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Abstract: The respiratory rate (RR) is a vital physiological parameter in prediagnosis and daily
monitoring. It can be obtained indirectly from Electrocardiogram (ECG) signals using ECG-derived
respiration (EDR) techniques. As part of the study in designing an early cardiac screening system,
this work aimed to study whether the accuracy of ECG derived RR depends on the auscultation sites.
Experiments were conducted on 12 healthy subjects to obtain simultaneous ECG (at auscultation sites
and Lead I as reference) and respiration signals from a microphone close to the nostril. Four EDR
algorithms were tested on the data to estimate RR in both the time and frequency domain. Results re-
veal that: (1) The location of the ECG electrodes between auscultation sites does not impact the
estimation of RR, (2) baseline wander and amplitude modulation algorithms outperformed the fre-
quency modulation and band-pass filter algorithms, (3) using frequency domain features to estimate
RR can provide more accurate RR except when using the band-pass filter algorithm. These results
pave the way for ECG-based RR estimation in miniaturised integrated cardiac screening device.

Keywords: respiratory rate (RR); Electrocardiogram (ECG); ECG derived respiration (EDR); auscul-
tation sites

1. Introduction

Respiratory rate (RR) is the physiological indicator of breaths per minute, which is
commonly used as an early warning sign in disease detection. The normal RR of a healthy
adult at rest is between 12–16 bpm [1]. Compared with adults, children’s RR is higher.
For an infant, it ranges from 30–60 bpm, and with growth, the RR will gradually reach
the adult level [2]. The resting RR of older people may slightly increase. For the healthy
independent seniors, it is 12–20 bpm, and those who need long-term care will reach
16–25 bpm [3]. Generally, a resting RR outside of these ranges may indicate a potential
disease. An increased RR (tachypnea) may suggest fever, dehydration, asthma, chronic
obstructive pulmonary disease, heart disease, etc. [4]. A low RR (bradypnea) may reveal
the use of narcotics, alcohol intake, abnormal body metabolism, sleep apnoea, etc. In critical
care (or intensive care, ICU), RR is also a vital parameter in the monitoring of respiratory
failure. It could be measured by the gas exchange using a ventilator, capnography monitors,
or spirometry devices, and chest electrical activities using electrical impedance tomography
(EIT), inductance plethysmography, or impedance pneumography [5,6].

The current measurement of RR outside of the critical care still relies on manually
counting the chest undulations in one minute by the medical staff [7]. Although this practice
is easy to conduct without using extra medical devices, it has some drawbacks such as
low accuracy. Subject’s awareness, poor visibility of a breath, and other interruptions
will greatly affect the measurement. Besides, in practice, the manual counting is not
completed in one full minute by the medical staff due to the heavy workloads. They usually
multiply the 30 s or 15 s measurement by 2 or 4 to assess the RR, which will lead to
further inaccuracies [8]; (2) it is labour-consuming, as the medical staff can only conduct the
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measurement on one patient at one time; (3) the measurement is not continuous. As an early
sign of physical deterioration, real-time and continuous monitoring can help alert the staff
to emergencies, such as heart failure, shock, diabetic coma, etc. However, the intermittent
measurement cannot provide such information timely, so the RR is always underutilized.
External devices to automate the RR measurement can remedy the deficiencies associated
with manual counting to a certain extent. Despite this, there are still respective limitations
to each method. For the gas exchange-based techniques, they are accurate methods to
reflect the respiratory condition, but have no portability, which requires the patients
breathing in the external tube of the devices. So, these techniques are generally only
available in critical care [9]. The bioimpedance-based techniques such as impedance
pneumography can measure the electrical activities on the chest during inhalation and
exhalation. However, it requires the patients to wear a tight chest strap, which may cause
discomfort [10]. Additionally, patient movement, bad contact, and obstruction of breath
will cause inaccurate measurements. Acoustic sensors are also used in the measurement
of RR, however, their performance will be affected by the environmental noise and skin
friction [11]. Therefore, wearable devices for automatic RR measurement are in great
need to effectively monitor the breath in real-time and detect the first sign of physical
deterioration promptly.

Extracting respiratory signals from the Electrocardiogram (ECG) signals is a potential
surrogate measurement of RR. In recent years, ECG devices are becoming miniaturised,
and sensors have been integrated with sport bands, smartwatches, and other portable
monitors. This provides the feasibility and potentiality to design wearable ECG-based RR
measurement devices. The first study on respiration-induced ECG variation was proposed
by Einthoven et al. [12]. Flaherty and Riekkinen further analysed the respiration influence
on children and cardiac patients by isopotential surface-mapping and vectorcardiography
(VCG) [13,14]. Nowadays, it is well known that respiration-induced ECG variations are
caused by (1) Respiratory Sinus Arrhythmia (RSA) that refers to the cyclic variation that the
heart rate accelerates during inhalation and decelerates during exhalation [15]. It can be
reflected in the ECG signals as the frequency modulation (FM) of the R-R interval between
the R peaks as shown in Figure 1a. (2) Respiration-induced electrical axis rotation. During
the inspiration, the filling of the lungs stretches the heart apex towards the abdomen, and in
expiration, the emptying of the lungs compresses the heart towards the breast. Due to the
displacement of the heart, the electric cardiac vector will change during respiration [16].
In the ECG signal, this process can be indicated as amplitude modulation (AM) of the R
peaks as shown in Figure 1b. (3) Baseline Wander (BW) is the artefact caused by body
movement, including breathing. The expansion and contraction of the thoracic cavity due
to respiration will cause a slow and undulating baseline in the ECG signals as depicted in
Figure 1c [17].
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Figure 1. (a) Respiratory Sinus Arrhythmia (RSA) induced frequency modulation (FM). (b) Elec-
trical axis rotation caused amplitude modulation (AM). (c) Baseline wander (BW) caused by
chest movement.

Several techniques to extract respiratory signals from the ECG, the so-called ECG-
derived respiration (EDR), have been proposed according to the respiration-induced ECG
variation mentioned above. Some techniques are based on multi-leads ECG signals [16–20],
while others attempt to extract respiratory information from one-lead ECG [21–26],
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as well as direct band-pass filtering (BP) of the ECG within the respiratory frequency
band [17,26,27]. For the multi-leads EDR techniques, they mainly use the rotation angles
of VCG from multiple ECG leads, while the one-lead EDR methods focus on the features
related to the QRS complex, such as amplitude, interval, area, slopes, etc. There is no
consensus on which is better in the performance; however, for a wearable device, one-lead
ECG has the advantage in the system complexity and size. As part of our long-term project
to design an integrated device for early cardiac screening, the final aim is to propose a
small integrated device (around 8 cm2) that can provide multiple physiological parameters
including heart sound, ECG, and RR. The device will measure the ECG locally with heart
sound rather than at different body parts. In our previous study, we did experiments to
analyse the time property between ECG and heart sound when the ECG is captured at
different auscultation sites [28]. Additionally, it indicates that the location of the ECG will
cause the morphological variation of its signal, which may affect the obtainment of the
EDR signal, therefore an important motivation of this study is to further analyse if these
ECG variations will affect the performance of the EDR algorithms under this condition.

The aim of this study is threefold: (1) To investigate if the location of the electrodes at
auscultation sites will affect the EDR algorithm accuracy; (2) to compare the performance of
one-lead EDR algorithms based on the mentioned respiration-induced ECG variation; (3) to
compare time-domain and frequency-domain features for RR estimation. All the findings
will contribute to providing more accurate RRs for the integrated cardiac screening device.

2. Methodology
2.1. Subjects

The experiments were conducted on 12 healthy human subjects (8 male/4 female,
age range 21–29 years, mean 25.9 years) with no history of heart diseases or respiratory
issues. The procedures were approved by the King’s College Research Ethics Committee
(Approval No.: LRS-18/19-10673). Subjects gave written informed consent before the
experimental procedures.

2.2. Experimental Setup

The standard Lead I ECG (as reference ECG), auscultation site ECG (captured at
auscultation site A, P, T, M with 10 cm inter-electrode distance), and respiratory signals
were recorded simultaneously during the experiment. A simple block diagram of the exper-
imental setup is shown in Figure 2. The sensors for ECG signals were solid gel electrodes
(Ambu WS, size: 36 × 40 mm, Medico Electrodes International LTD., Uttar Pradesh, India),
and the respiratory signal was captured by a small microphone (developed at the Centre for
Robotics Research (CORE) at Kings College London, UK) placed under the subject’s nose.
The recording used the commercial acquisition system (iWorx, model RA834, iWorx Sys-
tems Inc, Dover, NH, USA) and ECG devices (iWire-BIO4, iWorx Systems Inc, Dover, New
Hampshire, US). The sampling frequency was 1 kHz and the analog filter for the ECG was
0.05–40 Hz [29].

During the experiment, subjects should keep supine and remain calm. Besides, sub-
jects were required not to make sound from the larynx to ensure the sound captured
was only respiration. The Lead I ECG and different auscultation site ECG signals were
measured in pairs together with the respiratory signals. The duration of each recording
group was three minutes, and two minutes break was given between different auscultation
site trials.
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Figure 2. Block diagram of the recording setup: Red dots are Lead I Electrocardiogram (ECG) as
a reference, green dots are auscultation site ECG. The grey dot is the microphone for respiration
recording. iWire BIO4 is for ECG recording. All the data is transferred to the computer for processing
through iWorx RA 834.

2.3. Signal Processing

In this study, EDR signals were obtained using BW, AM, FM, and BP algorithms
from the reference (Lead I) and auscultation sites ECG signals, respectively. The RRs were
estimated from the EDR signals using time and frequency domain features as detailed
later. The performance of the algorithms and the effect of the locations were analysed by
comparing it with the measured respiratory rate. The processing was conducted in the
Matlab® R2018b environment, and the statistical analysis was performed using IBM® SPSS
version 26.

2.3.1. Signal Filtering

The captured ECG signals and respiration sounds were filtered first to remove the
unwanted artifacts and noise. For the ECG, a zero-phase 3rd-order Butterworth high-
pass filter at 0.1 Hz was used to eliminate the large artifacts which were not related to
respiration [30]. For the respiration sound, a 3rd-order Butterworth band-pass filtered
(0.1–0.5 Hz) was used to smooth the waveform.

2.3.2. EDR Signals Extraction

In AM, BW, and FM algorithms, R-peak detection was a vital step, as all the features
to be captured were related to R peaks. In this study, the Pan–Tompkins algorithm was
used to detect R-peaks in the ECG signals [31].

1. AM algorithm: The amplitude changes due to the respiration in the ECG signals was
obtained by connecting the captured R-peaks.

2. BW algorithm: Based on the R-peaks, Q points were found using the gradient descent
method. Then, the baseline wander could be generated by connecting the middle
points between R-peaks and Q points [32].

3. FM algorithm: The intervals between the R peaks were calculated. The resulting
signal was the frequency modulation caused by respiratory sinus arrhythmia.

Afterward, all the signals generated by the algorithms above were interpolated to the
same sample size of its raw ECG signals to increase the resolution.

4. BP algorithm: A band-pass filter (0.1–0.5 Hz) was used to capture the EDR signals.
Although the normal RR for a healthy adult ranges between 0.2–0.35 Hz at rest,
in our processing, we appropriately expanded the range to enable it to respond to
special situations, such as the subjects’ occasional deep or rapid breaths. Besides,
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a wider band can help to further analyse the frequency components when there are
no dominant peaks.

Representative derived respiration signals by the methods above are shown in Figure 3.
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2.3.3. Respiratory Rate Estimation

The reference RRs were obtained from the filtered respiration sound recorded using
a nostril microphone. It was manually counted in the waveform to ensure accuracy.
The estimated RRs from EDR signals were calculated by automatically counting in the
time domain and using the median frequency (between 0.1–0.5 Hz), respectively. For the
counting method, a moving average filter (window length: 50 ms) was used first to smooth
the EDR signals and eliminate sub-peaks. Then, peak detection with the threshold of the
signal mean value provided the estimated RR. The median frequency was chosen according
to our previous study, which was proven to be the best feature in the frequency domain to
estimate RR from EDR signals [27].

2.4. Statistical Analysis

The mean absolute errors (MAE) between the EDR-based estimated RR and reference
RRs was used as the performance measure provided as mean ± standard error (SE). A three-
way repeated-measures analysis of variance (ANOVA) was used to compare MAE. Factors
were the features (counting and median frequency), EDR algorithms (AM, BW, FM, BP),
and ECG locations (A, P, T, M, Lead I). A P-value of less than 0.05 was considered significant.
Data were log-transformed to obey normality and variance homogeneity was satisfied.

3. Results
3.1. ECG Morphological Variation among the Auscultation Sites

Figure 4 shows a representative local ECG morphological variation compared with the
lead I ECG from one subject. From (a) to (d), it can be seen that the amplitude of the R-peak,
s-wave, and T-wave become larger from auscultation site A to M. Besides, it is also found
that the R-peak of the site A ECG is normally on the left-hand side of it on Lead I ECG,
which means the R-peak is advanced (approximately 10 ms by average). However, it will
shift to the right-hand side when measured at site M, which means its onset is delayed
(approximately 15 ms by average). Another phenomenon could also be observed that in
the site A ECG, there is a J-point elevation shown as grey dots in (e). This happened on
five subjects, and in 3 of them, the J point is even higher than the R-peak.
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3.2. Location Effect on EDR among the Auscultation Sites

Table 1 summarized the EDR MAE of each subject averaged across estimation tech-
niques and given per auscultation site. ANOVA results indicate that there is no statistical
difference between the five sites (p = 0.746), and there was no interaction between EDR
algorithms and sites (p = 0.516). All four EDR algorithms have quite close MAE between
each auscultation sites, including average MAE at A: 1.656 ± 0.351, P: 2.297 ± 0.476, T: 1.733
± 0.461, M: 1.467 ± 0.326, and reference ECG (Lead I): 1.834 ± 0.378 bpm. This indicates
that RR can be harvested using ECG anywhere on the chest with negligible location effect.
Figure 5 further visualized the location effect with different algorithms.
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Table 1. The ECG-derived respiration (EDR) mean absolute errors (MAE) of each subject for each
auscultation site and Lead 1 ECG signals, averaged across estimation techniques.

A P T M Lead I

Subject1 0.16 0.06 0.14 0.12 0.08
Subject2 2.27 3.74 1.77 0.86 2.00
Subject3 1.88 1.37 3.17 2.15 2.60
Subject4 0.50 1.69 0.54 0.82 0.83
Subject5 1.27 1.10 0.28 0.14 0.47
Subject6 5.79 4.61 6.91 3.23 5.45
Subject7 1.60 2.60 0.38 2.60 2.24
Subject8 2.54 5.41 3.16 3.47 2.24
Subject9 0.73 0.20 0.67 0.53 1.16

Subject10 0.36 1.62 1.69 1.25 1.11
Subject11 0.85 2.10 1.03 1.46 1.45
Subject12 1.93 3.06 1.07 0.99 2.39

Mean 1.66 2.30 1.73 1.47 1.83
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3.3. The Performance of the EDR Algorithms

After statistical analysis of the MAE on each subject with different EDR methods
shown in Table 2, there was a significant difference between the four EDR algorithms
(p < 0.001). The BW algorithm performed with MAE = 1.446 ± 0.181 bpm, closely followed
by the AM algorithm with 1.589 ± 0.1966 bpm. Post hoc analysis revealed no statistical
difference between BW and AM (p = 0.31), however, they were both significantly better
(p < 0.05) than BP (MAE of 2.656 ± 0.258) and FM (MAE of 3.855 ± 0.329 bpm).

Table 2. The EDR MAE of each subject on different EDR methods, averaged across auscultation sites.

BW AM FM BP

Subject1 1.61 1.92 5.86 1.93
Subject2 1.65 2.88 3.26 2.45
Subject3 1.33 1.82 2.04 0.47
Subject4 2.19 1.99 4.06 2.19
Subject5 0.91 0.92 1.54 2.93
Subject6 0.49 0.41 3.55 3.67
Subject7 0.34 0.66 0.73 0.86
Subject8 0.76 0.75 3.23 1.19
Subject9 3.98 3.54 11.93 6.75

Subject10 0.45 0.38 2.08 0.38
Subject11 1.81 2.02 3.36 3.59
Subject12 1.84 1.78 4.61 5.89

Mean 1.45 1.59 3.85 2.69
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3.4. Time vs. Frequency Domain

Deriving respiration rate using the median frequency (overall MAE 1.80 ± 0.223 bpm)
outperformed the counting method (overall MAE 2.98 ± 0.312 bpm) in the time domain
(p < 0.001) suggesting stability of the frequency domain, although a significant interaction
(p < 0.001) with the applied method was observed. From Figure 6, it can be seen that
the median frequency can provide a more accurate estimated RR on BW, AM, and FM
algorithms. However, counting in the time domain is more accurate for the BP algorithm.
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4. Discussion

This study aimed at analysing the performance of one-lead EDR algorithms in aus-
cultation site ECG signals and EDR rate estimation in both time and frequency domain.
The results show:

Firstly, it is found that the location effect on the obtainment of EDR between ausculta-
tion site and Lead I ECG signals is negligible in our experimental data. The result revealed
that the ECG morphological variation between auscultation sites happened on the onset
and amplitude of the ECG components including the R-peak delayed from site A to M,
and the amplitude increase of R-peak, s-wave, and T-wave. These won’t directly affect
the EDR signals extraction, but it is worth noticing in cardiac researches. It is still unclear
on the occurrence of J-point elevation or RSR’ (An ECG finding in which there are two R
waves) in five subjects’ site A ECG signals. Normally they are pathological, but the subjects
were confirmed healthy with no heart conditions, and this can be normal for the age group.
The high J-point or double R-peaks may interfere with R-peak detection when the fake
R-peak is higher than the true one. In our study, the performance of the four chosen EDR
techniques was not affected, however, it may have an impact on the QRS area or slope
based EDR methods. In the study of Sakai, it indicated that the location of the electrodes
affected the quality of EDR signals and the more accurate RR estimation was obtained
when the electrodes were attached near the heart [22]. The best placement was a negative
electrode at the bucket-handle and a positive electrode at pump-handle movements of
the ribs. However, in our experiment, electrodes were placed at auscultation sites on
the upper chest, which were already close to the heart. Besides, as we want to design a
miniaturised device, the inter-electrode distance was fixed and short (10 cm). Therefore,
from the physiological mechanism, the locations in our study barely have an effect on
the respiratory sinus arrhythmia, and the effect on the respiration-induced electrical axis
rotation and chest undulation-induced baseline wander are minimal. This result verifies
that the location effect on RR estimation can be ignored in designing an integrated cardiac
screening device.
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Secondly, the BW and AM algorithms outperformed FM and BP algorithms. Although
BW has a slightly smaller MAE (1.446 ± 0.181 bpm) than AM (1.589 ± 0.1966 bpm),
the difference (p = 0.315) is not statistically significant in our experiment data, which cannot
confirm that the performance of BW is better than AM so far. This is in contrast with some
previous work. In Charlton’s study, it was shown that the BW performed better than AM
without statistical analysis [7]. The performance of FM and BP methods are in line with
previously reported MAE using the PhysioNet’s MIMIC-II database, while the results of
AM obtained in this study are similar to the MAE reported by Widjaja et al. [26] using their
experimental data. It seems like the experimental setting for the database had a significant
impact on the performance of EDR algorithms. Because our experiments were conducted
under ideal conditions where the subjects were required to lie down calmly without any
movement, the MAE was much lower than studies that have made use of the database.

For respiratory sinus arrhythmia induced FM, the magnitude of the oscillation varies
from individual to individual, so that the obtained EDR signal is not that conspicuous
sometimes [33]. For example, the FM waveform of 0–50 s is shown in Figure 3, the EDR
signal in that period is messy, thus it will dramatically affect the peak detection in the
time domain, causing inaccurate RR estimation. That should be the reason for FM’s
poor performance. For the BP algorithm, the choice of the frequency band is the current
limitation. Though the frequency band (0.1–0.5 Hz) used in this study is appropriately
extended, it is still not enough to capture RR from young children and stress tests. Besides,
the use of a simple band-pass filter cannot remove unwanted interferences completely.
The low-frequency component between 0.1–0.2 Hz, which is related to the baroreceptor
reflex (blood pressure is regulated by the baroreceptors through the autonomic nervous
system) and the high-frequency harmonic between 0.4–0.5 Hz will interfere with the RR
estimation in the frequency domain [34]. Therefore, an adaptive frequency band is essential
to improve the performance of using a band-pass filter.

Thirdly, the RR estimation in the frequency domain is found to be better than the time
domain for BW, AM, and FM [35]. This result is the opposite of Charlton’s result, which said
Fourier analysis was inferior to breath detection in the time domain [7]. As discussed
above, there are conditions where the EDR is not conspicuous enough, thus in the time
domain, it is hard to detect the corresponding respiration related peaks, while still possible
to capture it based on the power spectral density function. Besides, at the beginning and
end of the EDR signals, there may be incomplete breathing, this will lead to the error
for counting in the time domain. As there are not many breaths per minute, these errors
are considerable for the RR estimation. Using frequency features will reduce this error
moderately. However, it is also noticed that the performance of frequency estimation for
the band-pass filter is worse than counting in the time domain as there are mentioned
lower-frequency and higher-frequency components in the spectrum which weaken the
domination of the respiratory band. Therefore, further analysis of frequency components
is needed to improve accuracy when using the BP algorithm.

In this study, our research focused on the EDR of healthy adults at rest, and the
experimental conditions were ideal that the subjects kept supine and breathed evenly
without any movement. However, there are conditions of practical application that need to
be considered including EDR performance on irregular respiration, such as deep breath or
an increased respiration rate. Improvement still can be done to improve the RR estimation
accuracy. The current validation study has compared four algorithms of the existing
algorithms. More algorithms and fusion methods could be tested to improve the accuracy
for clinical use. Future studies will include RR estimation throughout monitoring via a
Holter-like monitor.

5. Conclusions

This study analysed the location effect on EDR algorithms’ performance between
auscultation sites and compared four EDR algorithms to estimate RRs in the time and
frequency domain. The results showed that, firstly, the location of the ECG electrodes
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between auscultation sites barely affects the estimation of RR. Secondly, the BW and AM
algorithms outperformed than FM and BP algorithms in generating the approximation
of the respiratory signal. Thirdly, RR estimation in the frequency domain is more reliable
except on BP algorithms. All the findings will contribute to building chest-based multi-
ple physiological parameter monitors and providing more accurate RR estimation using
EDR algorithms.
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