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Abstract: Pulse rate variability (PRV) refers to the change in the interval between pulses in the blood
volume pulse (BVP) signal acquired using photoplethysmography (PPG). PRV is an indicator of the
health status of an individual’s autonomic nervous system. A representative method for measuring
BVP is contact PPG (CPPG). CPPG may cause discomfort to a user, because the sensor is attached
to the finger for measurements. In contrast, noncontact remote PPG (RPPG) extracts BVP signals
from face data using a camera without the need for a sensor. However, because the existing RPPG
is a technology that extracts a single pulse rate rather than a continuous BVP signal, it is difficult
to extract additional health status indicators. Therefore, in this study, PRV analysis is performed
using lab-based RPPG technology that can yield continuous BVP signals. In addition, we intended
to confirm that the analysis of PRV via RPPG can be performed with the same quality as analysis
via CPPG. The experimental results confirmed that the temporal and frequency parameters of PRV
extracted from RPPG and CPPG were similar. In terms of correlation, the PRVs of RPPG and CPPG
yielded correlation coefficients between 0.98 and 1.0.

Keywords: contact photoplethysmography; remote photoplethysmography; pulse rate variability;
photoplethysmography; cardiovascular system

1. Introduction

PRV has been mainly used in recent years in the healthcare field to predict and diag-
nose diseases, assess stress levels, and analyze sleep stages [1–6]. The autonomic nervous
system (ANS) changes according to the changes in the internal/external environment, and
the changes in pulse rate (PR) caused by such changes caused by the ANS are referred to as
PRV [3]. PRV is related to the interactions between the sympathetic and parasympathetic
nerves that affect the sinus node and reflects transient PR and peak-to-peak interval (PPI)
fluctuations. In other words, it refers to the minute variability between a specific cardiac
cycle and the next [7]. The PR signal required for PRV analysis is usually acquired with
electrocardiography (ECG) [8–11] or a CPPG sensor [11–13], which is attached to the finger.
The CPPG measures the amount of light reflected by penetrating light at the finger. The
amount of reflected light provides an indication of the changes in blood flow [14]. Thus, the
BVP can be obtained. However, given that this CPPG sensor is not disposable, it may cause
rejection in that someone who may attempt to use the sensor again may find it inconvenient
to attach it. In addition, for BVP measurements, it is important to minimize motion to
prevent motion artifact-induced noise, but it is difficult to keep the subject stationary with
the PPG sensor attached to the finger.

Conversely, RPPG measures BVP with a camera. Thus, no sensor attachment is
required. The RPPG technology extracts skin pixels from the face data captured by the
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camera and then uses the skin color change according to the heartbeat to obtain the BVP
signal. The measurement is simple and can minimize the complexity and rejection of
sensor reuse and sensor attachment. Additionally, the camera required for measurements
is extensively available in the form of a webcam or a smartphone, and anyone can easily
measure it. Because of these advantages, RPPGs are used in many fields such as healthcare,
fitness, and forensic science. Additionally, there is focus on PRV analysis through RPPG
in terms of its daily use in healthcare technology. When RPPG technology is provided
as a function of a smart mirror or smartphone, it can be a great advantage to provide
a more professional health indicator in addition to simply providing the average PR.
Accordingly, many studies on RPPG-based PR detection and performance improvement
have been reported. In addition, some RPPG-based PRV analysis studies similar to ours
were also investigated.

• Verkruysse et al. [15] showed that, although the green channel generally represents
the strongest plethysmography information, the blue and red channels also contain
plethysmography features.

• Philipp et al. [16] explained that the periodic inflow of blood affects both the optical
properties of the facial skin and head movement. In addition, based on this, a remote
PR measurement technique, which use periodic changes in skin color and periodic
head movements, was proposed.

• Gunther et al. [17] proposed a framework based on the use of the Markov process
to account for large-scale and slowly varying fluctuations in reflected light and the
quasiperiodic process to model the relatively small PR components to control the
lighting and motion in RPPG technology.

• Macwan et al. [18] found that blood volume pulses produce periodic changes in
skin color. These changes were quantified as a time signal and were analyzed for
PR detection with the use of the RPPG by expanding the objective function of the
independent component analysis.

• Song et al. [19] reported that the performance of the existing RPPG technology may be
degraded owing to noise interference. Therefore, these authors proposed a method
using a convolutional neural network to build a mapping between spatiotemporal PR
feature images and the corresponding PR values.

• Moreno et al. [20] proposed a method for the extraction of the RR interval from the
green channel component obtained from video PPG imaging and the calculation of
the heart rate variability (HRV).

• McDuff et al. [21] reported that the frequency resolution limitation of existing red–
green–blue (RGB) cameras can affect the measurement of detailed information about
HRV. Therefore, RPPG was measured from cyan, green, and orange channel com-
ponents using a new five-band camera, and an HRV analysis method using this
was proposed.

However, as the existing RPPG technology extracts the pulse rate rather than the raw
BVP data, it is difficult to extract health status indicators through BVP signal processing.
By contrast, the lab-made RPPG technology we use can extract a single PR as well as the
continuous BVP signal and a continuous PR in real time with a camera [22]. In addition,
signal extraction is possible with a simple webcam set at a low sampling rate, such as 30 Hz.
In addition, information such as peak, PPI, PRV, and saturation of peripheral oxygen can
be obtained as health status indicators with the use of the extracted BVP signal. This allows
for relatively more convenient and accurate health analysis and monitoring. Therefore, in
this study, BVP signals were obtained using RPPG, which is a lab-made technique, and
a PRV analysis was performed. After that, by comparing with the PRV results of CPPG
measured at the same time, we intend to confirm that the PRV analysis quality using the
lab-based RPPG signal is similar to the PRV analysis quality of CPPG.

The remainder of this study is as follows: Section 2 describes the lab-made RPPG
technology, the experimental procedure, data processing methods, and the PRV indicators
used. Section 3 describes the comparison results of the PRV indicator values extracted from
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the two types of PPG. A detailed analysis of the results is presented in Section 4. Finally,
Section 5 presents the conclusions of this study and the expectations for future studies.

2. Materials and Methods
2.1. Principle of RPPG

The principle of the RPPG used to measure the BVP is as follows: Blood absorbs
more light compared with surrounding tissues. Therefore, when blood passes through
blood vessels, the amount of light absorbed is large, and the amount of reflected light is
reduced. This causes periodic changes in skin color. RPPG is a measurement technology
that uses the skin color change to measure the BVP. The RPPG acquisition process was
performed as follows: First, a face was detected in an image frame using the Viola Jones
algorithm, and a facial region-of-interest (ROI) was extracted using a kernelized correlation
filter [23]. Subsequently, after performing skin pixel filtering using the empirically found
YCbCr range of skin color, an RPPG signal, that is, a BVP signal, was obtained using
a color difference-based method. The existing color difference-based method projects
sequential RGB image frames on the chromaticity plane and obtains a pulse signal that is
strongly correlated with the movements among them. At this time, the method encounters
a problem in that the skin color change of the frame is too subtle, and the signal may be
distorted owing to environmental factors. Therefore, in [22], the RGB frame extracted with
the webcam is directly converted to YCbCr; skin pixel clustering is then performed on the
Cb–Cr plane. Subsequently, the distribution of fine skin pixels was expanded by randomly
expanding the Cb and Cr components n times from the cluster center value P (Cb-center,
Cr-center). A single BVP was generated using the expanded Cb and Cr signals. Finally,
to improve signal quality, breathing trends were eliminated by referring to Equation (2)
proposed by de Hann et al. [24], and noise was filtered with a Butterworth bandpass filter.
Based on this process, the PR can be extracted from an RGB camera at a sampling rate of
30 Hz. In addition, unlike previous studies that could measure only a single PR and not an
entire signal, it is possible to continuously extract the BVP signal as well as PR [22]. This
RPPG extraction process is shown in Figure 1, and the RPPG technology execution video
has been published in [25].

Figure 1. Overview of the proposed remote photoplethysmography (RPPG)-based pulse rate estimation approach.

2.2. Experimental Setup

PRV analysis is performed using the PPI of the BVP signal. The BVP signal measure-
ment process required for PRV analysis is as follows. The number of subjects was 10 in
total, and CPPG and RPPG were measured simultaneously. The experiment lasted for
11 min. The CPPG sensor was attached to the finger, and the face did not move away from
the webcam for the RPPG measurement. Before the onset of the experiment, the subjects
were instructed to minimize the movement of the fingers and face to prevent noise caused
by motion noise. The CPPG sensor used was a Ubpulse 360 device with a sampling rate of
255 [26]. A Logitech general RGB webcam with a sampling rate of 30 was used for RPPG
measurements [27]. The preprocessing and PPI extraction procedures for the BVP signals
of CPPG and RPPG measured by these methods are described in Section 2.3 below.
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2.3. Data Processing

First, the BVP signals obtained through the experiment (with total durations of 11 min)
were modified to span a total of 10 min of data by cropping the first 30 s and the last 30 s
according to considerations pertaining to the signal stability immediately before or after
the experiment. To increase the number of data, 10 min of data were overlapped and
divided by 300 s. The method of splitting the data by overlapping is as shown in Figure 2.
As a result, 11 CPPGs and 11 RPPGs were generated for each subject. The sampling rate
of RPPG was kept at 30; however, PRV analysis data with a sampling rate of 5 Hz can
generally be used for calculating mean pulse rate, but a higher sampling rate is required
for accurate analysis [28]. Therefore, data interpolation is performed with respect to the
measured RPPG to be equal to the number of CPPG data at a sampling rate of 255. For data
interpolation, a quadratic spline interpolation method that connects the data to a quadratic
polynomial was used. Subsequently, bandpass filtering was performed to preserve only
the 0.5 Hz to 2.0 Hz components to eliminate noise mixed with the signal [29,30]. Finally,
peaks were detected in the filtered data, from which the PPI and the distance between the
peaks were extracted. In addition, the PPI values with z-score values ≥ threshold T were
removed to obtain more accurate PPI outcomes. The z-score indicates how far the data are
from the average. T was empirically set to a value of 2, and the PPI from which the value
was removed was replaced with the median value of the front and back PPIs. Through this
process, the normal-to-normal interval (NNI) was finally obtained by removing the values
out of the mean distribution from the PPI. Figure 3 shows an NNI extraction example based
on the PPI preprocessing.

Figure 2. Policy for splitting 11-minute BVP data into eleven 300-second pieces of data.

Figure 3. Examples of peak-to-peak interval (PPI) and normal-to-normal interval (NNI) extracted
from RPPG.
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2.4. PRV Analysis

PRV analysis was performed using the NNI obtained through the previous process.
The unit of NNI is ms. The mean NN and the standard deviation of the NNI (SDNN)
were used as PRV analysis indicators for time domain analysis; low frequency (LF), high
frequency (HF), and LF/HF were used for frequency domain analysis. Mean NN represents
the mean of all NNIs, and SDNN represents the degree of change and responsiveness
of PR as the standard deviation of all NNIs. It is an indicator that provides information
related to the stability of the cardiovascular system and the ability to control the ANS and
is typically used in PRV analysis. LF refers to low-frequency power data with components
between 0.04 Hz and 0.15 Hz. This is an indicator related to the sympathetic nervous
system and is activated when it is in a stable state. HF represents the HF power of the data,
which contain components in the range 0.15–0.4 Hz and are related to the parasympathetic
nervous system. At this time, the LF normalized unit (LFnu) and HF normalized unit
(HFnu), which standardized the values of LF or HF power, were used because there are
individual differences in LF and HF powers for each subject. This was obtained by dividing
the LF (or HF) power by subtracting the very low frequency (VLF) from the total power
and by multiplying by 100, as shown in Equation (1) below. Finally, the LF/HF is a balance
between the sympathetic and parasympathetic nerves [31,32]. These five indicators are
frequently used for PRV analysis in the time and frequency domains and intuitively indicate
the changes and status of the autonomic nervous system. Therefore, the five indicators were
derived for each dataset, and the PRV characteristics of CPPG and RPPG were compared.

LFnu or HFnu (%) =
absolute LF or HF power
Total power−VLF power

× 100 (1)

3. Results

The PRV results were obtained and analyzed based on the lab-made RPPG data
processing and compared with CPPG. PRV analysis was conducted using the extracted
NNI and PRV indicator values (mean NN, SDNN, LFnu, HFnu, and LF/HF) of CPPG signals,
which were tested for ground-truth. The PRV similarity evaluation metrics for CPPGs and
RPPGs used the mean absolute percentage error (MAPE). This is an indicator expressing
similarity as a percentage of error and indicates the percentage error which occurs between
the analyzed PRV value of RPPG and the analyzed PRV value of CPPG, which is the ground
truth value. The closer it is to zero, the better is the regression performance. In the MAPE
equation, n is the number of errors, and xi is the ground-truth value, which is the PRV
indicator value of the CPPG. Finally, x̂i indicates the PRV indicator value of the RPPG.
Herein, i denotes the number of data segments among n datasets. The MAPE formula can
be expressed as

MAPE =
100
n

n

∑
i=1

|xi − x̂i|
xi

, (2)

The experimental results are as follows: First, Figures 4 and 5 show PRV graphs in
the time and frequency domains for 10 subjects. As shown in Figure 2, we have eleven
data for each subject through data splitting. Accordingly, the x-axis of the graph plots the
eleven data segments for each subject, and the vertical axis represents the value of the PRV
indicator. In the graphs of the PRV indicator for each subject, the PRV values of RPPGs
generally yielded similar outcomes and trends to those of CPPGs. Presently, if we analyze
the LF/HF graph (Figure 5) in detail, it can be observed that there are cases wherein the
LF/HF of CPPG yield increased values compared with those of RPPG. For example, in
the case of the LF/HF of subject 5, it can be observed that the ratio of RPPG is smaller
than that of CPPG in data segments 1 to 4 (out of 11). Therefore, observing the results
of LFnu and HFnu in the corresponding section, the HFnu value of RPPG was measured
to be larger than the HFnu CPPG value, and the LFnu value of RPPG was measured to be
smaller than the LFnu value of CPPG. The values of LF and HF are inversely proportional
to each other, thus resulting in a difference in these indicator values. Consequently, a large
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difference in the LF/HF occurs between the CPPG and RPPG according to a section that
has a relatively small LFnu and a large HFnu in the RPPG. In Figure 6, the NNI of two PPGs
of 10 subjects is plotted, and the correlation coefficient is shown on the graph. The average
correlation coefficient was 0.74, and 7 out of 10 subjects had a correlation coefficient value
of approximately 0.7 or higher. As shown in the graph, the NNI of the two PPGs is plotted
in a straight line, so it may be expressed in the form of a linear relationship.
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Figure 4. Pulse rate variability (PRV) time domain feature graphs of 10 subjects ((a): Mean normal-to-
normal (NN), (b): standard deviation of NN (SDNN)).
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Figure 5. Cont.
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Figure 5. PRV frequency domain feature graphs of 10 subjects ((a): low frequency (LF) and high
frequency (HF), (b): LF/HF).
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Figure 6. Plots for the analysis of correlations between two NNIs of contact photoplethysmography (CPPG) and remote
PPG (RPPG) for 10 subjects.

The error MAPE between the CPPG PRV indicator value and the RPPG PRV indicator
value extracted from each of the 10 subjects are as follows: First, Table 1 shows the MAPE
when using the PPI. The mean MAPE values of mean PP and SDPP were approximately
0.033% and 16.01%, respectively, and the mean MAPE values of LFnu and HFnu were
approximately 10.39% and 12.59%, respectively. The LF/HF value was approximately
17.47%. Among them, subjects 3, 4, and 5 yielded relatively high MAPE values in all
indicator cases except the mean PP. Therefore, NNI was obtained by performing the PPI
preprocessing mentioned in Section 2.2. As indicated in Table 2, the performance was
improved when PRV was analyzed with the use of NNI. Mean NN average MAPE increased
to approximately 0.11%, which is a very low error rate. The mean MAPE of SDPP, LFnu and
HFnu decreased to approximately 4.60%, 5.43%, and 4.96%, respectively. The mean MAPE
value of LF/HF also yielded very low MAPE values which were approximately equal to
9.79%. As a result, MAPE of Mean NN(PP) decreased by 0.077% (0.033–0.11), but the MAPE
values of SDNN (PP) and LFnu improved by 11.41% (16.01–4.60) and 4.96% (10.39–5.43),
respectively. It can be observed that HFnu and the LF/HF improved by 7.63% (12.59–4.96)
and 7.68% (17.47–9.79), respectively. In particular, the PRV MAPE of the subjects whose
MAPE of HFnu was higher than that of LFnu was reduced significantly. Detailed analysis of
this is performed in Section 4.

Table 1. Mean absolute percentage error (MAPE) of pulse rate variability (PRV) indicators for
peak-to-peak interval (PPI) for subjects studied herein.

Subject MAPE (%)
Mean PP SDPP LFnu HFnu LF/HF

1 0.03 5.63 3.35 2.81 6.03
2 0.02 10.89 11.11 6.19 16.18
3 0.02 20.10 14.62 16.43 26.60
4 0.08 19.22 9.61 17.89 21.83
5 0.01 40.25 35.88 50.01 46.42
6 0.10 14.86 6.37 7.60 12.54
7 0.02 9.62 3.38 6.73 9.44
8 0.01 10.53 4.70 7.38 11.24
9 0.01 8.35 7.12 8.00 13.94

10 0.02 20.74 7.83 2.91 10.53
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Table 2. MAPE of PRV indicators for NNI for subjects studied herein.

Subject MAPE (%)
Mean PP SDPP LFnu HFnu LF/HF

1 0.05 1.58 2.20 2.32 4.36
2 0.08 1.70 7.89 4.65 13.00
3 0.11 2.50 3.41 2.56 5.94
4 0.11 9.92 5.7 8.89 12.44
5 0.19 4.79 7.96 6.53 12.89
6 0.13 2.89 5.56 6.99 11.43
7 0.13 2.58 2.20 3.40 5.71
8 0.10 6.98 3.86 5.83 9.02
9 0.09 3.24 7.74 5.57 12.65

10 0.16 9.87 7.83 2.91 10.53

4. Discussion

Herein, we interpret in detail the PRV comparison results of the two PPGs. Previously,
it was confirmed that normal BVP signal detection and PRV analysis using lab-based RPPG
was similar to that of CPPG PRV analysis. At this time, Tables 1 and 2 above indicated that,
when PRV analysis was performed with using PPI, each indicator yielded a MAPE ≥ 20%,
but when PRV analysis was performed using NNI, MAPE was significantly reduced.
Therefore, in this section, we intend to perform a detailed analysis of the case where MAPE
showed a rapid decrease after PPI preprocessing.

In Table 1, subjects 3, 4, and 5 typically show large MAPE values in most of the PRV
indicators. Their MAPE values in HFnu were relatively higher than in LFnu, and the MAPEs
of SDNN and LF/HF were ≥20%. The value of LF/HF is an indicator of the balance of the
autonomic nervous system in the body; it is a very important PRV indicator. Therefore, for
subjects 3, 4, and 5, LF and HF, which are components of the LF/HF, were examined in
detail. Figure 7 shows a graph of the LF and HF of subjects 3, 4, and 5. Although there is
a slight difference in the LF values of CPPG and RPPG for each subject in Figure 7a, the LF
of both PPGs shows the same flows. By contrast, the HF value shown in Figure 7b shows
a relatively large gap and a different flow. That is, the error between CPPG and RPPG
is larger in the HF than in the LF of each subject. However, looking at Table 2, it can be
observed that the MAPE of subjects 3, 4, and 5 decreased significantly. Among them, in
subject 5, which had the largest MAPE, mean NN (PP) increased by 0.18%, SDNN (PP) by
35.46%, LFnu by 27.92%, HFnu by 43.48%, and the LF/HF decreased abruptly by 33.53%.
Therefore, the PPI and NNI data for subject 5 were examined in detail.

Figure 8 shows the PPI and NNI of subject 5. Firstly, the PPI graph in Figure 8a shows that
the PPI of RPPG changes rapidly compared with the PPI of CPPG at (1) 170,000–200,000 ms,
(2) 215,000–245,000 ms, and (3) 290,000–320,000 ms. The PPI fluctuation interval is indi-
cated by a black dotted box in this figure. Comparing this with the NNI graph in Figure 8b,
NNI shows that the signal fluctuation is reduced within the aforementioned three PPI
fluctuation sections. Next, the PPI and NNI for the three PPI fluctuation sections were
expanded and examined in detail. This is shown in Figure 8c,d. The magnification of the
first section of 170,000–200,000 ms allowed the extraction of three detailed PPI fluctuation
sections, as indicated by the green, yellow, and purple dotted line boxes. In the NNI in the
same section, it can be confirmed that the NNI, which has a relatively large value, was re-
moved and interpolated with a new value. In the second section, 215,000–245,000 ms, three
additional PPI variation sections were also extracted, and the NNI of the section showed rel-
atively reduced PPI variation. Finally, in the third section, 290,000–320,000 ms, the NNI in
the section where the graph of PPI changed rapidly became more similar to the NNI of the
CPPG than the PPI. In subjects 3 and 4 as well as in subject 5, a decrease in signal variability
was confirmed in the NNI in the same period as the PPI time period, which showed a large
difference in PPI values. It can be inferred that the observed fluctuations in PPI were caused
by distortions of the BVP signal owing to the facial movements, facial expression changes
(grimaces, laughter, etc.) and environmental influences (light, camera focus, etc.) during
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RPPG measurements. Among PRV features, HF is an indicator that is highly affected by
noise generated by external factors. Therefore, in the case of subjects 3, 4, and 5, it is shown
that the HF value of the RPPG was measured as various noise factors, which highly affected
the accuracy of the signal during the RPPG measurement process. In addition, these noise
factors seem to have affected several indicator values, such as SDNN, LFnu, HFnu, and
LF/HF. As a result, we improved PRV analysis performance by removing and interpolating
abnormal PPI values through PPI normalization, and it was confirmed that PRV analysis
using lab-made RPPG is feasible at the level of PRV analysis of CPPG. Figure 9 plots the
PRV indicator values using the NNI of two PPGs and shows the correlation coefficient
between PRV indicator. All five indicators used show high correlation with values between
0.97 and 1.00. In the experimental results shown in Figure 7 of the previous study [21], the
correlation coefficient values in LFnu, HFnu, and LF/HF were all >0.93. As a result of this
study, the correlation coefficient values of LFnu, HFnu, and LF/HF were all 0.97, indicating
a better correlation.

Figure 7. LF and HF graphs of subjects 3, 4, and 5. (a) LF, (b) HF.
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Figure 8. Comparison of the range ((1) to (3)) showing relatively large fluctuations in the RPPG
PPI when the PPI of the RPPG and the PPI of the CPPG of subject 5 were compared. (a) Total PPI,
(b) total NNI, (c) expanded PPI for intervals (1) to (3), and (d) expanded NNI for intervals (1) to (3).

Figure 9. PRV indicator plots and correlation coefficients of CPPG and RPPG.
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5. Conclusions

To confirm that PRV analysis using lab-based RPPG showed the same quality as
PRV analysis using CPPG, a study was conducted to compare the PRV analysis between
CPPG and lab-based RPPG. Two types of BVP signals were measured for the same sub-
ject. PRV analysis was then performed using the NNI obtained through each BVP signal
processing process. Through the analysis, it was confirmed that the time and frequency
domain PRV analysis using RPPG was similar to the CPPG PRV analysis based on the
MAPE and correlation coefficient. In addition, based on comparison and analysis of PPI
and NNI, it was confirmed that the quality of PRV analysis can be degraded owing to
motion noise and various environmental factors associated with the measurement of RPPG
signals. Accordingly, the accuracy of PRV analysis can be improved through additional
PPI processing.

In future research, we plan to conduct a study to improve signal accuracy by devel-
oping an algorithm that can minimize noise after the analysis of each type of noise that
affects the measurements of RPPG signals.
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