first- and second-generation PSs are limited by their non-specific uptake
in deep tumors such as spinal metastases, PMBs targeting on specific molecules were
proposed to localize the active PSs to the tumors [123,124]. PMBs comprise a PS and a
quencher moiety which is photodynamically inactive, until transformed into an activated
state through cleavage of the linker. Liu et al. synthesize PMBs activated by matrix
metalloproteinases (MMPs) and named it PPMMPB. It consists of the PS Pyropheophorbide-
R and black hole quencher 3, linked by the amino acid sequence GPLGLARK, which is an
MMP-cleavable peptide. PPMMPB could be specifically taken up and activated by vertebral
metastases versus normal tissues [125]. PDT using PPMMPB was also demonstrated to
ablate metastatic tumors and disrupted the osteolytic cycle, and thus better preserved
critical organs in rats with vertebral metastasis [126].

3.2.12. Other New PSs

The development of PSs also draws inspiration from conventional drugs. For exam-
ple, Aloe-emodin (AE) is an anthraquinone compound extracted from traditional Chinese
medicine plants and has antitumor effects. Recently, it was demonstrated to have fluores-
cence and phototoxicity and could be used in tumor therapy [127–129]. Tu et al. found
that AE-PDT induced the autophagy and apoptosis of MG-63 cells via the activation of
the ROS-JNK signaling pathway [130]. In addition, many third-generation PSs are con-
structed based on nanoformulation or internalization by cells, which makes them favorable
for specific uptake by tumor cells. Lenna et al. developed a PS delivery system using
MSCs internalizing FNPs. The PS, tetra-sulfonated aluminum phthalocyanine (AlPcS4),
has a strong absorption peak in the NIR region and can retain activity after loading by
FNPs [41,131]. FNPs containing AlPcS4 was the uploaded by MSCs. Photoactivation of this
PS delivery system decreased the viability of osteosarcoma cells (MG-63, Saos-2, and U-2
OS). The authors claimed that this system has potential for the therapy for MDR tumors
and the MSCs-based PDT is conducive to the design of personalized treatment [132].

3.3. Combination of PDT and Other Therapies for Bone Cancer
3.3.1. PDT Combined with Chemotherapy

Since most bone cancers involve deep tumors, PDT is often used in combination
with chemotherapy, radiotherapy, and immunotherapy to ensure complete ablation and
prevent recurrence. The combination of PDT and chemotherapy is widely studied and is
called photochemotherapy [133,134]. Systemic bisphosphonates (BP) treatment has been
demonstrated to inhibit bone resorption in bone metastasis caused by breast cancer and
reduce the fracture chance of involved vertebrae [135]. However, BP is less effective for
vertebral tumors beyond a critical size [136]. Therefore, Won et al. proposed a combined
treatment of bisphosphonate zoledronic acid (ZA, a derivative of BP) and PDT using
BPD-MA. This photochemotherapy not only ablated spinal metastases but also reduced
bone loss accompanied by improving the structural integrity of vertebral bones [137].
The combined treatment of ZA and PDT could also reduce the risk of burst fracture and
restore the pattern of bone strain to that of healthy vertebrae [138]. The pre-treatment
with ZA before PDT reduced the cell viability of MT-1 cells up to 20% compared to PDT
alone [139]. Moreover, Heymann et al. combined low-level laser therapy (LLLT) with
cisplatin or ZA for bone cancer. They found that the irradiation of low-level laser on Saos-2
cells cultured in medium containing cisplatin or ZA directly raised the cytotoxicity of
these two drugs. They speculated that this direct phototoxicity of cisplatin or ZA could
be caused by photobiomodulation based on a direct mitochondrial stimulation through
LLLT [140]. These results indicate that the combination of PDT and chemotherapeutics
drugs synergistically enhances the tumoricidal effect.

Recently, many studies are focusing on the development of nanovehicles which can
target PSs and chemotherapeutics drugs on cancer lesions, optimize the shortcomings of
drugs, and reduce the side effects of PDT and chemotherapy [141–143]. Paclitaxel (PTX) is
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one of the most effective chemotherapeutics drugs for treating breast, ovarian, lung, and
pancreatic cancer [144,145]. To improve its poor water solubility, Martella et al. designed
a nanoscale Drug Deliv system consisting of high molecular weight and hydrosoluble
keratin, Ce6, and the PTX. PTX and Ce6 acted in an additive manner, and the resulting
cytotoxicity to osteosarcoma cells was superior to that of PTX or Ce6 alone. The high
specificity and efficiency of this Drug Deliv system is a promising therapeutic strategy for
MDR osteosarcomas [146]. Doxorubicin (DOX) is usually used as the first-line therapy for
osteosarcoma and doxycycline (DOXY) also has efficient cytotoxicity on various cancer
cells. The combination of these two drugs can synergistically induce apoptosis of cancer
cells [147,148]. Tong et al. synthesized a prodrug of these two drugs via a thioketal
(TK) linkage. The obtained DOX-TK-DOXY was encapsulated into the mesoporous silica
nanoparticles (MSNs) followed by modification of Ce6 and ZA. ZA helps the nanocarriers
target on osteosarcoma cells and the Ce6 can be activated by laser irradiation and produce
ROS. ROS cannot only induce cytotoxicity but also disrupt the TK linkage of the prodrug,
leading to synchronous release of both DOX and DOXY. The released DOXY can also
promote the production of ROS and thus amplify the release of DOX and DOXY. This
nanovehicle with the capacity of bone-targeting, burst release of ROS, and continuous
release of chemotherapeutics drugs is a novel therapeutic strategy for bone cancer [149].
Bortezomib (BTZ) is the first clinically approved proteasome inhibitor and can be applied
in the treatment of bone cancer. BTZ was found to increase intracellular ROS level which
can improve the tumoricidal effects of PDT [150,151]. Huang et al. designed a bone-seeking
nanoagent for the treatment of bone metastasis. This nanocarrier comprised ALN (as the
bone seeker), Zinc phthalocyanine (ZnPc) (as the PS), and BTZ (as the chemotherapeutics
drug and the amplifier of ROS). Tumor volume of bone metastasis in a rat model was cut
down by 85% using this photochemotherapy, and the tumoridical effect was related to
mitochondrial damage and excessive ERS [152]. In addition, a report from Lu et al. has
the similar design concept. In this study, nanoparticles based on graphene oxide (GO) was
synthesized. Folic acid was conjugated with GO as a targeted agent for cancer cells, ICG
was linked to GO as a PS, and ginsenoside Rg3 was loaded by GO as a chemotherapeutics
drug. PDT using the obtained nanocarriers inhibited malignant progression and stemness
of osteosarcoma cells [153].

3.3.2. PDT Combined with Immunotherapy

PDT can also induce the immune response to eliminate tumors and prevent recurrence.
Due to the complex mechanism involved in this process, there are many target points can
be studied for the synergistic treatments of PDT and immunotherapy [154,155]. The
combination of PDT and immunotherapy cannot only enhance the anti-tumor immune
effects but also reduce the side effects [156,157]. Zhang et al. found that HpD-PDT for
osteosarcoma induced necrosis of tumor cells and then inhibited the function of dendritic
cells (DCs). However, continuous PDT restored the function of DCs by up-regulating
heat shock protein 70 [158]. CpG oligodeoxynuleotide (CPG-ODN), synthesized from
unmethylated CpG dinucleotides and a phosphorothioate or chimeric backbone, can
stimulate innate immune system via toll-like receptor 9 (TLR9), followed by the activation
of DCs and other immune-related cells [159–161]. Peritumoral injection of CPG-ODN
after PDT using BPD could control both local and systemic tumor spread in mice caused
by metastatic breast cancer cells. The therapeutic effect of this combined therapy was
improved compared to PDT or CPG-ODN alone [162]. At the same time, Marrache et al.
developed a nanoparticle delivery platform based on ZnPc-PDT and CPG-ODN for the
treatment of metastatic breast cancer. Polymeric core with gold nanoparticles (AuNPs)
were used as a controlled release system for ZnPc and CPG-ODN, and CPG-ODN acted
as an immunostimulant to enhance the anti-tumor immunity effect caused by PDT via
activating DCs [163]. Moreover, the cytotoxic effects on T cells also play an important role
in tumor therapy [164]. When the programmed death ligand-1 (PD-L1)/programmed cell
death protein-1 (PD-1) pathway was blocked, PD-1 of tumor cells, an inhibitor of T cell
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proliferation and cytotoxic effects, was down-regulated followed by significant inhibition
of osteosarcoma growth [165,166]. As aforementioned, autophagy may protect tumor cells
from the cytotoxicity of PDT [87,118,167]. To suppress autophagy of osteosarcoma cells,
3-MA, an autophagy inhibitor, was applied to enhance the tumoricidal effects of PDT using
bovine serum albumin-ZnPc nanoparticles (BSA-ZnPc) (Figure 3). This combination of PDT
and immunotherapy inhibited osteosarcoma growth in vitro and in vivo via the inhibition
of autophagy and down-regulation of PD-L1 [166].

Figure 3. (A) Schematic overview of the anti-tumor immune response in osteosarcoma induced by the combination of
PDT and 3-MA. (B) PDT using BSA-ZnPc induced autophagy in osteosarcoma cell lines. The distribution of mitochondria,
lysosomes, and BSA-ZnPc in MNNG/HOS cells after treatment with BSA-ZnPc for 24 h (sacle bar = 50 µm). (C) Combined
therapy of PDT and 3-MA inhibited tumor growth in a distant metastasis subcutaneous tumor model. (a) The tumors located
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on both flanks were resected and imaged (bar = 5 cm). (b,d) The images and H&E staining of lungs resected from the
tumor-bearing mice (circles represent the metastatic, (b): bar = 1 cm, (d): left bar = 100 µm, right bar = 200 µm). (c) Mice sera
were collected 1 day after combination treatment, and the cytokine levels of TNF-α and IL-12 were measured. * p < 0.05,
** p < 0.01. Reproduced from ref. [166] with permission from Elsevier. Copyright (2019) Biomaterials.

3.3.3. PDT Combined with Hyperthermia

Hyperthermia has been applied to treat tumors since the 1970s. When the temperature
comes to 42 ◦C or higher, the injury of DNA and plasma membrane and the inhibition
of protein synthesis and energy metabolism will occur followed by mitochondrial dam-
age [168,169]. Nomura et al. combined HpD-PDT with hyperthermia (45 ◦C) to treat
osteosarcomas in mice. The tumor growth rate in the heat-only or PDT-only group was sig-
nificantly lower than that in the group without treatment, and was significantly higher than
that in the group treated with PDT and hyperthermia [170]. The combination of ALA-PDT
and hyperthermia (43.5 ± 0.5 ◦C) was also demonstrated to synergistically inhibited the
viability of human mandibular osteosarcoma cells. In addition, hyperthermia improved
the sensitivity of less sensitive tumor cells to PDT cytotoxicity [171]. These studies on
hyperthermia for cancer treatment also inspired the development of PTT.

3.3.4. PDT Combined with Radiotherapy

Radiotherapy with the advantage of palliating pain is recognized as one of the most
effective therapies for malignant tumors and is a current standard of treatment of spinal
metastasis [172,173]. However, different sensitivities to radiotherapy were found in tumors
of different types as well as tumors of the same type but from different individuals [174].
Lo et al. demonstrated that the combination of X-ray irradiation at 4 Gy and PDT using BPD-
MA significantly improved the bone architecture and bone formation of normal vertebrae
at a longer-term (6 week) time-point [175]. In addition, this combination maintained the
structural integrity of metastatically involved vertebrae in rats while ablating tumors [176].
PDT combined with radiotherapy can provide a potential platform for patients with
recurring spinal tumors that cannot be treated by surgery or only radiotherapy [175,176].

In addition, the clinical application of PDT for musculoskeletal cancers is often com-
bined with radiotherapy [177]. Synovial sarcoma is one of the most common malignant
soft-tissue tumors encountered in children and adolescents with high recurrence rate (~80%)
after resection. In addition, it often invades adjacent bones, vessels, and nerves [178,179].
Kusuzaki et al. performed AO-PDT with X-ray irradiation at 5 Gy for six patients with
synovial sarcoma after resections. The results showed that the low-dose X-ray also excited
AO-like photons. The combination successfully inhibited the recurrence and protected the
surrounding normal tissues [180]. Then, they performed PDT or the combined therapy
for 4 patients with primary bone cancer and 6 patients with primary malignant soft tissue
sarcoma. Among them, 5 patients were treated with AO-PDT and 5 patients were treated
with AO-PDT and X-ray irradiation at 5 Gy. After a follow-up of 24–48 months, one of
the 5 patients treated with PDT showed local recurrence while there was on recurrence
in the 5 patients treated with PDT and radiotherapy [181,182]. Although the number of
cases involved is small and the grouping principle is imperfect, these studies still provide a
preliminary reference for the clinical application of PDT combined with radiotherapy for
bone cancers which are difficult to treat by conventional therapies.

3.3.5. Other Applications of PDT for Clinical Bone Cancer

As chondrosarcoma is radioresistant and often not sensitive to chemotherapy, wide
excision surgery is the most common therapy [183,184]. However, when chondrosarcoma
occurs in the hyoid bone, many patients choose not to sacrifice the larynx, base of tongue,
and the hyoid, and thus surgeries will not be accepted. Therefore, Nhembe et al. chose
mTHPC-PDT with the help of bare polished tip laser light delivery fibres for the patient
with a 3.4 cm × 2.4 cm chondrosarcoma lesion. At a follow-up after about 20 months, MRI
results indicated that the tumor volume decreased accompanied by tissue regeneration
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and improvement in airway. The residual tumor became smaller and could be seen in
the subcutaneous tissue away from the hyoid [185]. In addition to this case, the light
source of PDT can also get closer to deep tumors with the help of minimally invasive surg-
eries [66,77,126,186]. Fisher et al. first applied PDT using verteporfin, a second-generation
PS derived from porphyrin, to improve the therapeutic effects of VP or Balloon Kypho-
plasty (KP) on patients with pathologic vertebral compression fractures caused by vertebral
metastasis. Patients treated with PDT under the light from interstitial diffusing fiber at 50
or 100 J/cm felt pain significantly reduced, and no complications directly attributed to PDT
were found. These results suggested that VP or KP combined with PDT is safe and can
shorten the hospital stay [187]. Moreover, photochemotherapy based on photochemical
internalization (PCI) has been developed for clinical use. PCI is a nano Drug Delivery tech-
nology delivering endocytosed macromolecules into the cytoplasm. Upon light activation,
PSs located in endocytic vesicles will induce rupture of the endocytic vesicles and release
the therapeutic macromolecules into the cytosol. This technology aims to avoid the side
effects of PDT and chemotherapy, enhance the efficacy of photochemotherapy, and improve
the selectivity of PSs [188,189]. Disulfonated tetraphenyl chlorin (TPCS2a)-based PCI of
Bleomycin, a third-generation PS for photochemotherapy, was applied in the treatment of
a patient with chondroblastic-osteosarcoma of the jaw. This therapy was demonstrated to
have increased selectivity and superior anti-tumor activity compared to PDT only. During
the follow-up of three months, continuous tumor shrinkage and death of tumor cells were
proven by clinical assessment and histopathology, and no recurrence was identified. Un-
fortunately, the patient succumbed to cardiorespiratory failure six months after the start
of the therapy [190]. Although the first clinical trial of PCI-based photochemotherapy for
bone cancer failed to have long-term follow-up, these early follow-up results suggest that
this therapy seems to be a feasible clinical therapeutic strategy for bone cancer.

4. PTT

PTT for cancer therapy was inspired by magnetic thermal therapy and first reported
by Hirsch et al. in 2003. Silica nanoparticles were surrounded by small gold colloid to
form gold–silica nanoshell and then modified by polyethylene glycol (PEG) to retain the
stability of the nanoshell colloid. After exposure to NIR light (820 nm, 35 W/cm2), the
human breast carcinoma cells cultured with this obtained PTA lost viability, while cells
cultured with only NIR light or PTA kept viability. Therefore, normal tissues which cannot
take up a large amount of PTA are safe during PTT [191]. PTA and light source are the two
key elements in PTT. When PTAs are irradiated by light with a specific wavelength, the
energy from photons will be absorbed by PTAs and PTAs will be activated and collide with
surrounding molecules to return to the ground state [192]. Therefore, the increased kinetic
energy will be turned into heat. Tumor cells are more sensitive to cytotoxicity caused by
heat compared to normal cells. When the local temperature increases to 42 ◦C or higher,
some thermolabile cellular proteins are denatured accompanied by coaggregation with
native and aggregative-sensitive proteins, leading to inactivation of downstream pathways,
physical alteration of chromatin, inhibition of DNA synthesis and repair, and ultimate
cancer cell death [193,194]. PTT for cancer treatment can be performed remotely and
applied in combination with conventional therapies, and the intensity, interval, and time of
light irradiation can be administrated according each case situation. PTT is a noninvasive,
controllable, and targeted strategy to eliminate tumor cells, therefore, it was widely studied
for bone cancer therapy in the past decade [29].

Various PTAs and corresponding light sources have been developed and reported
since 2003. The light sources with absorption in the NIR region are most commonly
used for PTT because of the appropriate tissue penetration capacity and the reduction
of photodamage on local normal tissues and cells [41,49,195,196]. PTAs can be divided
into four categories, including metal-, carbon-, semiconductor-, and organic molecule-
based materials [194,197,198]. Metal-based materials have high photothermal conversion
efficiency but the cost is also high and not suitable for widespread clinical use [198,199].
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Carbon-based materials have large photothermal conversion area but have poor absorp-
tion capacity under NIR light irradiation [200–202]. Semiconductor-based materials have
high photothermal performance and low cost but further nanoformulation is often re-
quired to enhance the specificity and the ability of tumor targeting [197,203]. Most organic
molecule-based materials have strong NIR absorption capability, solubility, biocompati-
bility, and dispersibility, but they also need modification to promote bone regeneration or
immunomodulation [204,205]. Studies of these four types of PTAs are constantly progress-
ing, and the main purpose is to improve the photothermal conversion efficiency, solubility,
biocompatibility, tumor-targeting capacity, and safety via modification and nanoformu-
lation [206–208]. Moreover, recently, PTT is usually combined with other therapies to
comprehensively improve the therapeutic effects of bone cancer [209–211].

5. Application of PTT in Bone Cancer
5.1. Metal-Based PTAs

PTT for bone cancer using metal-based PTAs often involves the precious metals
including Au and Pt [212–214]. Recently, some common metals including Cu, Fe, Bi, and
so on, are also widely studied [215–217]. These metals are usually applied for PTT via
nanoformulation or coating.

5.1.1. Au

AuNPs have high photothermal conversion efficiency and are one of the most inter-
esting nanomaterials reported in studies on PTT. They are easy to be functionalized via
thiol or amine groups for Drug Delivery, and they can generate heat via light irradiation
and increase the local temperature to ~43 ◦C [218,219]. Moreover, the shape and size of
them can be altered according to different requirements [220–223]. Liao et al. used ethacry-
lated gelatin and methacrylated chondroitin sulfate (CSMA) to encapsulate gold nanorods
(GNRs) and nanohydroxyapatite (nHA) to form a hydrogel for bone cancer therapy and
bone regeneration. This hydrogel with light irradiation eradicated K7M2wt cells (a mouse
bone tumor cell line) and promoted proliferation and osteogenic differentiation of MSCs
in vitro. PTT using this hydrogel not only ablated postoperative tumors but also repaired
bone defects in a mice model of tibia osteosarcoma [224]. Sun et al. enclosed GNRs in MSNs
(Au@MSNs) to form a Drug Delivery platform. ZA was then conjugated to Au@MSNs to
provide bone-targeting ability and attenuate tumorigenesis and osteoclastogenesis in bone
metastasis. PTT using this composite PTA inhibited tumor growth in vitro and in vivo
and relieved bone resorption in vivo [225]. Moreover, CD271 monoclonal antibody was
also used as a bone-targeting agent to localize PTAs in osteosarcomas, as CD271 was
demonstrated to be overexpressed on the surface of osteosarcoma cancer stem cells [226].
Hollow gold nanospheres (HGNs) were conjugated with SH-PEG-COOH and then CD271
monoclonal antibody was physically absorbed by the obtained PEG-HGNs. The PEG
modification was used to increase the stability, reduce cytotoxicity, extend blood circulation
time of HGNs, and connect HGNs and CD271 monoclonal antibody [227,228]. This novel
PTA could target to osteosarcoma cells and be specifically taken up by the tumor cells.
Upon NIR laser irradiation, the cells lost viability [229]. Because AuNPs are conducive
to Drug Deliv, PTT using AuNPs is often combined with chemotherapy or immunother-
apy [229,230]. Betulinic acid (BA) is a natural anticancer agent against numerous tumor
types and has the capacity for local immunoregulation but it is hydrophobic [231,232].
Liu et al. developed gold nanoshell-coated BA liposomes to treat bone cancer. BA was
encapsulated into liposomes to increase its solubility, and then coated with AuNPs (AuNS-
BA-Lips). The AuNPs nanoshell exerted a prominent PTT effect under the irradiation of
light in the NIR region, and the increased temperature triggered BA release (Figure 4).
These nanocarriers with dual therapeutic functions inhibited cell viability of 143 B and
Hela cells [233].
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Figure 4. (A) The tumor inhibition rates. (B) Photographs of tumors after 14 days of treatment. (C) Representative
photographs of tumor-bearing mice after 14 days of treatment. (i) saline, (ii) saline + Laser, (iii) AuNP-Laser, (iv) AuNP +
Laser, (v) BA, (vi) BA-Lips, (vii) AuNS-BALips-Laser, (viii) AuNS-BA-Lips + Laser. The tumor was marked with dashed
circles. ** p < 0.01. Reproduced from ref. [233] with permission from Elsevier. Copyright (2017) Nanomedicine.

5.1.2. Pt

Unlike Au-based nanomaterials which are non-cytotoxic and have been extensively
used in PTT, platinum nanoparticles (PtNPs) are toxic to normal cells [234,235]. Therefore,
PTT using PtNPs is required to optimize the size and shape to reduce cytotoxicity [236–239].
Wang et al. fabricated trifolium-like platinum nanoparticles (TPNs) which showed minimal
cytotoxicity to normal cells and could kill cancer cells upon NIR light irradiation. The
TPNs inhibited tumor growth and prevented osteolysis in mice with bone metastasis
caused by human lung adenocarcinoma (PC9) cells engrafted in the tibias [213]. Yan
et al. developed a carboxyl-terminated dendrimer for PtNPs delivery and for targeting
to osteolytic lesions in malignant bone tumors. The plentiful carboxyl groups on the
dendrimer surface improved the affinity with hydroxyapatite and bone fragments. PtNPs
encapsulated by the carboxyl-terminated dendrimer were demonstrated to have minimal
cytotoxicity and hematologic toxicity. PTT using the obtained nanocarriers inhibited the
tumor growth and tumorassociated osteolysis in mice with bone metastasis caused by
injecting MDA-MB-231 cells into tibias [240]. Zhou et al. prepared phytic acid-capped
PtNPs with enhanced affinity to hydroxyapatite and osteolytic lesions. These nanocarriers
also inhibited the bone tumor growth and the tumor associated-osteolysis in vitro and
in vivo upon NIR light irradiation [241].
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5.1.3. Cu

Compared with other precious metal-based materials, Cu-based PTAs have the advan-
tages of easy fabrication and low cost. In addition, Cu-based PTAs have better photothermal
performance and photostability compared with carbon-based PTAs [242–244]. Chang et al.
designed copper-doped mesoporous bioactive glass (MBG) for bone cancer. This nanove-
hicle had both excellent drug loading capacity and photothermal property, and the drug
release could be modulated by the photothermal effect. In vitro results showed that PTT
using this PTA not only inhibited the tumor cell growth but also induced the formation of
apatite mineralization which could promote bone regeneration [245]. Ma et al. developed
3D-printed β-tricalcium phosphate scaffolds coated with MSNs containing Cu for the
treatment of residual bone tumors and large bone defects after resection. The composite
scaffolds could completely eradiate tumor cells and promote proliferation and osteogenic
differentiation of MSCs upon the irradiation of light in the NIR region [246]. Wang et al.
prepared platinum-copper alloy nanoparticles modified by aspartate octapeptide, a type
of osteotropic peptides, for bone cancer therapy. These nanoparticles could specifically
accumulate in bone tumors compared to those without aspartate octapeptide. Under light
irradiation, these nanoparticles could not only suppress tumor growth but also reduce the
osteoclastic bone destruction [247].

5.1.4. Fe

As Fe can promote the maturation of collagen, and the proliferation and expression
of alkaline phosphatase of MSCs, Fe-based materials are also used as PTAs for bone
cancer [248–251]. Liu et al. fabricated 3D-printed bioactive glass-ceramic (BGC) scaffolds
containing different metal elements including Cu, Fe, Mn, and Co. Results indicated
that Cu-copped scaffolds had the best photothermal performance followed by Fe-copped
scaffolds, and PTT using Cu-, Fe-, and Mn-copped scaffolds effectively killed tumor cells
in vitro and inhibited tumor growth in vivo. However, only Fe- and Mn-copped scaffolds
promoted adhesion and osteogenic differentiation of bone-forming cells. Therefore, Fe-
copped scaffolds have more promising potential for PTT-mediated tumor therapy and
bone regeneration [217]. In addition, inspired by the previous study, Fe-based materials
have the capacities of magnetothermal treatment of osteosarcoma and repairing bone
defects [250]. Zhuang et al. fabricated Fe-copped 3D-printed akermanite bioceramic
scaffolds with a photo/magnetothermal effect for bone tumor therapy. The simultaneous
hyperthermia showed higher heating efficiency compared to single-mode hyperthermia of
PTT or magnetothermal therapy, leading to the improved tumoricidal efficiency in vitro. In
addition, the composite scaffolds promoted osteogenic differentiation of MSCs compared
to scaffolds without Fe [252].

5.2. Carbon-Based PTAs

Carbon-based nanomaterials such as graphene-family materials, multi-walled carbon
nanotubes (MWCNTs), and carbon dots (CDs) are used as PTAs because of their NIR
absorbance, abundant functional groups, and large specific surface area [194,200,201]. The
applications of PTT using carbon-based PTAs for bone cancer have been studied over the
past decade.

5.2.1. Graphene-Family Materials

Graphene-family materials refer to graphene and its derivatives, including GO, re-
duced graphene oxide (RGO), and graphene quantum dots (GQDs). Graphene-family
materials have a large specific surface area which is conducive to the interaction with
other biomolecules, and they have tunable thermal properties to match various demands
in biomedicine. They also have good biocompatibility and can promote cell adhesion,
proliferation, and differentiation of some types of cells [253–255]. Therefore, PTT using
graphene-family materials cannot only eliminate bone tumors but also promote bone re-
generation. He et al. incorporated graphene nanosheets into polyetheretherketone to form



Int. J. Mol. Sci. 2021, 22, 11354 17 of 38

nanofillers. These nanofillers boosted MSCs proliferation in vitro and could reach 45 ◦C in
150 s upon light irradiation. The obtained nanocomposites have strong potential for PTT
and bone regeneration [256].

GO is the most widely studied graphene-family PTAs for bone cancer therapy. The
functionalization with PEG could enhance the dispersion and stability of GO [257,258].
After PEG-GO nanosheets (40 µg/mL) were taken up by pre-osteoblasts (MC3T3-E1
cells), the cells retained normal ALP levels and matrix mineralization. These nanoma-
terials are promising PTAs for the treatment of bone cancer [259]. Guo et al. developed
a multifunctional scaffold consisting of porous polyurethane (PU) substrate with GO
nanosheet/chitosan (CS) hybrid coatings via layer-by-layer assembly process. The GO-
based coating can load with a variety of drugs, such as MB, silver nanoparticles, and
fluorescein sodium for multiple purposes. The drug release can be controlled by local pH
value and the photothermal effects can be activated upon light irradiation [260]. Xu et al.
introduced GO nanosheets into ricalcium silicate particles via co-precipitation to fabricate
dual functional bone cement. The photothermal performance of this cement can be reg-
ulated by the laser power and the GO content. This cement could not only ablate bone
tumor cells but also promote cell proliferation and enhance the ALP activity of MC3T3-E1
cells [261]. Ge et al. prepared multifunctional scaffolds that comprised GO nanoparticles,
hydrated CePO4 nanorods, and CS. Under NIR laser irradiation, the GO component can
exert photothermal effect to kill tumor cells. The hydrated CePO4 nanorods could induce
M2 polarization of macrophages which secretes vascular endothelial growth factor (VEGF)
and arginase-1 (Arg-1), and activate the BMP-2/Smad signaling pathway, promoting bone
regeneration (Figure 5). This composite scaffold is a promising candidate for angiogenesis
and osteogenesis after bone tumor resection [262].

In addition to GO, rGO and GQDs are also applied for PTT. Li et al. developed a
composite scaffold consisting of nHA and rGO sheets via self-assembly. The scaffolds
killed 92% of MG-63 cells and inhibited tumor growth under laser irradiation at 808 nm for
20 min. At the same time, the scaffolds promoted adhesion, proliferation, and osteogenic
differentiation of MSCs in vitro and enhanced bone regeneration in rats with calvaria
defects [263]. Liu et al. adjusted the absorbance of GQDs to 1070 nm in the NIR-II region
to make the light have stronger tissue penetration. GQDs were treated with phenol by
tuning the decomposition of hydrogen peroxide under a high magnetic field of 9T, the
obtained nanomaterials were labeled 9T-GQDs. 9T-GQDs had tunable fluorescence and
high photothermal conversion efficacy (33.45%). Both in vitro and in vivo results showed
that 9T-GQDs could ablate tumor cells and inhibit tumor growth under laser irradiation in
the NIR-II region. In addition, 9T-GQDs exhibited obviously NIR imaging of tumors in
living mice, suggesting the probability of 9T-GQDs for imaging guided PTT [264].

5.2.2. MWCNTs

MWCNTs are a class of nanotubes, and can absorb more NIR irradiation and load
with more drugs due to the larger surface area compared to conventional single-walled
carbon nanotubes (SWCNTs) [265,266]. Moreover, more absorption of NIR irradiation
can reduce the side effects of light irradiation. The superior capacities of photothermal
conversion efficiency and Drug Delivery make MWCNTs more appropriate for PTAs and
for PTT combined with chemotherapy or immunotherapy [267–269]. PEGylated MWCNTs
were fabricated via sonicating MWCNTs with DSPE-PEG 2000. The hydrophobic surface
of MWCNTs is transformed into hydrophilic via PEG modification. MWCNTs injection
with NIR laser irradiation remarkably inhibited tumor growth of bone metastases in mice
tibias caused by the injection of murine breast cancer (EMT6) cells, while MWCNTs or light
irradiation alone exhibited no cytotoxicity to breast carcinoma cells in vitro [270]. Saber-
Samandari et al. entrapped carboxyl-functionalized MWCNTs and Fe3O4 into scaffolds
consisting of gelatin and akermanite. The addition of MWCNTs and Fe3O4 endowed the
scaffolds with the capacities of photothermal conversion and improved the mechanical
properties of the scaffolds. The obtained scaffolds could rapidly increase to 43 ◦C under
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NIR laser irradiation for 10 s. This composite scaffold is potential for ablating residual
tumor cells and promoting bone regeneration after resection [271].

Figure 5. (A) (a) live-dead cell staining. (b) flow cytometry of MDA-MB-231 cells for different groups under NIR laser
irradiation for 10 min every day. It was found that the MDA-MB-231 cells in the control, CS and CePO4/CS control
groups were live cells, while those in the CePO4/CS/GO group were dead cells (green represents live cells and red
represents dead cells). (B) Micro-CT images and bone volume/tissue volume (BV/TV) of skulls 3 months after the surgery.
** p < 0.01, vs control. (C) (a) Fluorescence detection on nude mice after NIR laser irradiation and fluorescence intensity of
the CePO4/CS/GO group was significantly lower than the blank, CS and CePO4/CS groups. (b) Optical picture of tumors
in nude mice. Reproduced from ref. [262] with permission from BioMed Central. Copyright (2021) J Nanobiotechnol.
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5.2.3. Other Carbon-Based PTAs

Unlike many carbon-based nanomaterials, CDs not only exhibit photothermal effects
but also have water solubility and low cytotoxicity, and are cost-effective [272–274]. Lu et al.
developed CD doped chitosan/nHA scaffolds which remarkably reduced osteosarcoma
cells in vitro and inhibited tumor growth in vivo upon NIR laser irradiation. The scaffolds
could also eliminate bacteria (S. aureus and E. coli) under light irradiation. In addition, CD
doped scaffolds promoted adhesion and osteogenesis of MSCs in vitro and improved the
bone formation at 4 weeks after implantation compared to pure chitosan/nHA scaffolds.
Therefore, the application of CDs enhanced the osteogenesis-related capacity of scaffolds
and endowed the scaffolds with potential for PTT to treat bone tumors and infections [275].
Carbon aerogel (CA) with 3D open networks is another carbon-based material for PTT. Due
to the large surface area, ultralow density, and high porosity, it is suitable for the coating
of materials [276,277]. Dong et al. designed a multifunctional beta-tricalcium phosphate
bioceramic platform coated with CA. CA coating not only exhibited photothermal effects
on ablating osteosarcoma but also promoted bone regeneration in rats via a fibronectin-
mediated signaling pathway [278].

5.3. Semiconductor-Based PTAs

Semiconductor-based materials are metal and non-metallic compounds which can re-
duce the consumption and cytotoxicity of metal-based materials and improve the photother-
mal conversion efficiency of non-metallic materials. Due to these excellent characteristics,
recently, they are in the most exciting part of the studies on PTAs [194,279,280].

5.3.1. MXene Nanaosheets

In MXene nanaosheets, ‘M’ refers to transition metal atoms, ‘X’ means carbon or
nitrogen, and ‘ene’ represents ultrathin 2D structure such as graphene [281]. As MXene
nanosheets combine the advantages of metallic materials and non-metallic materials, they
have been widely used in biomedicine including biosensing, fluorescent imaging, and
PTT [282–285]. Pan et al. explored the PTT effects of 3D-printed bioactive glass (BG)
scaffolds containing titanium carbide (Ti3C2) nanosheets on the treatment for osteosar-
coma. The incorporation of Ti3C2 MXenes endowed the composite scaffolds with high
photothermal conversion efficiency, leading to complete tumor eradication in mice with
xenografts of Saos-2 cells. The composite scaffolds could also accelerate bone regeneration
after implantation [286]. Yang et al. developed 3D-printed BG scaffolds (BGS) incorpo-
rated with S-nitrosothiol-grafted mesoporous silica containing niobium carbide (Nb2C)
nanosheets (MBS) for the treatment of bone cancer (Figure 6). Upon NIR laser irradi-
ation, photothermal conversion could be achieved via Nb2C MXenes and nitric oxide
(NO) release could be triggered and controlled. Tumor ablation was strengthened by the
combination of MXene-mediated PTT and NO release, as NO at high concentrations could
induce DNA damage and inhibition of DNA repair [287,288]. The tunable NO release
could also promote vascularization and osteogenesis [289,290]. Therefore, this composite
scaffold has the potential for a multifunctional therapeutic platform for osteosarcoma
therapy, vascularization, and bone regeneration [291]. Recently, Yin et al. develop im-
plants with multiple functions which comprised Ti3C2 MXenes loading with tobramycin
(an antibacterial drug), gelatin methacrylate (GelMA) hydrogels, and bioinert sulfonated
polyetheretherketone (PEEK). PEEK substrates was first coated with polydopamine (PDA)
to enhance the adhesion of the surface, and tobramycin-laden MXenes was then bonded to
PEEK followed by GelMA coating. The combination of MXenes and PDA endowed the
composites with synergistic photothermal effects, and the GelMA coating promoted bone
regeneration. The results showed that the obtained composite implants exhibited superior
cytocompatibility, antibacterial effect, PTT-mediated anti-tumor effects, and the capacity of
promoting osteogenesis [292].
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Figure 6. (A) Schematic illustration of the multifunctional therapeutic platform. (B) In vivo combinatory performance of
bone formation and neovascularization. (a,c) 3D reconstruction of cranial defects and vessels at week 16 after implantation.
(b) Quantitative fundamental parameters of bone volume/tissue volume (BV/TV) in newborn osseous tissue. ** p < 0.01
and *** p < 0.001. Reproduced from ref. [291] with permission from Wiley Online Library. Copyright (2020) Small.

5.3.2. Oxide Semiconductor-Based Materials

Biocompatible conductive oxide semiconductors which have photothermal convert-
ible efficiencies and photostability can be used as PTAs [293,294]. SrFe12O19 nanoparticles
were synthesized by Lu et al. MBG/CS porous scaffolds containing SrFe12O19 nanoparti-
cles were demonstrated to trigger osteosarcoma apoptosis and ablation upon NIR laser
irradiation. The composite scaffolds also promoted bone regeneration via activating BMP-
2/Smad/Runx2 signaling pathway [295]. Then DOX was loaded by this composite scaffold.
DOX could be rapidly released from the scaffold with the light irradiation, and the result-
ing chemotherapy synergistically enhanced the anti-tumor effect of PTT [296]. Jie et al.
developed oxygen vacancy-rich tungsten bronze nanoparticles (NaxWO3) via a pyrogenic
decomposition process for PTT. These nanoparticles could increase their temperature from
25.8 ◦C to 41.8 ◦C in 5 m under the irradiation of 980 nm laser. PTT using these nanoparti-
cles could both eliminate the subcutaneous and intratibial tumors caused by the injection
of murine breast cancer (4T1) cells [297]. In addition, the hydrogenated TiO2 coating with
hierarchical micro/nano-topographies was fabricated by induction suspension plasma
spraying. This coating exhibited excellent and controllable photothermal effect on inhibit-
ing tumor growth under NIR laser irradiation in vitro and in vivo. The hierarchical surface
of the coating promoted adhesion, proliferation, and osteogenic differentiation of rat MSCs.
This coating is potential for bone cancer therapy and bone regeneration [298].
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5.3.3. Metal-Organic Frameworks

Metal–organic frameworks (MOFs), 2D nanosheets constructed by metal ions or
clusters and organic ligands, have also been used as PTAs [299,300]. The structure and
function can be precisely tuned by altering the metal or organic component [301]. Qu et al.
designed a multifunctional injectable MOF consisting of cobalt coordinated tetrakis(4-
carboxyphenyl)porphyrin (Co-TCPP). Then calcium phosphate cement (CPC) was modified
by this MOF for minimally invasive treatment of neoplastic bone defects. The addition
of MOF endowed CPC with the improved compressive strength, shortened setting time,
and excellent photothermal performance. The composite cement not only ablated tumors
in vitro and in vivo but also promoted osteogenesis and angiogenesis in vivo [302]. In
addition, Dang et al. prepared copper coordinated tetrakis(4-carboxyphenyl)porphyrin
(Cu-TCPP) as a coating for 3D-printed β-tricalcium phosphate scaffolds. The composite
scaffolds could significantly kill osteosarcoma cells in vitro and ablate the subcutaneous
bone tumor tissues in vivo under NIR light irradiation. In addition, they can also supported
the attachment of MSCs and human umbilical vein endothelial cells (HUVECs), and
promoted osteogenesis and angiogenesis in rabbits with femoral defects [303].

5.3.4. Other Semiconductor-Based Materials

To endow the bioceramics with PTT effects for bone cancer therapy, Wang et al. in-
corporated nano PTAs into the bioceramics. They synthesized a series of bioceramics via
magnesium thermal reduction based on phosphate-based (e.g., Ca3(PO4)2, Ca5(PO4)3(OH))
and silicate-based ones (e.g., CaSiO3, MgSiO3), and the color of these bioceramics changed
from white to black, so they called the obtained bioceramics black ceramics. Due to the
oxygen vacancies and structural defects within the crystals, the black ceramics exhibited
excellent photothermal effect under NIR laser irradiation. These black ceramics had con-
trolled degradability matching with the bone regeneration rate and promoted bone repair.
In addition, upon light irradiation, they exhibited anti-cancer effects on both skin and
bone tumors [304]. Ti-based ceramics with good biocompatibility are low-cost semimetal
material and widely used in surgical tools, bone repair, and PTT [305,306]. TiN is one of the
Ti-based ceramics and was used as a coating for tricalcium phosphate scaffolds in a report
from Dang et al. The coated scaffolds also loaded with DOX so as to achieve synergistic
tumoricidal effects of PTT and chemotherapy for bone cancer therapy. The in vitro and
in vivo results indicated that this composite scaffold effectively eradicated tumors upon
light irradiation, suggesting that this composite could be used as implanting material
for bone defects after surgical interventions [307]. Cu-based chalcogenides are another
widely used PTAs due to the low cost, easy fabrication, tunable size and composition, high
photothermal conversion efficiency, and good photostability [242,243,308,309]. Dang et al.
fabricated 3D-printed BGS functionalized by CuFeSe2 nanocrystals. The scaffold could
effectively kill Saos-2 cells in vitro and significantly inhibit bone tumor growth in vivo
under light irradiation. At the same time, the scaffolds promoted osteogenic differentiation
of MSCs and facilitated bone formation in the bone defects [310].

5.4. Organic Molecule-Based PTAs

Organic molecule-based PTAs have aroused widespread interest among researchers.
They are characterized by water solubility, good biocompatibility, and easy bioconjuga-
tion [204,311]. They mainly include organic NIR dyes and conductive polymers [312,313].

5.4.1. Organic NIR Dyes

Fluorescence imaging for bone cancer therapy based on NIR dyes has the advantages
of visible delivery and therapy [314–316]. ICG is a medical imaging and diagnosis NIR
dye approved by FDA for clinical use [317,318]. As mentioned above, it can be used not
only for PDT but also for PTT. MSCs, nanoparticles, and hydrogels are often used as the
carriers of ICG to target to and then accumulate in tumors [319–321]. Jiang et al. designed
bone-targeting nanoparticles with photothermal effects for bone cancer treatment. They
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conjugated superparamagnetic Fe3O4 nanoparticles with ZA followed by ICG modification.
ZA acted as a bone-targeting factor, while Fe3O4 and ICG were employed as PTAs to
enhance the PTT effect. ICG could also provide the capacity of real-time fluorescence
monitoring during the treatment. These nanoparticles could rapidly and accurately located
in the medullary cavity of the mice tibia, and then ablated the tibial metastasis of breast
cancer cells [322].

5.4.2. Conductive Polymers

Conductive polymers are promising for clinical PTAs as they are cost-efficient and
their structures can be precisely controlled [204,323,324]. They are usually used as coatings
or crosslinkers to modify scaffolds or nanoparticles, leading to materials with multifunc-
tion [324,325]. PDA is the most widely used conductive polymer in PTT [326–328]. It is the
main component of melanin and has good biocompatibility, low toxicity, and biodegrad-
ability. Its intense absorption is in the NIR region (700–1100 nm) and its photothermal
conversion efficiency is as high as 40% [326,329,330]. Ma et al. coated 3D-printed bioce-
ramic scaffolds with PDA for bone cancer therapy. The scaffold could support attachment,
proliferation, and osteogenesis of MSCs. After light irradiation, the scaffold could induce
cell death of Saos-2 and MDA-MB-231 cells in vitro and inhibit the growth of subcutaneous
tumor [325]. Wang et al. developed ALN-conjugated PDA nanoparticles loaded with SN38
(a chemotherapeutic drug) for bone-targeting chemo-photothermal therapy for bone cancer.
ALN could enhance the affinity to hydroxyapatite in bones and the release of SN38 could
be triggered by NIR laser irradiation. PTT using these bone-targeting nanoparticles sup-
pressed the growth of bone tumors and reduced the osteolysis [331]. Luo et al. fabricated an
injectable hydrogel consisting of oxidized sodium alginate and chitosan, and the hydrogel
contained cisplatin for chemotherapy and PDA-decorated nHA for PTT and bone repair.
Under light irradiation, this hydrogel ablated 4T1 cells in vitro and suppressed tumor
growth in vivo. In addition, the hydrogel could also promote adhesion, proliferation, and
ostegenic differentiation of MSCs in vitro, and enhance bone regeneration in vivo [332].
MSCs can be used as a Drug Delivery system to target on tumor cells because of the hypo-
immunogenicity and migration capacity; however, MSCs may promote the progression
and metastasis of tumor cells [333,334]. Therefore, stem cell membrane which also has
bone-targeting ability and is safer than MSC, was chosen to be the delivery system for
PDA nanoparticles to treat bone cancer. Stem cell membrane-camouflaged PDA nanoparti-
cles loading with SN38 exhibited lower nonspecific macrophage uptake, longer retention
in blood, and more effective accumulation in tumors than that shown by nanoparticles
without stem cell membrane. These obtained nanoparticles showed synergistic anti-tumor
effects of PTT and chemotherapy on MG63 cells [334]. Recently, Yao et al. prepared 3D-
printed scaffolds based on hydroxyapatite, PDA, and carboxymethyl CS for bone cancer
therapy. The incorporation of PDA remarkably enhanced the rheological properties of the
slurry for molding, mechanical properties, surface relative potential, and water absorption
of composite scaffolds, and also endowed the scaffolds with pthotothermal capacity. Un-
der light irradiation, the scaffolds could not only inhibit tumor growth but also promote
osteogenic differentiation of MSCs [335].

5.5. Combination of PTT and PDT

Since the design of PSs and PTAs is transformed to nanoformulation, and the optimal
light source for PDT and PTT is in the NIR region, many novel nanocarriers, which can play
the roles of both PS and PTA, were reported recently [336–339]. The resulting enhanced
PT using these nanocarriers is called synergistic PT. In addition, these nanocarriers can
also load with chemotherapeutic drugs and immunoregulatory drugs to improve the
anti-tumor efficacy in multiple aspects. Cheng et al. synthesized AgBiS2 nanoparticles
for the synergistic PT for bone cancer. These nanoparticles could convert light into heat
with a high photothermal conversion efficiency of 36.51% and remarkably increase the
generation of intracellular ROS under NIR laser irradiation. The synergistic PT effectively



Int. J. Mol. Sci. 2021, 22, 11354 23 of 38

inhibited the growth of malignant osteosarcomas in vivo and also reduced the viability
of S. aureus in vitro [340]. Moreover, as ICG exhibits both PDT and PTT effects under
light irradiation, ICG-based nanovehicles can be used for the synergistic PT [341,342].
Zeng et al. developed ICG-laden GO nanosheets modified by (4-carboxybutyl) triphenyl
phosphonium bromide (TPP, a mitochondria-targeting ligand), for osteosarcoma therapy,
and the obtained nanocarriers were labeled TPP-PPG@ICG. The synergistic PT effects of
PDT and PTT were confirmed by the detection of intracellular ROS and thermal imaging,
respectively (Figure 7). These mitochondria-targeting nanosheets could, in particular,
accumulate in tumor cells and significantly eradicate MDR osteosarcomas under light
irradiation [343].

Figure 7. (A) (a) Thermal images during a 5-min irradiation (upper row) or a 10-min irradiation (bottom row). (b–d)
Synergistic in vitro PT effects of TPP-PPG@ICG and laser irradiation on MG63/Dox cells. (b) CCK-8 viability assay at 24 h
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after laser irradiation. (c) CCK-8 viability assays with MG63/Dox cells exposed to TPP-PPG@ICG at 24 h post-laser
irradiation at 808 nm, under conditions that inhibited PDT or PTT. (d) Images of calcein AM + PI co-stained cells. * p < 0.01.
(B) In vivo synergistic PT for MG63/Dox tumor xenografts. (a) NIR fluorescence imaging of tumor xenografts and (c)
the dissected organs from the tumor-bearing mice. (b) IR thermal imaging of tumor xenografts. (d) Photographs of
representative tumors resected from different groups. Reproduced from ref. [343] with permission from BioMed Central.
Copyright (2021) J Nanobiotechnol.

6. Conclusions and Outlooks

As some bone cancer cells may remain or recur in the local area after tumor resection,
some are highly resistant to chemotherapy, and some are insensitive to radiotherapy, there
are multiple undesirable results following bone cancer therapy, such as motor dysfunction,
neurological symptoms, reduced quality of life, and mental and economic burdens. PT
including PDT and PTT, has the advantages of minimally invasive, highly efficient and
selective, and easy to combine with other treatments. Therefore, PT is recognized as a new
generation of effective treatment for bone cancer. The most used light source in PT is the
light with absorbance in the NIR region, which possesses sufficient tissue penetration and
minor side effects, and can induce the generation of intracellular ROS or photothermal
conversion to ablate tumor cells. Studies on PDT for bone cancer are mainly focused on
the development and optimization of PSs, in order to improve the safety and efficiency of
the second- or third-generation PSs. Nanoformulation is the main trend in the develop-
ment of PSs which can endow PSs with bone- or tumor-targeting capacity, the ability of
loading chemotherapeutic or immunotherapeutic drugs, and enhanced biocompatibility
and residence time. For PTT, semiconductor-based and organic molecule-based PTAs are
the most interesting PTAs in recent years due to the low biotoxicity and cost and high
photothermal conversion efficiency. Designs of PTAs often take into account the capacity
of promoting bone regeneration which can accelerate bone repair in the neoplastic bone
defects, as well as the drug loading ability to combine with chemotherapy and immunother-
apy. In addition, nanocarriers based on metal nanoparticles or organic NIR dyes exhibit
both PDT and PTT effects, and the resulting synergistic PT has stronger tumoricidal effects
while the side effects are not improved. Moreover, some researchers are focusing on the
specific mechanisms of PT effects on tumor therapy and they want to further improve
the effects via altering the expression of involved molecules in corresponding signaling
pathways [344]. Recently, computerized medical imaging has also been employed for the
diagnosis, planning, and real-time monitoring during PT [345].

However, there are also some crucial challenges or opportunities for further clinical
applications of PT. First, the PDT efficiency and side effects depend on the time, intensity,
and interval of light irradiation, as well as the amount of PSs. Therefore, guidelines for
the clinical use of PDT are necessary. When PDT combined with minimally invasive
techniques such as endoscopy is used for deep bone cancer, the clinical protocol can be
customized according to existing ones for other superficial tumors. Secondly, unlike studies
on PDT, studies on PTT mainly focus on the design and development of PTAs, but the
clinical experiments in PTT are rarely reported. The progress of PTT in clinical application
lags far behind that of PDT. Thirdly, the long-term metabolism and biocompatibility of
the nanoscale PSs and PTAs, and the tumor-targeting capacity and specificity of PSs
and PTAs for various cancers, are required further studies. Fourthly, pre-clinical and
clinical experiments in real-time monitoring for local immune response and situations of
surrounding normal tissues are also needed. Finally, although the synergistic PT and PT
combined with other conventional treatments are the most interesting area among studies,
the necessity, economic benefits, safety, and efficacy of these combined therapies require
detailed discussion depending on each individual. In summary, PT for bone cancer has
developed rapidly in recent years, and we strongly believe that PT has great prospects in
tumor therapy. We hope this review can provide valuable information and insights for
future studies on PT.
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