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Abstract
We propose a metric which can be used to compute the amount of heritable variation

enabled by a given dynamical system. A distribution of selection pressures is used such

that each pressure selects a particular fixed point via competitive exclusion in order to deter-

mine the corresponding distribution of potential fixed points in the population dynamics.

This metric accurately detects the number of species present in artificially prepared test sys-

tems, and furthermore can correctly determine the number of heritable sets in clustered

transition matrix models in which there are no clearly defined genomes. Finally, we apply

our metric to the GARDmodel and show that it accurately reproduces prior measurements

of the model’s heritability.

Introduction
Studies of the Origins of Life often come down to debate on the proper definition of ‘life’. How-
ever, underlying that philosophical point are a number of distinct phenomena which are exhib-
ited by modern biological life whose emergence must be explained. By studying these
particular, quantifyable phenomena, it is possible to make progress in our understanding even
if the overarching philosophical question remains murky. For example, by focusing on ‘replica-
tion’ in detail there have been many advances in understanding autocatalytic chemistry, both
experimentally and theoretically [1–6], even if those systems may not fully qualify as life.

One of the milestones of a theory of the Origins of Life is the understanding of how to bridge
the gap between abiotic conditions and the onset of evolution. Along with replication, the
mechanics of Darwinian evolution require that the system be capable of heritable variation and
also be subject to selective pressures. Selective pressures are readily available—chemical reac-
tion rates are in general very sensitive to environmental parameters—but it is more difficult to
obtain the ability to inherit variations. In order to understand how chemical systems become
capable of evolution we must then ask: what are the necessary and sufficient elements for a sys-
tem to be capable of heritable variation?

Because this question is very broad, it is well-suited to abstract models, in which the
dynamics of the system may be simplified in order to determine what elements are truly
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necessary. There are several examples of models which appear to give rise to forms of hered-
ity [7–10]. One of the difficulties in working with abstract models of something as broad as
the Origins of Life, however, is that it is often unclear how to compare the results of these dif-
ferent models because they use very different underlying metaphors—chemical reaction net-
works, mathematical functions, combinatoric assemblages of materials, and cellular
automata among others. In order to help connect those abstract efforts to the more concrete
goals of understanding the Origins of Life, we need devise a metric which can be applied very
generally to a wide array of abstract models. Furthermore, we would like this metric to be
equally applicable to experimental systems, so that the abstract models can be evaluated to
see whether or not they are truly predictive.

Heritable variation in modern biological systems proceeds from a well-defined information-
carying molecule and well-separated individuals which comprise a population. In this case one
can conceive of a very clear way to understand heredity by directly comparing the DNA of an
organism to its parent. This leads to understandings of mutation, the process of fixation, and
also a way to understand natural selection as a population-level effect. These processes are
often thought of in terms variation and co-variation at the phenotype level using the formalism
of G-matrices [11]. This originates from the concept of ‘heritability’, defined in the Breeder’s
equation [12], which measures the degree to which a particular phenotype can be enhanced by
selective pressures. The G-matrix generalizes this to a full response function, and so by study-
ing the dynamics of the G-matrix, one can characterise the evolutionary potential of a system
as well as which types of variation can be selected upon [13]. Furthermore, in such systems it is
possible to determine how much sources of noise (mutation) interfere with the stable inheri-
tance of information [14].

In asking questions about the emergence of life, however, we want to ask how heritability as
a phenomenon emerges in the first place. That is to say, we do not want to measure the herita-
bility of a specific trait, but instead we want to measure the total number of independent direc-
tions in which the heritability is capable of being non-zero for a given set of underlying
dynamics. Furthermore, it is likely that we will need to deal with intermediate systems in which
things are not as clearly separated as in modern organisms. We may not know what the infor-
mation-carrying component, or the information may be distributed across all the degrees of
freedom of the system. In addition, if asking questions about pre-cellular life, there will not
necessarily be a way to distinguish individuals in the population. We may also not know the
timescale of a single generation of replication or be working with systems in which the dynam-
ics are more continuous and distinct generations cannot be defined. Furthermore, because we
wish to distinguish systems that are not be capable of evolution at all, systems that can evolve
but only in a limited or closed fashion, and systems which are actually combinatorically open-
ended, we must evaluate the overall evolutionary potential of a system over a wide range of
selection pressures and population compositions—not just a single instance of a population.

In order to deal with this, we attempt to find an extension of the G-matrix idea, which
characterizes variation within a population, to something that can capture the range of poten-
tial possible variations between different populations. To be applicable to prebiotic and
abstract models, we also need a definition of heritable variability that does not depend on
there being a known information-carrying molecule, well-defined individuals, or a known
timescale associated with the turnover of generations. As such, we will not refer directly to the
idea of replication with a particular fidelity, but instead try to look at the long-time behavior
of dynamical systems. Heredity is then related to the property of history-dependence. If a sys-
tem’s state remains dependent on its history at long times, that enables it to retain and
remember information. For example, a system with bistability is capable of remembering a
single bit of information.
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What distinguishes heredity in particular from any form of memory is that it is memory
which is amplified extensively via replication. Because information is being amplified, it can
also be degraded without being inevitably lost—the balance between both factors allows for
long-term motion and strong history dependence. A system with heredity, as opposed to one
with just memory, can contain multiple copies of one or more pieces of information, and
each of those pieces of information is constantly being copied. This distinction is what allows
systems with heredity to undergo evolution via population dynamics. The consequence of
this is that even if the dynamics of a piece of the system would be bistable or multistable, if
the various pieces of the system are amplified at different rates then at long times and for
large systems the fastest growing state will dominate. In population genetics this is the phe-
nomenon of competitive exclusion [15]. Eventually, the variation within a population
becomes pinned to the neutral landscape surrounding a particular fitness optimum, and no
longer tells us about the full distribution of possible genotypes but rather only tells us about
those genotypes surrounding the optimum. As a result, the number of heritable states we
detect will be dependent on how long we measure for—in other words, because we do not a-
priori know the appropriate choice of timescale, we cannot recover a unique measurement of
how much heritable variation is possible. Different investigators with different systems
would need to appropriately choose that timescale for their experiments, and there may not
be a good way to say what that timescale should in fact be. This makes it hard to compare
results across models.

If however one performed the above experiment in a variety of different environments
(selection pressures), each environment would potentially pick out a different dominant state
at long times. This is still a somewhat arbitrary choice, as it is necessary to pick a particular dis-
tribution of environments tuned to the given system, such that the perturbation is strong
enough to re-order the competing states but not so strong as to completely alter their structure.
However, there is an advantage to this approach, in that it separates out two distinct mecha-
nisms for the system having a different steady-state configuration. One mechanism is that as
the environment is perturbed, there is a corresponding perturbation to the location of the long-
time stable state. That is, when a particular reaction rate is altered infinitesimally, the resting
concentration of each compound is also altered infinitesimally. The other mechanism is that if
there are a number of states that are local maxima in the replication rate, an infinitesimal
change in the replication rates can alter which state is the global maximum. This means that a
small change in selection pressure may give rise to a discontinuous large change in the long-
term dominant state. This second mechanism is what lets us count the number of local maxima
even if the dynamics only ever finds the global maximum. Since the two mechanisms behave
qualitatively differently under a distribution of selection pressures, we can focus on distinguish-
ing the different types of variation, and by doing so the results should be relatively insensitive
to the particular choice of selection pressures (so long as the distribution is wide enough to find
all the local maxima).

Therefore, the central idea of our metric of heredity is that what we are measuring has to do
with the set of ways in which a given dynamical system can respond to a distribution of selec-
tive pressures. The distribution of selection pressures connects with all of the different possible
variable degrees of freedom of the system, but due to the presence of replication the results of
this are projected onto the subset of those variable degrees of freedom which are also heritable.
Essentially, we can measure the ‘genotype’ hidden behind the set of phenotypes we observe, by
seeing correlations between phenotypes which persist over a variety of different selection pres-
sures (including pressures which explicitly differentiate between those phenotypes).

What remains is to devise a computational method to evaluate how many different geno-
types are possible, given a set of outcomes. In general, real systems will not only have
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fluctuations which may blur the distinction between different species, but also will not have a
clear separation between parts of the system which are responsible for the mechanics of replica-
tion and parts of the system which are responsible for holding heritable information. An auto-
catalytic chemical system, for example, will be accompanied by the decomposition byproducts
of all of the members of the autocatalytic cycle. Those decomposition byproducts may them-
selves vary in relative concentration depending on the particular kind of selection pressure that
is applied, even within the same ‘species’ of core autocatalytic cycle.

In [16], the authors use principal component analysis (PCA) on timeseries data from the
GARDmodel [17] in order to extract out potentially evolvable states of the dynamics. In G-
matrix methods, PCA can be used to determine a hierarchy of drift and selective forces acting
upon the system [18], and so the idea was that if one wished to detect evolutionary response of
GARD, one could first determine the directions of strong fluctuation that would be most
responsive to direct selection pressure and then push on those directions directly in order to
induce a response.

In that methodology however, the selection pressure was not varied over the course of the
timeseries, and so the information they extract primarily concerns the distribution of intrinsic
fluctuations. In our case, we wish to differentiate between sources of intrinsic variation and
sources of extrinsic variation. To this extent, PCA is still a natural algorithm for us to employ
as it is able to sort the different sources of variation in a data set by magnitude. We expect that
in particular, heritable variation will have a multi-modal structure due to populations being
pinned around distinct fitness optima, and will co-vary with changes to the fitness landscape.
On the other hand, we expect instrinsic variation to be unimodal and to depend only weakly
on changes to the fitness landscape.

In general, we will not be able to guarantee that any algorithm we find will perfectly iden-
tify the variation between heritable states versus the variation within a single heritable state.
This problem is nothing new—in bioinformatics, it is often difficult to precisely define a bac-
terial species, and instead a clustering classification called ‘organizational taxonomic unit’
must be used. What we can do is to try to characterize the behavior of the metric when given
ambiguous cases and understand the failure modes. As such, we will have some ability to
devise tests to recognize when the metric cannot be applied accurately and to provide bounds
on the error.

First we will explain the algorithm for computing our heredity metric. Then, we will apply
this metric to an artificial data set with a known number of species, distributed in different
ways and with different mutation rates, in order to show that it can correctly determine the
number of species present and also to show what happens when it breaks down. Next, we
will examine another example system in which we construct a transition matrix describing a
set of overlapping autocatalytic networks, and show that the metric can accurately detect the
number of modules. We will then apply the metric to the GARD model, a non-trivial model
system that has a distributed, ‘compositional’ heredity which has been extensively studied
[8, 16, 17, 19, 20].

Methods
Our algorithm for detecting potentially heritable states is as follows, taking as input the data
matrix P and giving as output the number of heritable states of the dynamics NS. Each row of
the data matrix is a single observation of the dynamical system of interest at long times, driven
by a particular selection pressure (where each row corresponds to a different selection pres-
sure), and each column corresponds to a feature of the system—these can be binary features or
scalars which have been normalized with respect to eachother to have similar variance.
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Data: Matrix of observations P taken at
Result: Number of heritable states NS
begin

Subtract the mean from each column of P;
Add copies of data rows for regularization;
Principal Component Analysis of P! Neigs eigenvalues λi in descending order;
Set the index j = Neigs;
repeat

Compute l> ¼ 1
j

X2j

i¼j
liðli ¼ 0 if i > NeigsÞ;

Set the threshold T = α(λ1 − λ>) + λ>;
Set j to be the index of the first eigenvalue whose value is less than T;

until j not yet converged;
The measured number of heritable states is NS = j + 1;

end

As part of the development of this metric, we tried a number of different techniques: recur-
sive feature elimination to find the subset of minimally correlated features, information-theo-
retic measures such as sequence entropy and mutual information, clustering algorithms (K-
means and Agglomerative Clustering), and dimension-reduction techniques (PCA). These
methods each have a basis in previous work—K-means [8] and PCA [16] in particular having
been used to study heredity in the GARD model. However, we do not have a strong argument
to pick one above all the others on the grounds of first-principles. Instead, we present the
method which out of our test set had the best performance both in terms of robustness, ability
to detect different heritable states, and failure modes which are least confusing. Out of the tech-
niques we tried, we found the best results using PCA combined with an analysis of the eigen-
value spectrum, and so we focus on that.

The reasoning behind using PCA to detect the number of heritable states is that if there are
NS different heritable states distributed in a space of much higher dimensionality, we expect
that there will not be collinearity between any pairs of states in the case where there is any ran-
domness involved in the location of the states in the high-dimensional space. As such, a set of
NS points defines a subspace of dimension NS − 1, which is what the PCA is detecting. If fewer
components are retained, then one heritable state must be explained as a superposition of the
others, but as long as the space of features is of much higher dimension than the number of dif-
ferent heritable states, this projection will generally have an error whose magnitude comes
from the underlying distribution of the heritable states of the system rather than coming from
the fluctuations. By using PCA and looking at the eigenvalue spectrum, we attempt to detect
that difference.

The input to the PCA is a matrix of data P, for which each column is some observable prop-
erty of the system se (features) and where each row is the final system state under a particular
randomly sampled selection pressure. These features are things such as whether a particular
chemical is present beyond a certain threshold concentration, whether a certain gene is present
or absent, etc—they must be chosen by the investigator appropriately to the model in question.
In general, because of the properties of PCA, features should be normalized with respect to
each-other and have a zero mean over the distribution of the data.

The PCA then finds a set of new mutually-independent features which are linear combina-
tions of the given ones such that the covariance between features is zero. These features are
sorted with respect to the amount of variance in the data associated with each feature—this
information is contained within the eigenvalues. If there are certain directions which encode
the differences between heritable states, the variance associated with those directions will grow
as more features are added. This is because that variance comes from the distance between
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heritable states in the feature space. As one increases the dimensionality of that space, distances
within that space will grow monotonically, as each added dimension corresponds to an addi-
tional strictly-positive contribution to the total distance.

At the same time, the per-eigenvalue variance that is due to random fluctuations (e.g. uncor-
related with selective pressures) will remain roughly constant because as new random variables
are added, new eigenvalues are also added at the same rate. So as long as there are a sufficient
number of features, we expect that we should be able to use the eigenvalue spectrum to distin-
guish those that come from the system being in globally distinct states and those that come
from noise. Similarly, as more data is added, we expect the algorithm to converge. In general,
assuming a sufficient number of features, the set of heritable states is a smaller-dimensional sub-
space than the set of possible random fluctuations. As such, the distribution of the data will con-
verge more quickly in directions corresponding to heritable states than it will in the directions
corresponding to fluctuations, and so we expect an increasing contrast as we add more data.

Once there are sufficient features and data points, we can plot the eigenvalues sorted by
rank. In cases where there are multiple attractors for the system state, these show up as a num-
ber of large eigenvalues. There is then usually a large drop, followed by a large number of small
eigenvalues associated with the fluctuations of the system around these attractors. Some exam-
ple eigenvalue plots are shown in the section on the transition matrix model system. While the
gap can often be located by eye, we need the algorithm to reliably detect it in an automated
way. For this purpose, we use an iterative procedure to localize the gap where there is a signifi-
cant separation between the set of eigenvalues before the break and the set of eigenvalues after
the break.

In general, the eigenvalue spectrum from PCA on the expected kind of data has a quickly-
decaying part of fixed length (from heritable variation) followed by a slowly-decaying tail
whose length depends on the number of features and samples. By doing a local average of the
eigenvalues below the cutoff, it is possible to detect the relevant height of the noise floor gener-
ated by mutation and the like in order to subtract it out. This procedure finds the point at
which the local derivative begins to be significantly steeper than the average slope from the ori-
gin to that point—essentially, its a form of cliff-detection that normalizes with respect to a
background mean and mean slope. The parameter α controls the sensitivity of the algorithm. If
α is set to be small, then in general the algorithm will detect finer differences between heritable
states; however, when there are many heritable states, the error tends to be in the form of large
over-estimation of the number of states in the system. If α is made larger, then the algorithm
tends to saturate and cannot detect more than a certain number of heritable states, but errors
are made in the form of under-estimation.

The algorithm takes the different sources of variance across different environments in the
data and sorts them by their strength. It then iteratively searches for a place where the strength
of the variance sources is decreasing much faster than the overall average trend. The iterative
algorithm starts with a wide range and shrinks it towards the largest eigenvalue, but a strong
enough local kink will cause it to converge on that location. If the variance is decreasing
smoothly, the algorithm does not detect a particular subset of variance sources as being special
or distinct and shrinks the search area towards zero, meaning that the number of heritable
states reported is small. If the variance strength suddenly decreases from one eigenvalue to the
next, the iterative algorithm will converge to that point and identify it as a separation between
different types of variance source. The parameter α determines how much the local slope needs
to be different from the global slope in order for the algorithm to get stuck. The comparison to
the global average slope is necessary because over the course of the eigenvalue spectrum, there
are systematic trends where the rate of change of variance strength is asymptotically slowing
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down, and comparing to the global average slope allows the algorithm to adapt to those large-
scale trends.

By examining the convergence pattern of the algorithm for a few cases (as in Fig 1), it is pos-
sible to find an optimum value for α which produces the most stable results with as little data
as possible. We recommend that α = 0.1 be taken as a good initial parameter based on the
results of our test cases. Sensitivity to the choice of αmay be an indication that the algorithm is
failing to detect the difference between heritable variation and the baseline fluctuations, and so
it is generally a good idea to examine a convergence plot to ensure that the algorithm is behav-
ing consistently for whatever choice of α ends up being used.

We have made a simple Python script using Scikit-Learn [21] which implements this met-
ric given a file containing features and observations available at http://www.github.com/
ModelingOriginsofLife/Heredity so that other researchers can easily apply it to their own
data sets.

Consistency checks
Our metric works best when the system has a small number of heritable states compared to the
number of features and independent measurements provided. For a small number of heritable

Fig 1. Convergence of the measured number of heritable states as the number of data points is
increased. This shows the effect of regularization and of the choice of α on the convergence pattern in this
particular test case. The parameters for these data are f1 = 0.05,m = 0.2, NS = 40.

doi:10.1371/journal.pone.0140663.g001
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states, the gaps are generally very well-defined, but as the number increases it becomes harder
to distinguish them from the noise. The algorithm strictly cannot detect more heritable states
than there are features. For this reason, as many potentially relevant features as possible should
be provided in the data. Because of this limit, systems with combinatorically large genetic
spaces must be broken up before they can be analyzed with our metric.

This can be done by controlling the distribution of selection pressures. Our metric only
detects heritable states which are influenced by variation in the selection pressure. If one con-
strains the selection pressure to a low number of dimensions, that will isolate a particular sub-
set of heritable states. One can then use different selection pressure distributions to find
different subsets of heritable states in the same system. This is analogous to measuring the heri-
tability of a single gene at a time, rather than looking at all possible genes at once.

When directly applying selection pressure to a particular subset of features, the variance in
those features will scale differently than the variance coming from underlying noise. This can
create an artificial signal that appears to correspond to a set of heritable states where really all
that it is detecting is the distribution of external impulses. As such, it is best to exclude any fea-
tures which are being directly driven by the externally varying selection pressure from the anal-
ysis. For example, in a chemical system with a number of compounds one form of restricted
selection pressure would be to add reactions which decompose certain combinations of com-
pounds. The compounds which can be directly decomposed by this reaction should not be
included as features in the analysis.

Another possible solution is to consider the properties of systems not in terms of a fixed
count of the number of heritable states, but in terms of scaling laws. If we were to imagine apply-
ing our metric to DNA sequences of length L being replicated via the polymerase chain reaction,
then the number of heritable states is expected to scale as exp(L). If L is large, we cannot expect
to sample all possibilities, but if L is small then it is still possible to do so. As such, we could imag-
ine fixing L (or filtering the results according to L) and then performing the analysis for different
L values. In the DNA system, we might be able to see that the number of heritable states is scaling
in an open-ended way as we increase L (so the heredity is unlimited), and that it is growing expo-
nentially with L (so the heredity is combinatoric in nature). On the other hand, if we were to do
something similar in other dynamical systems, we might see a characteristically different scaling.

There may also be problems when there is no heredity at all in the system. When this hap-
pens, all directions have the same apparent variance and so the behavior of methods to detect
the ‘jump’ between sets of eigenvalues often becomes ill-defined. This particular error can be
detected by examining the convergence curve of the algorithm periodically as one accumulates
more data rows—if there is only one species, the number of detected species will keep increas-
ing as one adds data, until it is equal to roughly 30% of the number of features.

It is also possible to use a form of regularization to help prevent this error in the first place.
To do so, we artificially add a small number of data rows with very low variance (essentially an
artificial ‘species’), and then subtract one from the detected number of heritable states at the
end of the analysis. In our examples, we do this by taking a random data row from the system
and making 10 copies of it. This guarantees some degree of consistency with the underlying sta-
tistics of the data (which might be violated if one were to use a completely arbitrary artificial
species). We find that this does not significantly harm convergence elsewhere, but strongly
helps in the case where there is actually only one heritable state in the system.

Results
We present a number of test cases in order to evaluate the performance of our metric. We start
with a straightforward case in which we define apriori the structure of the heritable states, and
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see if our metric can detect the number of heritable states built into the system. In the second
case, we model the dynamics of mutation and replication with a transition matrix and evaluate
the algorithm on the resulting attractors—this lets us test whether the method of using a distri-
bution of selection pressures works for picking out heritable states. The third test case is the
graded autocatalysis replication domain (GARD) model [8, 19] of compositional heredity in
replicating vesicles, which lets us test our metric on a non-trivial system whose heredity prop-
erties have been studied elsewhere.

Species Detection
In this test case, we artificially prepare a population of distinct heritable states in order to see
whether or not the metric properly detects how many states are present. Here, we do not try to
see heritability emerge from an underlying dynamic but instead impose it directly in a popula-
tion genetics framework such that each heritable state is the equivalent of a distinct species of
organism. We implicitly allow the process of competitive exclusion proceed to completion in
each case, so that the final state of the system for each independent run is a particular species
picked out of the set of possible species, plus mutation.

A system state is comprised of a number Nf of binary features. Each species is a particular
system state, with a fraction f1 of bases set to 1, and the rest set to zero. When generating a
novel end-state, we pick a random species and then apply mutation to its binary feature vector
—each feature has a probabilitym of being flipped. We generate a population of NP such states,
which we then analyze using our metric.

We discuss a number of particular configurations of this process, in order to try to see how
the algorithm responds to various possible problems that might arise in real data. The base case
we will consider has f1 = 0.5,m = 0.05, Nf = 1000, NP = 1000, and a variable number of species
(sampled uniformly). This is a relatively gentle case, as the average distance between the binary
vectors for two different species is d� 22, whereas the average distance between members of
the same species is d� 10, and so the various heritable states should be well-clustered. The per-
formance of the algorithm in this case is shown in Fig 2a. In this base case, the correct number
of species is detected to within one species error out to NS = 150—this means that in many
cases there may only be a few individuals of those species in the system.

We may also want to measure systems in which fluctuations are very large compared to the
systematically inherited variance, and so we want to see what happens when the mutation rate
m becomes large in order to see how the algorithm fails. Our second configuration is the same
as the base configuration, but with a much higher mutation rate:m = 0.2. This means that the
average distance within a species is d� 19—close to the average distance between a random
pair of species. As the number of species increases, we expect to have several of the random
species end up being closer together than the size of their mutational haloes. The results are
shown in Fig 2b. For small species counts, the algorithm is still accurate, but at larger species
counts there is a point at which the algorithm fails to detect all of the species present. An
increased NP, corresponding to the availability of more data samples, allows the algorithm to
detect the correct number of species. As a result, a convergence plot (Fig 1) showing the mea-
sured number of species calculated as a function of the number of data rows NP may be useful
in determining the trustworthiness of the metric for a given system.

Another common complication is that the distribution of values of the binary features is not
uniform. If for example there is a particular chemical produced in only one of the heritable
states, then a feature associated with that chemical would be zero most of the time but rarely
would be one. This would not simply be an improbable fluctuation, but instead signifies the
presence of a particular heritable state. In terms of this test case, the consequence of these rare
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Fig 2. Behavior of the heredity metric on the species detection test case. For these plots, perfect detection corresponds to the line y = x. These cases
use α = 0.1, NP = 1000,Nf = 1000, and 10 extra duplicate sequences for regularization. a) f1 = 0.5,m = 0.05, b) f1 = 0.5,m = 0.2, c) f1 = 0.05,m = 0.05, d) f1 =
0.05,m = 0.2, e) f1 = 0.05,m = 0.05, 0.2, f) f1 = 0.05, 0.5,m = 0.05, g) f1 = 0.05, 0.5,m = 0.05, 0.2, h) f1 = 0.05,m = 0.05, heterogeneous population.

doi:10.1371/journal.pone.0140663.g002
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but significant feature values is that the average distance between different species is reduced.
We look at two situations here: one in which f1 = 0.05 andm = 0.05 (Fig 2c) and one in which
f1 = 0.05 andm = 0.2 (Fig 2d). This effect does somewhat destabilize the algorithm (especially
in the high mutation case), but in general is less harmful than simply having a high mutation
rate, even though for f1 = 0.05 andm = 0.05 the average distance between species is the same as
the average distance between members of a species.

The next configurations we look at is when the binary features are not homogeneous. We
look at three examples of this: one in which half of the features have f1 = 0.5 and the other half
have f1 = 0.05 (Fig 2e); one in which half of the features havem = 0.05 and the other half have
m = 0.2 (Fig 2f); and one in which we have four types of features corresponding to all combina-
tions of the former cases (e.g.m = 0.05, 2 and f1 = 0.05, 0.5 (Fig 2g). In general, the algorithm
performs reasonably well for these cases, tending to make errors in the direction of under-esti-
mating the number of species.

The final case we look at is when the species themselves are not uniformly sampled. Instead,
we sample the various species with probability such that:

pi ¼
ð1� 1=NSÞi�1

=NS i � NS � 1

ð1� 1=NSÞNS�1 i ¼ NS

(

This means that the population ratio between the most common and least common species
grows as NS − 1. Even with a low mutation rate (m = 0.05), this appears to make the problem
significantly harder when the number of species to distinguish grows. This makes sense, as at
some point the rarest species only have a handful of examples in the population and are com-
parable to variation due to mutational noise. As might be expected, the algorithm degrades in
the form of under-detecting the correct number of species. One complication however is that
as the (apparent) mutational floor grows, this can interfere with the detection of species that
were correctly detected previously. This case is plotted in Fig 2h.

When applying this algorithm to a novel system in which the behavior is not already well-
understood, it is important to recognize potential signs that the algorithm may not be detecting
the correct number of heritable states due to an insufficient number of features or data points.
To this end, we varied the number of features and data rows in this simple case and measured
the number of species that can be included before the algorithm’s performance degrades. Spe-
cifically, we look at the point at which the error in the measured number of species exceeds
50%. The results of this are plotted for an easy test case (f1 = 0.5,m = 0.05, homogeneous popu-
lation) and a difficult test case (f1 = 0.05,m = 0.05, heterogeneous population) in Fig 3 (upper
and lower panels respectively). In the case of a homogeneous population, the ability of the algo-
rithm to resolve distinct species appears to be linear in the number of data points (requiring
roughly 4NS data points in the easy case) and sublinear in the number of features (though the
algorithm can never detect more species than there are features due to the properties of PCA).
When the population is heterogeneous, then the scaling with the number of data rows seems to
be more severely limited, dependent on the functional form of the distribution of heritable
states.

Transition Matrix Model
In the previous case, we artificially constructed a specific distribution of species. In real cases,
however, we expect to use a distribution of selection pressures in order to probe the heritable
states of a system. We extend the idea of the former test case to take into account dynamical
processes and the response to selection by using a transition matrix style approach to a replica-
tive process. In this model, the overall system is described by a distribution of random walkers
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Fig 3. Confidence regions for detecting different numbers of heritable states.Upper: detection confidence regions (50% error) for the easy case
(m = 0.05, f1 = 0.5, uniform distribution of species). In this case the algorithm is mostly data-limited, accurately detecting at most a number of species roughly
equal to 0.25NP. Lower: detection confidence regions for a harder case (m = 0.05, f1 = 0.05, heterogeneous distribution of species). In this regime the
algorithm is feature-limited—more features are needed to detect more species.

doi:10.1371/journal.pone.0140663.g003
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over a set of nodes. There is a transition matrix which governs the movement of the random
walkers between nodes. Additionally, replication is implemented by way of a per-node replica-
tion rate, such that each iteration more walkers may leave a node than initially entered it. This
can be thought of as writing a transition matrix where the columns are not normalized to 1.

This sort of model is similar to quasi-species in population genetics. In such systems, there
is an error-threshold [22] with respect to the balance between mutation (links from a node to
other nodes) and replication (links from a node to itself). When the selective advantage of a
node is sufficiently strong compared to mutational diffusion, then that node ends up forming
the core of a well-defined species—e.g. as one increases the number of potential nodes, the
ratio between the average population of the nodes belonging to the species and the average
population of the nodes not belonging to the species diverges to infinity. On the other hand, if
mutation is stronger than replication then this ratio becomes independent of the total number
of nodes (e.g. the population fills the space of possibilities semi-uniformly).

In our case, we would like to build a transition matrix such that its’ overall structure allows
for the existence of clusters of nodes which mutually exceed the error threshold. This is a closer
analogy to autocatalytic chemical systems, in which a given compound will not necessarily
directly replicate itself, but will instead proceed through a number of intermediaries (which
may have their own side-reactions, or be part of multiple autocatalytic cycles).

Such transition matrix based systems are linear, which means that the dynamics can be
solved directly by computing the eigenvalues of the transition matrix. At long times, the state
of the system will always be dominated by the largest eigenvalue, which will tend to not be
degenerate unless there is a strong symmetry in the transition matrix (e.g. something like a
block-diagonal structure). This is equivalent to competitive exclusion. As such, even if we build
a transition matrix with multiple species which replicate with fidelity, at infinite time we should
only observe a single system-wide state corresponding to the largest eigenvalue. This means
that if we wish to detect the cluster structure of the transition matrix strictly from state data, we
cannot do so unless we apply a distribution of selection pressures (which takes the form of per-
mutations to the transition matrix) or otherwise stochastically drive the system strongly
enough to overcome the gaps between its large eigenvalues.

To produce this type of topology, we use the following procedure:

1. Randomly assign each node membership to a particular cluster ki (out of NC total clusters),
and a replication rate ri = r0 + δrηi, where ηi is a random variable distributed uniformly
between [−1, 1]

2. For each node, create NL random links to other nodes. If the same pair of nodes is chosen
multiple times, sum the weights of the links

3. For each such link, assign a weight: (1 + γ)/2 if the nodes belong to the same cluster, or (1 −
γ)/2 if the nodes belong to different clusters.

4. Normalize the weights of links leaving each node so that they sum to ri

This produces matrices with clusters that still have weak inter-cluster connections. An
example of such a network with 100 nodes, NC = 3 clusters, and NL = 20 links per node is
shown in Fig 4. We generally have each node connect to 20% of the other nodes in order to
ensure that there are few nodes which do not link to any other member of their cluster (which
becomes a factor as the number of clusters grows).

Given a transition matrix T of this form, we can attempt to apply our metric by simulating
the dynamics of this system. Rather than simulate individual random walkers, we work with a
vector encoding their population. At each iteration, we apply the transition matrix to this
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vector pt+1 = Tpt and then normalize the vector to 1 (this has no effect on the dynamics, but
helps keep the numerics stable). Each run, we start with a random population vector and create
a permuted transition matrix by randomly reducing the on-site replication rates of half of the
nodes by about 1% in order to create a distribution of selection pressures. In addition, we allow
the replication rates at each node to vary randomly (uniformly) by ±1% each iteration to repre-
sent the effects of a noisy environment.

We use networks with 1000 nodes, NL = 200, r0 = 1.1, δr = 0.03, γ = 0.999, and a variable
number of clusters. We perform 250 iterations per run over 1000 runs and use the resulting
population vectors as our data points for the heredity metric. The results are shown in Fig 5.

For small numbers of clusters, our algorithm successfully detects the cluster count. How-
ever, as the number of clusters grows, between-cluster transitions become more accessible due
to the increasing number of between-cluster links compared to within-cluster links. This
results in the gap in the eigenvalue plot shrinking, which makes it harder to detect the correct
number of clusters (it is somewhat equivalent to what happens with a large mutation rate in
the previous test case). When the number of clusters is larger than 32 or so, the gap seems to
disappear entirely (though there is clearly still some kind of structure in the eigenvalue plot)—
the result is that our metric detects only the steep slope between the first few eigenvalues, and
predicts a very small number of clusters compared with the actual amount.

GARD
The GARDmodel [8, 19] is a model which has been observed to have a form of compositional
heredity that is significantly different than the type of heredity obtained via information-carry-
ing polymers [23]. In GARD, the fundamental objects of the system are vesicles which can be

Fig 4. Transitionmatrix network structure. Example structure of the transition matrix with 100 nodes,NL =
20, andNC = 3 visualized as a network. The darkness of edges is proportional to the probability of a transition
along that edge. Even though there are more between-cluster links than within-cluster links, within-cluster
links are a factor of 1000 more likely to be followed than between-cluster links, meaning that overall a random
walker tends to stay within its current cluster.

doi:10.1371/journal.pone.0140663.g004
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made from combinations of different types of lipids. The vesicles grow via a catalytic process—
each lipid type has some affinity with each other lipid type (given by the random affinity matrix
β), and thereby controls the rate at which new lipids are added to the vesicle. When the vesicle
reaches sufficient size Nmax, it divides, randomly distributing its lipids to two child-vesicles of
size Nmax/2. As such, there is replication built into the model, but that replication takes place
(in general) at a very low fidelity. As such, one of the key questions of GARD is whether or not
high-fidelity states will naturally emerge from the dynamics as a result of a form of selection
predicated on the robustness of a dynamical attractor.

To detect these high-fidelity replicators, the authors look at the similarity of a vesicle to its
parent and its children [8]. This is used to filter out a subset of states that qualify as sufficiently
high fidelity to be of interest. These states are then clustered using K-means clustering, with the
silhouette metric used to determine the optimal number of clusters. As such, it is an example of
an independent measurement of heritable states that we can use for comparison. The distinc-
tion is that in principle our metric should be able to operate without explicit knowledge of the
pattern of replication of individuals. An additional complication is that certain states may be
spontaneously generated more often than others, creating low-fidelity states with a high rate of
occurence. These may end up being lumped together with the actual high-fidelity replicators
by our metric, which does not distinguish whether an attractor is due to a local-in-time

Fig 5. Eigenvalue plot corresponding to transition matrices with different numbers of clusters.When
the number of clusters is small, there is a clearly-defined gap between eigenvalues corresponding to cluster
identity and eigenvalues corresponding to the fluctuations. As the number of clusters increases, the gap
closes and it becomes more difficult to detect the structure of the population. Inset: Number of clusters
detected by the algorithm versus actual number of clusters.

doi:10.1371/journal.pone.0140663.g005
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memory process or because of the structure of the underlying dynamical system. However, if
the sensitivity to selection pressure is different for the two types of attractors, that can register
in the PCA eigenvalue spectrum and may allow them to be distinguished.

We follow the implementation of the GARDmodel as given in [8], using specific βmatrices
with the number of lipid types NG = 100 provided by the authors (as the distribution of values
in the matrix is important to the degree of heredity observed). However, rather than using the
repeated growth and division of a single individual vesicle, we simulate a population of vesicles
under a distribution of selection pressures and then only permit our metric to observe the sys-
tem-averaged compositions. The idea here is to test our ability to use competitive exclusion to
extract out the individual-level heredity from an analysis of the system that is not able to distin-
guish the boundaries between individuals. We use populations of size P = 1, P = 10, and
P = 100, and simulate for approximately 100 generations (direct examination of the timeseries
data shows that even for P = 1000 the system has reached steady by 30 generations, and so this
length of time should generally be long enough to consistently reach steady state for smaller
populations).

Selection pressure was added by specifying a particular target composition~t and then multi-
plying the elements of the affinity matrix β according to:

βij ! ð1þ stiÞβij ð1Þ

where σmeasures the strength of the selection pressure. We find that selection pressures in the
range between σ = 5 and σ = 50 seem to be sufficient to change the dominant state without
destroying the structure of the underlying dynamics (whereas for σ = 500 the underlying states
are clearly distorted). We use σ = 50 in our simulations, as the larger we can safely make σ the
more easily we can sample rarer heritable states.

We measure the mean number of heritable states for populations of size 1, 10, and 100 aver-
aged over 24 different random βmatrices. Error bars are calculated from the standard devia-
tion of the results, and the measurements for different population sizes appear to be consistent
with each other to within the measured error bars. We find that the number of heritable states
detected is consistent with the numbers previously reported—on the order of about 3 distinct
heritable states on average. Furthermore, we are able to detect the effect observed by the
authors that the number of heritable states tends to decrease with the ratio of the vesicle size
and number of distinct lipid types. The overall difference from Nmax = 24 to Nmax = 500 is mul-
tiple standard deviations, and is consistent across the three population sizes. This suggests that
we have a sufficient number of simulations for these averages to be statistically relevant. The
results of our simulations are plotted in Fig 6.

When comparing our metric to the number of compotypes measured in [8], we note that
the measurements agree at small Nmax, but disagree at large Nmax, where the detected NC is sig-
nificantly smaller than the detected number of heritable states. The main difference in our pro-
tocols is that we sample over a range of perturbations in the selection pressure, whereas NC is
measured based on the unperturbed dynamics. As such, due to competitive effects masking
certain states, we would expect to detect a larger number of potentially heritable states than
one would find in the system under any particular fixed selection pressure.

In order to check our intuition as to what the PCA metric is measuring and verify that it is
detecting real distinctions, we look in detail at the dynamics of the GARDmodel for a specific
choice of β for which our algorithm detected the existence of three species when Nmax = 50. We
project the trajectory of the global system state for a large population (P = 1000) as a function
of time onto the the first two eigenvectors of the PCA and then measure the mean direction of
flow (averaged over the distribution of selection pressures) on the resulting 2D space. We find
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that individual trajectories go to isolated points in the space, but as we vary the selection pres-
sure an overall structure emerges in which there are clearly multiple distinct regions of the
phase space—which region the system eventually ends up in depends on the particular selec-
tion pressure. One region corresponds to an extended linear subspace, where the details of the
selection pressure position the system state at different places along the line. Most of the time
the winning state is somewhere on this line. The other region is more broadly distributed but
appears to have a second saddle point and a corresponding pair of distinct peaks. This structure
is shown in Fig 7.

Discussion
One of the difficulties of synthesizing the results of abstract modelling efforts is that often the
details of the model are sufficiently idiosyncratic that it is difficult to directly compare the

Fig 6. Hereditable states as a function of vesicle size. In the GARD paper, the authors observed the trend
that as the vesicle sizeNmax was increased, the number of heritable states decreased [8]. We show that our
algorithm can detect this trend successfully by plotting the average number of heritable states measured as a
function of Nmax, for simulations of 24 different βmatrices, with the number of lipid typesNG = 100 in each
case. The points are slightly offset horizontally for clarity, but all are measured at the same values of Nmax: 24,
50, 100, 200, 500. Error bars indicating a confidence interval of one standard deviation in the measurement
over 24 simulations are shown. The black hexagons show the average number of distinct compotypes NC

detected in simulations in [8] using the sameNG.

doi:10.1371/journal.pone.0140663.g006
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results of one model to another, or to experiment. A model that works in terms of a synthetic
artificial chemistry may not easily make direct predictions about steady-state chemical concen-
trations in a real chemical system, because the details of chemical energies and reaction rates
will likely be different. This means that although some insight can be gained, it is hard to say
concretely what the one system shows us about the other. One way to overcome this limitation
is to devise measurements which integrate out the details of the system but capture features
that are somewhat representation-invariant. One could, for example, show that increasing the
temperature in the synthetic system causes a certain statistical characteristic of the distribution
of chemical compounds to change, and then ask whether or not the same trend is observed
experimentally.

Much of the work being done to understand the emergence of life from prebiotic chemistry
faces this difficulty. There are a number of different scenarios for how life could have emerged,
and they each use different fundamental ‘objects’ to build models: the metabolism-first hypoth-
esis uses chemical distributions in which heredity would be encoded in the particular pattern
of attractors of the chemical system, the RNA-world hypothesis uses populations of informa-
tion-containing polymers, and the lipid world hypothesis uses compositional information

Fig 7. Flow diagram of GARD dynamics in heritable-state space. This figure shows the average time-
dependent behavior of the system state for a particular choice of the βmatrix and a distribution of selection
pressures, projected onto the first two PCA eigenvectors. The thickness of the streamlines indicates the
magnitude of the vectors in the underlying averaged vector field. As the mean vector field is the result of
averaging a number of random walks, this can be thought of as the strength of the local bias. The underlying
greyscale intensity shows the logarithm of the probability density for the system state being found at that
location.

doi:10.1371/journal.pone.0140663.g007

Transferable Measurements of Heredity in Models of the Origins of Life

PLOS ONE | DOI:10.1371/journal.pone.0140663 October 19, 2015 18 / 20



combined with cells that concretely identify the ‘individuals’ to which a given composition
belongs. Experimental work on artificial cells usually uses some combination of these various
features. Beyond that, there are a number of even more abstract computational models of artifi-
cial life which use anything from patterns embedded on a grid (e.g. cellular automata) to
molecular dynamics simulations in which positional information might be relevant. If we want
to understand the emergence of heredity and ask questions such as ‘how does heritability scale
with respect to various parameters?’ in a transferrable way, we need a way to measure heritabil-
ity which can apply to all of these systems.

We have presented a PCA-based heredity metric that helps bridge this gap. By applying a
distribution of selection pressures, we can detect the number of heritable states of models even
in the case in which competitive exclusion is allowed to proceed to completion. This makes it
possible to analyze heritability and evolvability as intrinsic characteristics of a given model,
rather than being tied to a particular length of observation of set of initial conditions. Further-
more, the metric we have introduced here is sufficiently general that it should be possible to
apply it to a wide array of different abstract models as well as experimental data. Although the
distribution of selection pressures and choice of relevant features must be customized appro-
priately for each model, the analysis itself is fairly simple to compute.

One question that remains is whether or not it is possible to detect the distinction between
limited and unlimited heredity using approaches of this nature. A modern biological organism
has what can be thought of as unlimited heredity—it is possible for the organism’s genome to
become longer if there is a need to store more information, so in practice the number of possi-
ble heritable states is infinite. On the other hand, the systems we have looked at in this paper
have an intrinsic and fixed number of heritable states, and no obvious mechanism by which
this number can be changed at will. We know from looking at the convergence properties of
our metric that it tends to fail when the number of possible species is large compared to the
number of data rows and features—if we are dealing with a system that has a truly infinite
number of heritable states, the likely outcome is that this metric will predict that there is only a
single heritable state. If we are interested in discovering a system in which unlimited heredity
exists or emerges, this is a significant problem.

We have suggested two approaches to solving this problem. One approach is to not probe
the overall heritability potential of the system as a whole, but instead to probe the heritability
potential with respect to very specific types of selection pressure and then to combine these
results into an overall picture of the evolvability of the system. The other approach is to reduce
the scale of the system in order to reduce the combinatoric explosion of heritable states, and
then measure how the number of heritable states scales with respect to system size. Heredity
originating from replicating polymers is likely to scale differently than compositional heredity
or heredity emerging from catalytic networks, and so this analysis may allow one to character-
ize different mechanisms of heredity as belonging to distinctive classes.
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