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The initiating event in Alzheimer’s disease (AD) is an imbalance in the production and clearance of amyloid beta (Af) peptides
leading to the formation of neurotoxic brain Af assemblies. Cerebrospinal Fluid (CSF), which is a continuum of the brain,
is an obvious source of markers reflecting central neuropathologic features of brain diseases. In this review, we provide an
overview and update on our current understanding of the pathobiology of human CSF Af peptides. Specifically, we focused our
attention on the heterogeneity of the CSF Aff world discussing (1) basic research studies and what has been translated to clinical
practice, (2) monomers and other soluble circulating A assemblies, and (3) communication modes for Af peptides and their
microenvironment targets. Finally, we suggest that Af peptides as well as other key signals in the central nervous system (CNS),
mainly involved in learning and hence plasticity, may have a double-edged sword action on neuron survival and function.

1. Introduction

The “amyloid cascade hypothesis” suggests that the initiating
event in Alzheimer’s disease (AD) is an imbalance in the pro-
duction and clearance of amyloid beta (Af3) peptides leading
to the formation of neurotoxic soluble and insoluble brain
A assemblies [1, 2]. Thus, AB has become a major thera-
peutic target, with various anti-Af strategies being pursued
[3]. Biologically, monomeric Af is formed through the en-
zymatic cleavage of the transmembrane amyloid precursor
protein (APP). The discovery of the APP gene was followed
by the identification of missense mutations associated with
familial, early-onset AD. These mutations are found in and
around the Ap region of APP (http://www.molgen.ua.ac.be/
ADmutations/) and affect the production or aggregation
properties of ASS. The physiopathological processing of APP
involves various proteolytic activities leading to a complex
set of AS fragments. Full-length AB1-40 and A51-42 peptides
are generated by sequential proteolytic processing involving

B and y-secretases on APP [4]. These peptides (i.e., AB1-
40, AB1-42) have been the dominant focus of research, but
it is well established that N- and C-terminally truncated
or modified forms of AS peptides also exist in AD brains
[5-9]. The detection of N-terminal truncated Af3 peptides
(especially Afx-42) in young Down’s syndrome and in pre-
clinical AD brains suggests that the amino-truncated species
are implicated in the very first step of amyloidosis [10-
12]. These forms are generated mainly by cleavage of APP
between residues 16 and 17 of the A domain via the a-
secretase and by the alternative " cleavage of APP triggered
by the -secretase 3-site APP-cleaving enzyme (BACE)1 [13—
15]. Heterogeneity at the C-terminus of Af also contributes
to the molecular variety of A5 peptides; according to some
reports, due to its imprecise cleavage specificity, y-secretase
generates Af peptides of variable length at the C-terminus
[16]. Recently, y-secretase has also been shown to cleave near
the cytoplasmic membrane boundary of APP, called e-site
cleavage [17]. In addition, it has been recently demonstrated
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that the combined activity of a- and f-secretases may
generate the shortest forms (i.e., A 1-15, A 1-16) of C-
terminally truncated A peptides [18]. Body fluids, such as
cerebrospinal fluid (CSF), plasma, serum, or urine represent
a cellular protein-rich information reservoir that contains
traces of what has been secreted into these fluids. In partic-
ular, CSE, which is a continuum of the brain, is an obvious
source of markers reflecting central neuropathologic features
of the brain diseases.

This review provides an overview and update on our
current understanding of the pathobiology of human CSF Af
peptides.

2. CSF Ap Peptides in Translational Research

Has knowledge on pathobiology of Af been somehow trans-
lated to clinical practice? The criteria for the clinical diagno-
sis of AD were established by the National Institute of Neuro-
logical and Communicative Disorders and Stroke (NINCDS)
and the Alzheimer’s Disease and Related Disorders Associ-
ation (ADRDA) workgroup in 1984 [19]. However, in the
intervening 27 years, important advances in our understand-
ing of AD, in our ability to detect the pathophysiological
process of AD, and changes in conceptualization regarding
the clinical spectrum of the disease have occurred [20, 21].

The revised diagnostic criteria proposed in 2011 by the
National Institute of Aging and the Alzheimer’s Association
workgroup include the incorporation of biomarkers of the
underlying disease state and formalization of different stages
of disease—“preclinical AD,” “mild cognitive impairment
(MCI) due to AD,” and “AD dementia”—in the diagnostic
criteria [22-24]. Biomarkers are parameters (physiological,
biochemical, anatomic) that can be measured in vivo and that
reflect specific features of disease-related pathophysiological
processes. In recent years, a number of reports have utilised
specific protein/peptide quantitation techniques such as
ELISA to study the levels of selective moieties in CSF as bio-
markers of this neurodegenerative disorder. The three major
alterations in AD brain are extracellular amyloid plaques,
axonal degeneration, and intraneuronal tangles, which can
be monitored with the CSF biomarkers A31-42, total tau, and
phosphorylated tau, respectively. The onset and progression
of AD biomarkers likely follows an ordered temporal pattern.
Biomarkers of A amyloid are indicative of initiating or up-
stream events which seem to be most dynamic (i.e., deviate
most significantly from normal) before clinical symptoms.
Biomarkers of neuronal injury and neuronal dysfunction
are indicative of downstream pathophysiological processes
which become dynamic later. There is evidence suggesting
that combined assessment of CSF tau and Af1-42 have high
diagnostic accuracy for established AD [25]. They may also
be used to identify AD before onset of dementia at the
stage of MCI, as shown in both mono-center and large-scale
heterogeneous multicenter studies [26—30]. Since CSF levels
of the shorter AB1-40 isoform are unchanged or increased
in AD, it has been proposed that measurement of the AS1-
42/A1-40 ratio might be superior to AB1-42 alone [31-
34]. Of note, AB1-42 is associated with impairment of
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cognitive function from a potentially early to a later disease
phase [35-37]. Decreased CSF Af51-42 is also seen in other
neurodegenerative disorders [38]. Recent studies have shown
associations between shorter forms of Af peptides and
specific dementias: decreased AB1-38 levels correlated with
frontotemporal dementia [39] and AS1-37 with Lewy Body
dementia [40]. Thus, the detection of the whole spectrum of
Ap peptides in the CSF could be useful in order to improve
early differential diagnosis.

3. The Large Family of CSF Af Peptides:
The Mass Spectrometry-Based Detection

The predominant protein component of amyloid plaques are
strongly aggregating peptides with an approximate molecu-
lar mass of 4 kDa. The main plaques component is the 42
amino acid isoform of Af; this isoform is highly hydrophobic
and forms oligomers and fibrils that accumulate in extracel-
lular plaques [41]. The deposition of the peptide in plaques is
considered the underlying basis for the decrease in CSF Af1-
42 levels seen in AD and incorporated in the new diagnostic
criteria. In addition, other isoforms of Af, for example,
pyro AB3-42, A34-42, pyro A11-42, AB17-42, Af1-40, and
Af311-40 have been detected in the brains of sporadic AD and
familial AD cases [5-12, 42—46]. Af3 peptides heterogeneity is
observed also in the human CSF (see Table 1) [47-58]. The
proteolytically processed Af3 peptides, however, are difficult
to detect in the CSF-using standard methods, possibly be-
cause they comprise a heterogeneous set of both N- and
C-terminally truncated peptides, some of which are present
only at low levels. Many investigators used mass spectrom-
etry (MS) for studying human CSF Af peptides. MS allows
for the detection of a variety of modified and truncated Af
peptides, thus enabling a more detailed and unbiased analysis
of fragments that may play a role in neurodegeneration.
The two main approaches are (1) the use of preactivated
chip arrays that allow coupling with specific antibodies com-
bined with surface-enhanced laser desorption and ionization
time-of-flight (SELDI-TOF) MS (2) immunoprecipitation
combined with matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) MS. An immunoproteomic
approach—which combines specificity of 6E10 (against Af
epitope 1-16) mAb capture with precision of spectral analysis
(i.e., SELDI-TOF MS)—has recently been successfully used
to analyze A peptides in human CSF; Maddalena et al.
[50] detected 9 C-terminally and 1 N-terminally truncated
A3 peptides in CSF of AD patients and healthy controls
subjects. while, with an analogous protocol, 10 Af3 fragments
were found by Lewczuk et al. [55, 58]. Immunoprecipitation
experiments employing 4G8 mAb and MALDI-MS analyses
of Af peptides from 1 mL CSF revealed the presence of two
previously unidentified N-terminally truncated Af peptides
(i.e., AB11-30, AB11-40), along with a number of C-ter-
minally truncated forms [47, 48]. Since 6E10 and 4G8 mAbs
bind different portions of A sequence, we tested whether
the combined use of these two mAbs could improve the
capture of N and C-terminally truncated Af peptides; of
note, applying this optimized immunoproteomic assay—
that employs very low sample volume (5 uL of CSF for each
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TasLE 1: Summary of Af peptides in human CSF.

Ap Peptides Theoretical mass* (Da) Literature
ABI-12 1424.61 [47]

ApBI1-13 1561.67 [47-49]

AB2-14 1583.70 [50]

AP1-14 1698.73 [47-49]

ApB1-15 1826.78 [47-49]

AB3-17 1881.90 (48]

AB2-17 1952.94 [48]

AB1-16 1954.88 [47-49]

Ap1-17 2067.96 [47-52]

ApB1-18 2167.03 [47-51]
APB11-30 221211 [47]

ApB1-19 2314.10 [47-49, 51, 52]
AB1-20 2461.17 [47-49]

Ap6-27 2521.16 (53]

AP11-34 2608.39 (53]

AB1-27 3133.44 (53]

AP11-40 3150.68 [47, 51, 54]
AP6-34 3167.60 [53]

ApB1-28 3261.53 [47, 48, 53, 55]
AB6-35 3298.63 [53]

AB12-43 3306.80 (53]

ApB10-40 3313.74 [51, 54]

ApB1-29 3318.56 [55]

APB11-42 3334.80 [51, 54, 56]
ApB1-30 3389.59 (4749, 53]
AP11-43 3435.85 (53]

AB3-34 3599.80 (53]

ApB1-33 3672.78 [47, 49-51, 54, 55, 57]
AB1-34 3785.87 [47, 49-51, 53-55, 57]
Ap1-35 3916.91 [51, 53, 57]
AP1-36 4015.98 [51]

ApB1-37 4073.00 (47, 49-51, 54, 55, 57, 58]
ApB1-38 4130.02 [47,49-51, 53-55, 57, 58]
ApB1-39 4229.09 (47, 49-51, 54, 55, 57, 58]
AB1-40 4328.16 [47, 49-51, 53-55, 57, 58]
AB1-42 4512.28 (47, 49-51, 54-58]
AB3-44 4526.33 (58]

APB1-45 or A2-46 4825.48 or 4809.52 [55]

AB3-47 4851.56 [58]

*The masses presented are the monoisotopic protonated molecules.

spot)—we detected a total of 15 Aff peptides (12 C-terminally
and 3 N-terminally truncated forms) in human CSF [51].

In addition, we determined mass profiles of Af peptides
in the CSF of patients carrying familial AD-associated muta-
tions (i.e., APP T719P, PS1 P117L, and PS2 T122R); these
mutations were associated with an overall reduction of Af
species. Interestingly, the APP T719P mutation unbalanced
the relative proportion of Af peptides with a reduction of
Af1-40 and APB1-42 paralleled by an increase of AB1-38 and

Af310-40 [54]. In accordance with these data, Portelius and
coauthors [49] reported a reduction C-terminally truncated
A3 peptides in CSF of affected and unaffected subjects
carrying PS1 A431E mutation. An unbalance of Af isoforms
was also detected in CSF of sporadic AD and MCI patients
[50, 52, 56, 57]. Interestingly, within a phase II clinical trial,
it has been recently demonstrated that AS1-14, A1-15, and
AB1-16 are positive and very sensitive biomarkers for y-
secretase inhibition (even at doses that do not affect AB1-42
or AB1-40) [59]. Thus, Af isoforms may be novel biomarkers
to monitor the onset and progression of cognitive decline
and the biochemical effect of disease-modifying drugs in AD
clinical trials.

4. Beyond A3 Monomers: CSF Circulating
Ap Oligomers

In the human brain it is likely that multiple Af assemblies,
that are in dynamic equilibrium almost simultaneously, alter
brain cell function and that different toxic effects may occur
virtually concurrently in various regions of the cerebrum.
Several lines of evidence have converged to demonstrate that
soluble oligomers of A may be responsible for synaptic
dysfunction in AD animal models and in the brains of AD
patients [46, 60, 61]. Small diffusible Af3 oligomers have been
shown to exert neurotoxic effects in cultured neurons [62—
64]. It has been hypothesized that such prefibrillar assemblies
might also be neurotoxic in vivo since synaptic, electrophysi-
ological, and behavioral changes have been well documented
in young APP transgenic mice before plaque formation
[65, 66]. Accordingly, soluble Af oligomers have been
found to block, in vivo, hippocampal long-term potentiation
(LTP), a synaptic correlate of memory and learning [67—
71]. Importantly, Af immunotherapy can protect against
the neuropathology and cognitive deficits observed in APP
transgenic mice and also prevent the LTP inhibition induced
by Af3 oligomers [68]. Soluble oligomeric Af has been shown
to be present in human CSF [72-74]. Human derived soluble
Af3 seems to have a pathophysiological role in the brain; the
CSF-derived Af3 dimers—and not the monomers—potently
disrupt synaptic plasticity in vivo [75]. Of note, it has
been reported that CSF circulating oligomers are increased
in AD and MCI patients, and their levels are negatively
correlated with Mini-Mental State Examination scores [76,
77]. Thus, an emerging strategy within the AD field is to use
oligomeric Af as a possible biomarker/therapeutic target for
the disease. The actual identity of the oligomer participating
in AD pathogenesis remains elusive although several lines of
evidence suggest that AD-associated oligomers are primarily
composed of A342. Nevertheless Gao and coworkers, using a
novel misfolded protein assay, found an enrichment of A340-
containing oligomers in AD CSF [78] and suggested these
assemblies as biomarker for early diagnosis of AD. Although
Af3 oligomers are attractive AD biomarker candidates, several
issues relating to these molecules persist. The levels of these
Af3 species in CSF seem to be very low in comparison
with A monomers and the precise molecular identity of
these soluble toxins remains unsettled; thus more precise
mass spectrometry analyses are needed in order to better



characterize the molecular weight and composition of the
most neurotoxic species. Furthermore, assays suitable for
large clinical studies are still to be developed for these mole-
cules. The development of conformation-sensitive antibody
domains targeting the Af oligomers [79-83] is of great
interest for research in this field. Targeting the pathological
assemblies of A5 with specific probes, for mechanistic stud-
ies, for intracellular imaging, or for therapeutic purposes, is
therefore very important.

5. A} Peptides Are Double-Edged Sword
Signals Transmitted Both via Volume and
Wiring Transmission

As discussed above, Af peptides have been regarded as the
principal toxic factor in the neurodegeneration of AD. In-
tense research effort has, therefore, been directed at deter-
mining their sources, activities, and fates, primarily with a
view of preventing their formation or toxic actions, or pro-
moting their degradation.

These are important studies and very promising ones for
a better understanding of the pathogenesis of AD. However,
in our opinion, a crucial aspect is the discovery of the physi-
ological role of these peptides.

Thus, the following points will be briefly discussed as far
as the Af peptides are concerned:

(a) communication modes for these peptides, hence
(volume transmission (VT)) versus (wiring transmis-
sion (WT)) versus (VT and WT);

(b) micro-environment where the targets for A peptides
are located, hence plasma membrane versus intracel-
lular environment;

(c) possible physiological roles of Af peptides.

Finally, a previously published theoretical proposal [84]
will be summarised since it can give a possible frame for
interpreting otherwise contradictory data on A peptides
functions. The hypothesis is based on the concept that Af
peptides as well as other key signals in the central nervous
system (CNS) mainly involved in learning, and hence plastic-
ity may have a double-edged sword action on neuron survival
and function.

5.1. Communication Modes for A Peptides and Their Mi-
croenvironment Targets. It has been proposed that two main
modes for intercellular communication are in operation in
the CNS, namely, the VT and the WT [85].

The characteristics of the channel connecting two nodes
of the network, that is, the cell source of the signal with the
cell-target of the signal allow distinguishing the VT from the
WT.

(i) VT is characterized by a channel with a poorly defined
physical substrate and signal transmission takes place via
diffusion (or vector migration) in the medium interposed
between nodes. Recently, it has been shown that several
messages can be sent via microvesicles (acting as protective
containers hence like the bag of a roamer), dispatched into
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the extracellular space (ECS) and diffusing until the proper
targets are reached [86—88].

Different types of microvesicles have been described,
which are the result of specific cellular phenomena [86]. In
particular, exosomes are microvesicles contained within a
special class of membrane-bound organelles (endosomes),
which can be released by fusion of the limiting membrane
of the MVB with the plasma membrane.

(ii) WT is characterized by the transmission of the signal
along a channel with a well-defined physical substrate; thus, a
“wire” links the source node with the target node. Classically,
in the case of neural networks, the WT-channel is formed by
an axon and a chemical synapse.

However, two more subclasses of WT play a role in the
CNS. The first one is represented by the well-characterized
gap junctions, while the second one, the clear-cut in vivo
demonstration of which has not yet been provided, is repre-
sented by the tunnelling nanotubes (TNTs) that are transient
structures forming a “private” direct channel connecting two
cells. They have a diameter of 50-200 nm and a length up to
several cell diameters. Several in vitro studies demonstrated
that these structures make possible the exchange of proteins,
mtDNA, RNA, and whole organelles between cells [89]. It
is interesting to note that Af3 peptides can be transmitted
according to both VT and WT. Actually, it has been shown
that these signals can use several possible modes of intercel-
lular communication:

(1) the classical VT mode that is diffusion in the ECS
[90-94],

(ii) the Roamer Type of VT that is diffusion via exosomes
[95-99],

(iii) the TNT mode of WT [100].

The targets for the Af peptides are located both at the
plasma membrane level [101, 102] and at intracellular level

where they may exert an “intracrine function” [95, 103,
104].

5.2. Possible Functional Roles of A Peptides. We completely
agree with Pearson and Peers’ view that Af peptides should
have important physiological roles and may even be crucial
for neuronal cell survival and CNS function. Thus, the view
of Af being a purely toxic peptide requires a reevaluation
[105]. In support of such a proposal, there are several papers,
two of these will be cited since while the first one shows a role
of Af peptides on learning [106], the other one opens a new
field by giving evidence for a possible role of these peptides
as antimicrobial agents [107].

Thus, it has been shown that, in contrast with its path-
ological role when accumulated, endogenous AfS in normal
hippocampi mediates learning and memory formation prob-
ably via nicotinic acetylcholine receptors. Furthermore, hip-
pocampal injection of picomolar concentrations of exoge-
nous Af1-42 enhances memory consolidation. Hence, Af
peptides, including A1-42, play an important physiological
role in hippocampal memory formation.
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FIGURE 1: Schematic representation of the “Push and Pull Control” of structural and functional plasticity of neuronal circuits and how this
control is related to learning processes (plastic changes of the circuits) and maintenance of the memory traces (stability of the circuits). The
possible actions of Af3 peptides as double-edged sword signals are indicated. Broken arrows indicate reduction or inhibition.

As mentioned above, recently a new possible function for
A peptides has been demonstrated, namely, the antimicro-
bial action. Thus, it has been shown that many of the phys-
iochemical and biological properties previously reported
for A are similar to those of a group of biomolecules
collectively known as “antimicrobial peptides” (AMPs; also
called “host defense peptides”) which function in the innate
immune system. These peptides are potent, broad-spectrum
antibiotics that target several infective agents. In particular,
the pleiotropic LL-37 peptide is a widely expressed archetypal
AMP present also in humans that exhibits striking similari-
ties to Af, including a propensity to form cytotoxic soluble
oligomers and insoluble fibrils with classical histochemical
properties of tinctorial amyloid. Soscia et al. [107] findings
reveal that Af3 exerts antimicrobial activity against eight com-
mon and clinically relevant microorganisms with a potency
equivalent to, and in some cases greater than, LL-37. These
findings obviously impose a great caution in developing
future AD treatment strategies based on the drastic reduction
of synthesis and levels of Af peptides.

5.3. Double-Edged Sword Action of Ap Peptides on Neuron
Plasticity and Survival. More than one century ago, Tanzi
proposed that learning processes in the CNS are basically due
to plastic changes of neuronal networks [108].

As pointed out by Taylor and Gaze, neuronal plasticity
allowing continuous CNS adaptation to the challenges of the
environment plays a fundamental role not only for learning
processes. Actually, plasticity in the nervous system means
a patterned or ordered alteration in structure and function
brought about by development, experience, or injury [109].

Thus, this definition mentions age, learning, and lesions
as factors triggering out plasticity.

In this paper the concept is introduced that physiological
processes (such as learning and memory) as well as repairable
processes (such as those occurring after lesions or during
ageing), being all rooted in CNS rearrangements, are com-
peting for the brain plasticity [110], which exists as a fixed
amount (“total brain plasticity capability,” see [84]).

It has been demonstrated that some signals, such as ex-
cito-amino acids, A peptides, and a-synuclein (a-syn), are
not only involved in information handling by the neuronal
circuits, but also trigger out CNS plasticity [84]. It has also
been shown that these signals are potentially dangerous pos-
sibly since, interalia, they force the neuronal circuits to move
from one stable state towards a new state. Several mecha-
nisms are put in action to protect neurons and glial cells from
these potentially harmful signals and hence favouring the
emergence of only their physiological functions. However,
ageing and neurodegenerative diseases, on one side, increase
the need of plasticity for the CNS repair but, on the other
side, cause a reduction in the secretion of several trophic
factors (e.g., BDNF and NGF) leading to a less effective neu-
roprotection and deficits in neural plasticity [111, 112].

Against this background, it has been shown that in ageing
and neurodegenerative diseases functionally ambivalent (i.e.,
double-edged sword) signals such as A and a-syn are se-
creted at a high rate possibly in the attempt of maximizing
neuronal plasticity. It has been proposed that in the long
run these peptides do not exert their possible physiological
actions but on the contrary may favour neurodegenerative
processes.



Soscia et al. [107] have demonstrated that an increased
A generation/accumulation leading to AD pathology may
be mediated by a response of the innate immune system to
a perceived infection. This model is in agreement with data
supporting a central role for neuroinflammation in AD neu-
ropathology [113].

Thus, not only genetic factors may contribute to activa-
tion of the innate immune system by regulating A§ produc-
tion and clearance but also a transient infection may lead to
a self-perpetuating innate immune response.

These findings allow an update of the hypothesis made in
the JNT 2009 [84] (see Figure 1).
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