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Abstract Inflammatory osteolysis is governed by exacerbated osteoclastogenesis. Ample

evidence points to central role of NF-kB in such pathologic responses, yet the precise mechanisms

underpinning specificity of these responses remain unclear. We propose that motifs of the scaffold

protein IKKg/NEMO partly facilitate such functions. As proof-of-principle, we used site-specific

mutagenesis to examine the role of NEMO in mediating RANKL-induced signaling in mouse bone

marrow macrophages, known as osteoclast precursors. We identified lysine (K)270 as a target

regulating RANKL signaling as K270A substitution results in exuberant osteoclastogenesis in vitro

and murine inflammatory osteolysis in vivo. Mechanistically, we discovered that K270A mutation

disrupts autophagy, stabilizes NEMO, and elevates inflammatory burden. Specifically, K270A

directly or indirectly hinders binding of NEMO to ISG15, a ubiquitin-like protein, which we show

targets the modified proteins to autophagy-mediated lysosomal degradation. Taken together, our

findings suggest that NEMO serves as a toolkit to fine-tune specific signals in physiologic and

pathologic conditions.

Introduction
The transcription factor NF-kB is expressed ubiquitously in all cell types, readily activated by numer-

ous factors and cytokines (Abu-Amer and Faccio, 2006; Hayden, 2004; Ravid and Hochstrasser,

2004; Ting and Endy, 2002);it plays critical roles in modulating inflammation, immunity, cell prolifer-

ation, differentiation, and survival. While baseline NF-kB activity is essential for physiologic functions

such as skeletal development (Abu-Amer, 2013; Courtois et al., 2001; Häcker and Karin, 2006;

Li et al., 2002; Ruocco and Karin, 2005; Ruocco and Karin, 2007), exacerbated and chronic unre-

strained activity of this transcriptional factor during inflammation leads to undesired harmful effects

with major dysfunctional consequences including osteolysis (Abu-Amer, 2013; Boyce et al., 2010;

Pasparakis, 2008; Ruocco and Karin, 2005; Schett and David, 2010; Xing et al., 2005; Xu et al.,

2009). In this regard, we and others have shown that, whereas baseline activity of the principal NF-k

B kinase IKKb (also known as IKK2) is essential for normal skeletal development, its hyper and pro-

longed activation is pathologic (Otero et al., 2010; Zhang et al., 2013). In addition, NF-kB is the

primary pathway that mediates inflammatory responses of numerous bone-targeting cytokines such

as TNFa, IL-1b, and IL6 (Abu-Amer, 2009).

When a stimulus is provided, signaling molecules are recruited to distal domains of the appropri-

ate receptor leading to the assembly of the IKK complex which includes IKKg/NEMO and IKKb,

among other adaptor proteins. This process leads to phosphorylation of downstream substrates,

most notably, IkBa and activation of downstream transcriptional machinery (Boyce et al., 2005;
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Boyce et al., 2010; Franzoso et al., 1997). Gene deletion studies have shown that members of the

NF-kB signal transduction pathway, which include NF-kB1 (p50), NF-kB2 (P52), RelA (p65), IkBa,

IKKa, IKKb, and NEMO, are crucial for normal development of osteoclasts and their survival, and are

considered as the principal mediators of RANK signaling (Boyce et al., 1999; Boyce et al., 2010;

Franzoso et al., 1997). Despite the intense research efforts focusing on the role of this pathway in

physiologic and inflammatory responses, little is known regarding the cell-specific response to a

given signal and pairing it with corresponding function in homeostatic and pathologic settings. For

example, whereas RANKL, TNFa, IL-1b, and other factors activate NF-kB in osteoclast precursors,

the molecular machinery that assigns unique signaling signatures for each stimulus remains vague.

The NF-kB pathway offers a toolbox that enables signal and cell-specific signaling cascades. In

this regard, signal specificity can occur at proximal (juxtaposed to receptors) and distal (downstream)

pathway sites. In the former case, ligation of cell surface receptors such as TNFa receptor (TNFR),

RANK or IL1 receptor (IL-1R) triggers a chain of events that leads to the formation of a signalsome

that includes unique TRAF proteins, IKKa/b and NEMO. It has been further shown that this complex

is regulated by post-translational machineries, chiefly phosphorylation, ubiquitination and SUMOlya-

tion (Chen, 2012; Ikeda et al., 2010; Ikeda et al., 2011; Laplantine et al., 2009; Liu and Chen,

2011; Ni et al., 2008; Sebban et al., 2006; Shambharkar et al., 2007; Yeh, 2009), which are

believed to contribute significantly to signal specificity by directing downstream cues.

NEMO, a key player of the IKK signalsome, is a scaffold protein that lacks enzymatic activity; yet,

it is essential for NF-kB signaling evident by convergence of upstream signals directed by TRAFs

prior to assembly of downstream IKK signals (Li et al., 2001; May et al., 2002; Prajapati and Gay-

nor, 2002; Yamamoto et al., 2001). Recent studies have shown that specific NEMO domains and

numerous lysine residues throughout the different domains of NEMO, especially the ubiquitin and

zinc finger domains, undergo extensive ubiquitination, SUMOylation, and other post-translational

modifications (PTMs) in response to various stimuli (Cordier et al., 2009; Hay, 2004; May et al.,

2002; Rushe et al., 2008; Schröfelbauer et al., 2012; Sebban et al., 2006; Wu et al., 2006). Spe-

cifically, these domains and lysine residues serve as specific docking sites utilizing PTM moieties to

eLife digest The human skeleton contains over 200 bones that together act as an internal

framework for the body. Over our lifetime, the body constantly removes older bone tissue from the

skeleton and replaces it with new bone tissue. This “bone remodeling” also controls how bones are

repaired after being damaged by injuries, disease or normal wear and tear.

Cells known as osteoclasts are responsible for breaking down old bone tissue and participate in

repairing damaged bone. A cellular pathway known as NF-kB signaling stimulates other cells called

“bone marrow macrophages” to become osteoclasts. A certain level of NF-kB signaling is required

to maintain a healthy skeleton. However, under certain inflammatory conditions, the level of NF-kB

signaling becomes too high causing hyperactive osteoclasts to accumulate and inflict severe bone

breakdown. This abnormal osteoclast activity leads to eroded and fragile bones and joints, as is the

case in diseases such as rheumatoid arthritis and osteoporosis.

Previous studies have shown that a protein called NEMO is a core component of the NF-kB signal

pathway, but the precise role of NEMO in the diseased response remained unclear. Adapala,

Swarnkar, Arra et al. have now used site-directed mutagenesis approach to study the role of NEMO

in bone marrow macrophages in mice. The experiments showed that one specific site within the

NEMO protein, referred to as lysine 270, is crucial for its role in controlling osteoclasts and the

breakdown of bone tissue. Mutating NEMO at lysine 270 led to uncontrolled NF-kB signaling in the

bone marrow macrophages. Further experiments showed that lysine 270 served as a sensor to allow

NEMO to bind another protein called ISG15, which in turn helped to decrease NF-kB signaling and

slow down the erosion of the bone.

These findings suggest that site-specific targeting of NEMO, rather than inhibiting the whole NF-

kB pathway, may help to reduce the symptoms of bone disease while maintaining the beneficial

roles of this essential pathway. However, additional research is required to identify NEMO sites

responsible for controlling the inflammatory component.
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enable recruitment of unique signaling complexes and pathway substrates in one hand, and protea-

some-mediated degradation, in the other hand. Indeed, the critical role of a number of lysines and

other residues such as K270, K302, K312, K392, C417 in cellular signaling have been described

(Alhawagri et al., 2012; Bloor et al., 2008; Ni et al., 2008; Yang et al., 2004). In this regard, series

of NEMO mutants at specific lysine residues located at the coil zipper domain revealed dominant

negative and constitutive activation properties of NEMO (Bloor et al., 2008).

In the current study, we tested the functional significance of key lysine residues individually in the

ubiquitin and zinc finger domains of NEMO in response to RANKL. This approach was designed to

test our hypothesis that certain NEMO lysine residues serve as signal-specific docking sites that facil-

itate the assembly of unique signal activating- or suppressing-protein complexes in cell and stimulus

specific manner.

Results

NEMOK270A mutant expression in bone marrow macrophages
exacerbates RANKL-induced osteoclastogenesis
To address our aforementioned hypothesis, we conducted broad lysine (K) screen of NEMO and

substituted strategic K and D residues in tandem with alanines and asparagine, as indicated,

(Figure 1A), to disrupt post-translational modifications of specific NEMO lysines, and hence, impede

assembly of protein complexes and alter subsequent signaling. Wild type (WT) NEMO (NEMOWT)

and various NEMO K mutants (NEMOK) were cloned in pMx-retroviral plasmid and expression of

representative clones was confirmed in HEK293 cells (Figure 1B). Viral particles of these plasmids

were produced using PLAT-E cells as described previously (Swarnkar et al., 2016). Protein expres-

sion of NEMOWT and NEMOK mutants was conducted in primary bone marrow macrophages (BMMs

a.k.a osteoclast precursors). BMMs from WT or NEMO null cells (NM-cKO) expressing NEMOK270A

formed ample osteoclasts (OC), reminiscent of inflammatory condition, upon exposure to permissive

concentration of RANKL, when compared with cell expressing NEMOWT (NM-WT) (Figure 1C) or

other forms of NEMO mutants (Figure 1—figure supplement 1A), suggesting sensitization of

RANKL signaling in the absence of K270 residue in NEMO. These observations were further sup-

ported by increased OC surface area (Figure 1D), elevated expression of osteoclast differentiation

markers (Figure 1E–J) and NF-kB activity (Figure 1K) in RANKL-treated NEMOK270A expressing

BMMs compared with NEMOWT (NM-WT) and other NEMO forms. Expression of NEMOK270A (also

referred to in figure labels as NM-KA for brevity) in BMMs was robust and stable compared with

NM-WT and other NEMO mutants (Figure 1—figure supplement 1B), despite infection of BMMs

with equal number of viral particles. In fact, hyper osteoclastogenesis by NEMOK270A was not due to

higher expression of the transgenic NEMO protein because 1:20 dilution of viral particles which

gave rise to protein expression levels approximating those of NEMOWT and of other NEMO con-

structs still provoked heightened osteoclastogenesis (Figure 1—figure supplement 1A–B). These

findings support the notion that intact K270 appears to be essential to restrain RANKL-induced

excessive osteoclastogenesis.

Expression of NEMOK270A in vivo leads to inflammatory osteolysis and
joint pathology
To examine the functional relevance of this in vitro abnormal signaling by NEMOK270A mutant in the

in vivo state, we generated NEMOK270A transgenic mice by cloning this construct in the Gt(ROSA)

26Sor locus as described previously (Figure 2—figure supplement 1A; Otero et al., 2012;

Swarnkar et al., 2014). Gt(ROSA)26Sor harboring NEMOWT (ikbkg) was also generated as a control

(Figure 2—figure supplement 1B). Mice were born at mendelian ratio, yet transgenic NEMOK270A

(ikbkg) knockin (KA) mice were significantly smaller in size compared with transgenic WT and control

mice (Figure 2A). Upon closer analysis, we observed significant joint swelling (Figure 2A; arrows),

splenomegaly, altered hematopoiesis (Figure 2B and Figure 3—figure supplement 1), and

enhanced mortality at 6–8 weeks of age (not shown). Micro-computed tomography (uCT) scans and

X-ray images revealed dramatic bone loss reaching 50% of BV/TV in severe cases (Figure 2C–I and

Figure 2—figure supplement 1C–F), with no such loss in NEMOWT transgenic mice (NM-WT-Tg)

(Figure 2—figure supplement 1G–L). Notably, knee and ankle joints were severely damaged
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(Figure 2D:compare WT with KA, Figure 2—figure supplement 1C,E,F:arrows). Histological analy-

sis showed that bone and joint sections contain exuberant number of TRAP-positive OCs with evi-

dence of loss of trabecular bone and destruction of articular cartilage by osteoclasts and

inflammatory cells, which may also result from synovial pannus formation containing osteoclasts

(Figure 2J–K: arrows). This phenotype was further corroborated with increased circulating serum lev-

els of TRAcP5b and carboxyl-terminal cross-linked telopeptide of type one collagen (CTX-1), both

are well established markers of bone breakdown (Figure 2L–M).

NEMOK270A mutation instigates systemic inflammation
The observed joint swelling, skeletal degeneration, splenomegaly, and osteolysis point to systemic

inflammation and altered hematopoiesis. Indeed, multiplex ELISA revealed that NEMOK270A mice

express copious amounts of circulating inflammatory cytokines and chemokines in the serum

Figure 1. NEMOK270A mutant expression in BMMs exacerbates RANKL-induced osteoclastogenesis. (A) Domain structure of NEMO (B) Western blot

showing expression of pMX-NEMOWT (NM) and pMX-NEMO mutants (NM-K270A, NEMO-D304N and NM-K319A). (C) BMMs from WT and (LysM-cre-

NEMO f/f) NEMO-cKO mice were transduced with viral particles (generated by transfecting pMX- retroviral vectors in PLAT-E cells) expressing

NEMOWT (NM-WT) and NEMOK270A (NM-KA) and cultured in the presence of MCSF (10 ng/ml) and RANKL (50 ng/ml). (D) Representative TRAP staining

for osteoclast (n = 8) and (D) quantification of TRAP positive OCs. qPCR analysis for OC marker genes (E) TRAP, (F) CTSK, (G) MMP9, (H) b3integrin, (I)

DC-STAMP and (J) NFATC1 (p=0.057). Representative data (n = 3 independent experiments). (K) BMMs from RelA_luc reporter mice expressing NM-

WT and NM-KA were cultured in the presence of MCSF (10 ng/ml) for 3 days followed by RANKL stimulation with RANKL (50 ng/ml) for 6 hr and RelA-

luciferase activity measurement (n = 3). pMX-Flag-NEMOWT-RFP (NM-WT), pMX-Flag-NEMOK270A-RFP (NM-KA). (*p<0.05, **p<0.01 and ***p<0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Western blot showing expression ofpMX-NEMOWT(NM) andpMX-NEMOmutants (NM-K270A, NEMO-D304N and NM-K319A).

Source data 2. qPCR analysis for OC marker genes.

Source data 3. RelA-luciferase activity.

Figure supplement 1. BMMs from wild type mice were transduced with viral particles (generated by transfecting pMX- retroviral vectors in PLAT-E

cells) expressing NEMOWT (NM-WT), NEMOK270A (NM-KA), NEMO-D304N and NEMO-K319A constructs followed by culture in the presence of MCSF

(10 ng/ml) and RANKL (50 ng/ml) for 4 days.
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Figure 2. Expression of NEMOK270A in vivo leads to inflammatory osteolysis and joint destruction. NEMOK270A was conditionally expressed in myeloid

cells (NM-KA mice) by crossing NEMOK270A f/f mice with LysozymeM cre expressing mice. (A) Whole body images of NM-KA mice compared to

littermate wild type control mice (6 weeks old). The arrows point to deformed joints and swelling. (B) Photomicrograph of spleen and bone from NM-

WT and NM-KA mice. MicroCT analysis of bone from NM-WT and NM-KA mice showing (C) femur trabecular bone, (D) knee joint osteolysis (arrow) and

quantification of (E) Bone volume/total volume (BV/TV), (F) Connectivity density, (G) Trabecular number (Tb.N), (H) Trabecular thickness (Tb.Th) and (I)

Trabecular separation (Tb.Sp) in the femur trabecular region (n = 6). Long bones from 6 weeks old NM-WT and NM-KA mice were processed for

histology and stained for TRAP to visualize TRAP+ osteoclasts in (K) bone sections and (K) Articular surfaces of knee joint (arrow). Representative

images (n = 6) Serum was collected from NM-WT and NM-KA to measure serum (L) TRAP and (M) CTX concentration as an indicator of increased

osteoclast activity (n = 6–8). LysM-cre-NEMOWT-f/f (NM-WT), LysM-cre-NEMOK270A-f/f (NM-KA) mice. (*p<0.05, **p<0.01 and ***p<0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. MicroCT analysis of bone from NM-WT and NM-KA mice.

Figure 2 continued on next page
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(Figure 3A–L. At the cellular level, FACS analysis confirmed skewing of hematopoiesis toward mye-

lopoiesis evident by abundant frequency of CMPs and GMPs, the immediate OC progenitors, in

spleen and bone marrow compartments (Figure 3—figure supplement 1A–E; arrows). In addition,

we detected a spike in neutrophils frequency in NEMOK270A knockin mice (Figure 3—figure supple-

ment 1F–J; arrows). These observations suggest that the ensuing inflammatory microenvironment in

these mice alters hematopoiesis and exacerbates osteoclastogenesis. To provide additional mecha-

nistic support for this proposition, ex-vivo osteoclastogenesis experiments showed that BMMs

derived from NEMOK270A knockin mice readily formed osteoclasts under RANKL permissive condi-

tions (Figure 3M). Furthermore, expression of osteoclastogenic markers (Figure 3N–R) and activa-

tion of NF-kB (p-p65/RelA) (Figure 3S) were markedly elevated in RANKL-stimulated NEMOK270A

compared with WT cells.

NEMOK270A mutation hampers autophagy in BMMs
To glean more mechanistic insights, we examined localization and cellular distribution of NEMO in

HEK293 (PLAT-E) cells and BMMs. Whereas NEMOWT was evenly diffused in the cytoplasm, NEM-

OK270A transgene formed puncta juxtaposed to nuclei (Figure 4A; arrows) in PLAT-E cells. Electron

microscopy scanning of RANKL-treated BMMs (x7,500 magnification) further showed that unlike WT

cells, NEMOK270A cells (panel labeled NM-KA) exhibit cytoplasmic aggregates (Figure 4—figure

supplement 1A; yellow arrows), reminiscent of cytoplasmic debris. Thus, we surmised that K270A

mutation of NEMO may have altered physiologic autophagy. To this end, in vitro RANKL-primed

pre-OCs expressing NEMOWT and NEMOK270A fixed and stained with mouse NEMO and rabbit LC3

antibodies and Alexa Fluor secondary conjugates. LC3 is a bona-fide marker of autophagy, which is

lapidated and degraded during physiologic autophagy. In contrast, sustained elevated levels of LC3

are observed during dysfunctional autophagy. The data summarized in Figure 4B and Figure 4—fig-

ure supplement 1B,C, showed that NEMOK270A and LC3 accumulation was far greater than NEM-

OWT and LC3 (arrows). This result was further mirrored by LC3 immunoblots (Figure 4C), pointing to

a possible defect in autophagy flux in NEMOK270A expressing cells. Even more convincingly, quanti-

tative flow cytometry analysis of LC3-GFP levels in NEMOWT and NEMOK270A BMMs revealed

marked accumulation of this protein in the latter cells (black dots) compared with WT cells (black

dots) 6 hr post starvation (Figure 4D). Further analysis depicted in Figure 4E showed that starvation

(yellow histograms) led to accumulation of LC3 in NEMOK270A cells (shifted to the right) but not in

WT cells (shifted to the left), which was reversed in WT cells in the presence of autophagy inhibitor

chloroquine (pink histograms) to mimic NEMOK270A cells, as expected. In fact, chloroquine exacer-

bated osteoclastogenesis by WT just as NEMOK270A did (Figure 4—figure supplement 1D). Finally,

a change in mean fluorescence intensity (MFI) of GFP showed pronounced decrease in LC3 in NEM-

OWT (NM-WT) compared with meager change in NEMOK270A (NM-KA) cells (Figure 4F). Consistent

with these observation, levels of mTOR, a well-documented autophagy regulator, were elevated in

NEMOK270A (NM-KA) cells (Figure 4—figure supplement 1E). Taken together, quantitative FACS

scatters and histograms confirm that NEMOK270A cells have a defect in autophagy flux and aggrega-

tion of mutant NEMO that lends itself to heightened signaling.

Accumulation of NEMOK270A aggregates (puncta) suggests a potential defect in lysosomal degra-

dation due to restriction in autophagosomes. Thus, we examined localization of NEMO with the lyso-

some marker LAMP1 by immunofluorescence and by EM scanning. The data show that NEMOK270A

failed to localize with lysosomes (Figure 5A–B, Figure 5—figure supplement 1A–C), suggesting a

defect in delivery of NEMOK270A in autophagosome to lysosome. In fact, careful examination in EM

images, showed robust expression of NEMOK270A which was restricted to autophagosome (AP)

structures compared to NEMOWT observed in lysosomes (L) (Figure 5B). Finaly, we show that follow-

ing RANKL stimulation of BMMs and subsequent starvation, NEMO puncta accumulation persisted

in NEMOK270A cells following serum starvation (akin to defective autophagy flux) yet puncta faded in

WT cells following starvation as it undergoes processing by normal autophagy flux (Figure 5C–D). In

Figure 2 continued

Source data 2. Serum concentration of TRAP and CTX.

Figure supplement 1. Generation of NEMO transgenic mice.
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Figure 3. NEMOK270A mutation instigates systemic inflammation. Serum was collected from NM-WT and NM-KA mice (n = 8–10) to measure

concentration of inflammatory cytokines (A) Interleukin (IL) 1b, (B) IL-4, (C) IL-6, (D) IL-10, (E) IL-13, (F) IL-17, (G) Monocyte chemoattractant protein1 or

CCL2, (H) Tumor necrosis factor alpha, (I) Macrophage colony stimulating factor, (J) macrophage Inflammatory protein (MCP)�1 or CCL3, (K)

keratinocyte chemoattractant or neutrophil activating protein three or CXCL1 and (L) granulocyte colony stimulating factor (GCSF). (M) BMMs from NM-

WT and NM-KA mice were isolated and cultured in the presence of MCSF (10 ng/ml) and RANKL (10 ng/ml). Representative TRAP staining for

osteoclast (n = 8) is shown. (N–R) Representative qPCR analysis for OC marker genes TRAP, CTSK, b3integrin, DC-STAMP and NFATC1 (n = 3). (S)

BMMs from NM-WT and NM-KA mice were isolated and cultured in the presence of MCSF (10 ng/ml) four days followed by serum starvation and

stimulation with RANKL (50 ng/ml) for different time points (n = 8). Representative western-blot showing activation of p65 (phos-p65/p65 ratio) post

RANKL stimulation in BMMs from NM-WT and NM-KA mice. LysM-cre-NEMO-WT-f/f (NM-WT), LysM-cre-NEMO-K270A-f/f (NM-KA) mice. (*p<0.05,

**p<0.01 and ***p<0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Serum concentration of cytokines from NM-WT and NM-KA mice measured by ELISA.

Source data 2. Representative qPCR analysis for OC marker genes.

Source data 3. Representative western-blot of p65 (phos-p65/p65 ratio) post RANKL stimulation in BMMs from NM-WT and NM-KA mice.

Figure supplement 1. BrdU was injected to NM-WT and NM-KA mice.
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sum, our data suggest that NEMO mutation at K270A disrupts the delivery of NEMOK270A from

autophagosome to lysosomes leading to accumulation of NEMO signals and subsequent buildup of

inflammatory and osteoclastogenic signals.

Intact NEMO K270 residue is essential for post-translational modification (PTM) to regulate

autophagy and osteoclastogenesis. To further elucidate the mechanisms underpinning inflammation

and osteolysis in NEMOK270A transgenic mice, we conducted proteomics on NEMOWT and NEM-

OK270A immunoprecipitates. Proteomic analysis revealed that expression of autophagy and PTM pro-

teins, especially the ubiquitin-like protein ISG15, is altered in cells expressing NEMOK270A mutant

compared with WT cells (Figure 6A). Note that ISG15 is an IFN-stimulated gene and a ubiquitin-like

protein that modulate cellular signals through a process termed ISGylation analogous to ubiquitina-

tion, but its function during osteoclastogenesis has not been described. Indeed, immunofluores-

cence images displayed NEMO(red)-ISG15(green) co-localization in vacuolar structures in NEMOWT

Figure 4. NEMOK270A mutation hampers autophagy. PLAT-E cells were transfected with retroviral pMX-Flag-NEMO-WT-RFP (NM-WT) and pMX-flag-

NEMO-K270-RFP (NM-KA) expression vector. (A) Fluorescence images showing distribution of NM-WT-RFP in cytoplasm compared to puncta (yellow

arrows) (juxtaposed to nuclei- DAPI stained) formation in case of NM-KA-RFP in PLAT-E cells. (B) Western blot for LC3 using WES (protein simple).

BMMs were cultured for 2 days with RANKL (preOC) followed by 6 hr of serum starvation and western blotting. Fold change of LC3 relative to actin is

indicated on top. (C) Quantification of LC3+ cells per high magnification field. (D) For flow cytometry, BMMs were transduced with pMX-GFP-LC3-RFP

retrovirus generated in PLAT-E packing cells, and flow analysis was done to detect GFP signal or LC3 flux. Contour plots showing LC3-GFP+ expressing

cells in NM-WT and NM-KA preOC (Blue: NM-WT without serum starvation, Red: NM-KA without serum starvation, and Black: after 6 hr of serum

starvation), (E) Histograms representing shift in LC3-GFP+ cells following induction of autophagy (Red histogram: background signal in uninfected cells,

Blue histogram: No serum starvation or 10% FBS control, yellow: 6 hr serum starvation, and pink: chloroquine), (F) Change in Mean fluorescent intensity

(MFI) showing LC3-GFP signal in NM-WT and NM-KA preOC cells post autophagy induction. LysM-cre-NEMO-WT-f/f (NM-WT), LysM-cre-NEMO-

K270A-f/f (NM-KA) mice. (*p<0.05). (*p<0.05, **p<0.01 and ***p<0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Western blot for LC3 using WES (protein simple).

Source data 2. Quantification of LC3+ cells.

Source data 3. LC3-GFP FACS analysis.

Figure supplement 1. Autophagy is negatively impacted in NEMOK270A cells.

Adapala et al. eLife 2020;9:e56095. DOI: https://doi.org/10.7554/eLife.56095 8 of 25

Research article Human Biology and Medicine

https://doi.org/10.7554/eLife.56095


Figure 5. NEMOK270A is restricted to autophagosomes whereas NEMOWT is delivered to lysosomes. preOC from NM-WT and NM-KA mice were

pelleted and processed for Immunofluorescence (IF) and electron microscopic analyses after 6 hr of serum starvation. (A) Representative IF images

showing NEMO (red) and LAMP1 (green). Arrows indicate colocalization of NEMO in LAMP1 positive vacuole-like structures in NM-WT, which is

decreased in NM-KA preOC. (B) Representative electron microscopic images (x7500) lysosome (L), Autophagosome (AP) and APL

(Autophagolysosome). (C) Representative IF images showing changes in cellular NEMO organization in response to autophagy induction by serum

starvation in NM-WT and NM-KA preOC cells. NEMO-puncta (white) and nucleus (blue). (D) NEMO-puncta quantification. LysM-cre-NEMO-WT-f/f (NM-

WT), LysM-cre-NEMO-K270A-f/f (NM-KA) mice. (*p<0.05, **p<0.01 and ***p<0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. NEMO-puncta quantification.

Figure supplement 1. preOC from NM-WT and NM-KA mice were processed for Immunofluorescence (IF) analysis after 6 hr of serum starvation.
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cells, yet such colocalization was markedly reduced in NEMOK270A cells (Figure 6B). This observation

was further confirmed using immunogold EM imaging demonstrating NEMO(18 nm)-ISG15(12 nm)

interaction in autophagosome in NEMOWT cells, which is then delivered into the lysosome structure

following cell 6 hr serum starvation (Figure 6—figure supplement 1). In contrast, neither NEM-

OK270A-ISG15 interaction nor the delivery of NEMOK270A to lysosomes were detected in NEMOK270A

cells (Figure 6—figure supplement 1). Next, we provide biochemical evidence that whereas RANKL

induced robust ISGylation in WT cells, this PTM was markedly reduced in NEMOK270A lysates

(Figure 6C), affirming the key role of NEMO post translational ISGylation in osteoclastogenesis, a

novel finding that has not be described previously. Indeed, supporting its role as regulator of osteo-

clastogenesis, BMMs derived from ISG15 null mice generated far more osteoclasts than their WT

counterparts (Figure 6D–E). This observation was further supported by in vivo data showing that

bone mass (BV/TV) of mice lacking ISG15 is significantly lower than WT littermates, a finding further

confirmed by increased levels of serum levels of TRAPc5b and CTX-1, both markers of bone resorp-

tion (data not shown).

Figure 6. Intact NEMO K270 residue is essential for post-translational modification (PTM) by ISG15. (A) Volcano plot showing changes in autophagy

and PTM related proteins in immunoprecipitated lysates from NM-WT compared with NM-KA BMMs using anti-NEMO antibody. preOC from NM-WT

and NM-KA mice were processed for Immunofluorescence (IF) and Immuno-electron microscopy (EM) analysis after 6 hr of serum starvation. (B)

Representative IF images of NEMO (red) and ISG15 (green) co-localization in preOC. White arrows indicate foci of expression of ISG15 (enlarged inset

at bottom of panel B). Yellow arrows indicating NEMO-ISG15 co-localization. (C) ISGylated proteins (upper panel) and free ISG15 in response to RANKL

treatment. (D) BMMs from WT and ISG15-KO mice were isolated and cultured in the presence of MCSF (10 ng/ml) and RANKL (50 ng/ml) for four days.

Representative TRAP staining for osteoclast (D) and quantification (E). (**p<0.01).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Proteomic data from immunoprecipitated lysates from NM-WT compared with NM-KA BMMs.

Source data 2. Western blots for ISGylated proteins and free ISG15 in response to RANKL treatment.

Source data 3. Osteoclast quantification from WT and ISG15-KO in vitro cultures.

Figure supplement 1. Representative Immuno-EM images (x7,500) showing localization of NEMO (black arrows) and ISG15 (blue arrow) in NM-WT and

NM-KA cells; lysosomes (L), autophagosome (AP).
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ISGylation of NEMO is essential to restrain osteoclastogenesis
Our findings thus far suggest that ISGylation of NEMO at K270 occurs in response to stimulation of

BMMs with RANKL and appears essential for proper autophagy-regulation of NEMO. In addition,

exuberant osteoclastogenesis in the absence of ISG15 or in NEMOK270A, which is presumably hypo-

ISGylated, events that we show lead to defective autophagy, strongly suggest that proper ISGylation

of NEMO is required to turn-off NEMO signaling through autophagy to restrain osteoclastogenesis

at the opportune time. To offer further support for this paradigm, retroviral expression of ISG15

inhibited osteoclastogenesis in WT cells. In contrast, exuberant osteoclastogenesis by NEMOK270A

cells, which we showed irresponsive to ISG15 and exhibit defective autophagy, remained unabated

(Figure 7A–B). Mechanistically, we conducted flow cytometry analysis of LC3-GFP levels in NEMOWT

and NEMOK270A BMMs overexpressing retroviral (pMX)-ISG15 in response to serum starvation-

induced autophagy. The data show that LC3I/II levels were significantly reduced in ISG15-infected

WT cells compared with minimal reduction in ISG15-infected NEMOK270A cells (Figure 7C; compare

black dots in top scatters of NM-WT and NM-KA; also compare shift to the left of yellow histogram

(arrow) depicting NM-WT compared to negligible shift in orange histograms depicting NM-KA, both

overexpressing ISG15). These changes are further quantified in Figure 7D, confirming significant

reduction of LC3 levels in ISG15 overexpressing WT cells compared with ISG15 overexpressing

NEMOK270A cells, an indicative of defective autophagy in the latter cells. These observations suggest

that failure of ISG15 to inhibit osteoclastogenesis in NEMOK270A is likely due to its inability to prop-

erly tether NEMOK270A to the autophagy-lysosomal machinery. To overcome this predicament, we

fused ISG15 to RFP-NEMOK270A and to RFP-NEMOWT. Unlike NEMOK270A alone, the ISG15::NEM-

OK270A fused constructs inhibited osteoclastogenesis (Figure 7E–F; fusion construct) and corrected

the autophagy flux evident by disappearance of punctate in NEMOK270A cells (Figure 7G), reduced

LC3 positive puncta and protein (Figure 7H–I, Figure 7—figure supplement 1), and co-localization

of ISG15-NEMOK270A with LAMP1 (lysosomes)(Figure 7J). Taken together, forced fusion of ISG15 to

NEMOK270A facilitates autophagy and inhibits exuberant osteoclastogenesis.

Discussion
Previous reports by our group and others have shown that various members of the NF-kB family are

essential for osteoclastogenesis and bone homeostasis, whereas their deletion disrupts these pro-

cesses and leads to skeletal abnormalities (Abu-Amer and Faccio, 2006; Boyce et al., 2010;

Jimi and Ghosh, 2005; Otero et al., 2012; Otero et al., 2010; Otero et al., 2008; Ruocco and

Karin, 2005; Schett and Smolen, 2005; Swarnkar et al., 2016; Swarnkar et al., 2014;

Whyte, 2006). Generally, the transcription factor NF-kB is activated in response to a multitude of

signals in all cell types leading to specific functions that in most cases depend on IKK complex activa-

tion. Subsequently, the canonical IKK complex, which is dominated by IKK2 and NEMO activates an

array of downstream signals. However, the precise molecular steps underpinning signal to substrate

specificity orchestrated by NF-kB in these responses remains unclear. We surmised that the scaffold

protein NEMO provides such specificity. Specifically, we deduced that NEMO undergoes signal-spe-

cific PTMs at specific residue(s). These PTMs facilitate corresponding biological functions by pairing

signal (specifically induced by upstream molecules such as TRAFs, IKKs, etc) with downstream sub-

strates as has been suggested previously (Schröfelbauer et al., 2012). This is based on ample

reports documenting robust polyubiquitination, SUMOylation, and phosphorylation of NEMO at var-

ious lysine and cysteine residues that form selectively in response to different stimuli (Hay, 2004;

Liu and Chen, 2011; Mabb and Miyamoto, 2007). More importantly, in most cases, these PTMs

mediate destructive or constructive functions such as proteasome-mediated degradation or con-

versely facilitate intracellular localization and signal transduction (Fontan et al., 2007; Kawadler and

Yang, 2006; Lamothe et al., 2007; Sebban et al., 2006; Wu et al., 2006). In agreement with our

hypothesis, and as a proof-of-concept, we uncovered that Lys270 modulate osteoclastogenesis.

According to our findings, mutating Lys270 into Ala sensitizes BMMs to RANKL signaling and sus-

tains heightened osteoclastogenesis in vitro and in vivo evident by robust systemic bone loss, skew-

ing toward increased myeloid progenitor frequency and extramodular hematopoiesis

(splenomegaly), increased inflammatory burden evident by robust secretion of a myriad of inflamma-

tory mediators, and devastating bone erosion of the joints of mice harboring NEMOK270A. Together,

these observations suggest that intact K270 in NEMO is critical to restrain and attenuate RANKL
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Figure 7. ISGylation of NEMO is essential to restrain osteoclastogenesis. BMMs from NM-WT and NM-KA mice were transduced with viral particles

(generated by transfecting pMX- retroviral vectors in PLAT-E cells) expressing ISG15 and cultured in the presence of MCSF (10 ng/ml) and RANKL (50

ng/ml) for 4 days. (A) Representative TRAP staining for osteoclast (n = 6) and (B) quantification of TRAP positive OCs. (C) BMMs from NM-WT and NM-

KA mice were transduced with ISG15 and pMRX-GFP-LC3-RFP retrovirus generated in PLAT-E packing cells. The cells were cultured for 2 days (preOC)

followed by 6 hr of serum starvation and flow analysis to detect GFP signal or LC3 flux. (C) Histograms representing shift in LC3-GFP+ cells following

induction of autophagy. Blue histogram: serum starvation, yellow histogram: serum starvation + ISG15 expression (D) Change in Mean Fluorescent

Intensity (MFI) showing LC3-GFP signal. (E) Wild type BMMs transduced with viral particles (generated by transfecting pMX- retroviral vectors in PLAT-E

cells) expressing NEMO+/-ISG15, NEMO-K270A+/-ISG15 NEMO-WT::ISG15 (fused) and NEMO-K270A::ISG15 (fused) protein and cultured in the

presence of MCSF (10 ng/ml) and RANKL (50 ng/ml) for 4 days.(E) Representative TRAP staining for osteoclast (n = 3) and (F) quantification of TRAP

positive OCs. (G) NEMO puncta regulation by ISG15: Live images of preOC expressing RFP-NEMOWT+/-ISG15, RFP-NEMOK270A+/-ISG15, GFP-

NEMOWT::ISG15 and GFP-NEMOK270A::ISG15 fusion protein. Yellow arrows indicate NEMOK270A puncta. ISG15 panel which is not tagged serves as

background control. (H) Quantification of LC3 puncta+ preOC cells shown in Figure 7—figure supplement 1. (I) WB for LC3 in preOC expressing

NEMOWT+/-ISG15, NEMOK270A+/-ISG15, NEMOWT::ISG15 and NEMOK270A::ISG15 fusion protein. (*p<0.05, **p<0.01 and ***p<0.001). (::) denotes

fusion. (J) Representative IF images (NEMO (Red); LAMP1(green)). NEMO localization in preOC expressing NEMOWT+/-ISG15, NEMOK270A+/-ISG15,

NEMOWT::ISG15 and NEMOK270A::ISG15 fusion protein. Green arrow- Lysosome and Yellow arrow-localization of NEMO in Lysosome.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Figure 7 continued on next page
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signaling and inflammation. It further suggests that Lys270 serves as a docking site for a RANKL-

induced negative feedback mechanism and mutation of this residue renders this regulatory mecha-

nism dysfunctional resulting with robust and unrestrained osteoclastogenesis in vitro and in vivo.

Another significant observation was the apparent enhanced stability and accumulation of NEM-

OK270A in peri-nuclear cytoplasmic structures. This puncta aggregation of NEMOK270A hinted to us

that the protein accumulates and localizes in sub-cellular structures inaccessible for processing remi-

niscent of failed proteolysis by autophagy. Indeed, using multiple thorough approaches, we show

that, unlike NEMOWT, NEMOK270A localizes to autophagosomes but failed to co-localize with lyso-

somes. Consistently, cells expressing this NEMO mutant express high levels of LC3 which accumu-

lated and fails to undergo degradation upon induction of autophagy. In this regard, the link

between inflammation, NF-kB, and autophagy has been widely described (Pawlowska et al., 2018;

Ravanan et al., 2017; Wu and Adamopoulos, 2017; Yin et al., 2018). Several studies have shown

that autophagy regulates osteoclast differentiation and joint destruction in experimental rheumatoid

arthritis (Cejka et al., 2010; Jaber et al., 2019; Lin et al., 2013; Sanchez and He, 2009). Other

studies suggested that autophagy is essential to regulate inflammatory responses by reducing levels

of inflammatory cytokines (Wu and Adamopoulos, 2017), and that dysfunctional autophagy exacer-

bates skeletal joint disease such as rheumatoid arthritis and osteoarthritis (Bouderlique et al., 2016;

Gros, 2017; Srinivas et al., 2009; Yin et al., 2018). Hence, autophagy function appears cell con-

text-dependent during physiologic and pathologic conditions.

To decipher the underlying mechanism of this dysfunction, we carried out a proteomic experi-

ment and identified a novel mechanism by which NEMO signal is processed. Indeed, we identified

altered expression of major autophagy proteins and some ubiquitin (UB)-like proteins in NEMOK270A

cells compared with NEMOWT cells. Most interestingly, we uncovered that levels of the UB-like pro-

tein ISG15 were significantly lower in NEMOK270A cells. Given these changes and the similarities

between the mechanisms governing the function of ubiquitin, SUMO and ISG15, it was intriguing to

identify a potential role for this protein in our system. Unexpectedly, we found that RANKL induces

robust expression of ISG15 and ISGylation profile in NEMOWT OCP immunoprecipitates compared

with significantly lower ISGylation in NEMOK270A immunoprecipitates.

While the impact of ISGylation on most proteins remains largely unknown, it has been suggested

that this modification may regulate proteins by either disrupting or enhancing their

activity (Campbell and Lenschow, 2013; Hermann and Bogunovic, 2017; Morales et al., 2015).

Despite the scarce knowledge in this field, HEK293 in vitro transfection studies have shown that NF-

kB pathway is negatively regulated by ISGylation (Minakawa et al., 2008). In other studies, ISG15

was co-localized with the autophagy proteins beclin-1 (BCLN1), HDAC6, and P62/

SQSTM1 (Nakashima et al., 2015; Xu et al., 2015). In one case, ISG15 conjugation of HDAC6 and

P62 led to their degradation, providing strong evidence that connects IFN stimulation, ISGylation

and autophagy. Moreover, it has been suggested that ISGylation acts as a defense mechanism

whereby ISG15 marks proteins to re-direct them towards degradation by the lysosome (Villarroya-

Beltri et al., 2017). Accordingly, we observed an overall reduction of most autophagy proteins in

NEMOK270A immunoprecipitates. Most importantly, we provide direct evidence that forced fusion of

ISG15 to hyperactive NEMOK270A facilitates autophagy flux and diminishes osteoclastogenesis. Our

findings suggest that ISG15 directly or through other mediators such as ubiquitin chains, tethers tar-

get cargo proteins and facilitates fusion with lysosomes leading to their degradation. More specifi-

cally, we propose that this process is essential to regulate osteoclastogenesis and attenuate RANKL-

induced NF-kB signaling in a timely manner, absence of which leads to unabated osteoclastogenesis

and deleterious skeletal anomalies. This is supported by the critical role of NF-kB in general and

NEMO specifically in osteoclastogenesis, and by the proposed role of NEMO as a hub not only for

Figure 7 continued

Source data 1. quantification of TRAP positive OCs.

Source data 2. LC3-GFP FACS analysis.

Source data 3. Quantification of TRAP positive OCs.

Source data 4. Quantification of LC3 positive puncta in pre-OC cells shown in Figure 7—figure supplement 1.

Source data 5. Western blot for LC3 expression in preOC expressing different NEMO and ISG15 constructs.

Figure supplement 1. LC3 puncta accumulation of NEMOK270A is reduced by forced fusion with ISG15.
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ubiquitin PTMs but also as an interactome with autophagy proteins such as beclin-1, P62, and Rubi-

con. The significance of ISG15 is further underscored by our observation that BMMs-lacking ISG15

express modestly higher levels of NEMO and LC3, and generate more osteoclasts compared with

WT cells. Consistently, ISG15 null mice have moderate osteopenia consistent with overall increased

osteoclastogenesis and bone resorption, suggesting that this could be a universal regulatory mecha-

nism. Nevertheless, given the germline deletion of ISG15 in these mice, their overall mild phenotype

could be affected by compensatory responses emanating from numerous other cells and tissues

which are beyond the scope of this research.

In summary, this study identifies several novel observations. First, we identified NEMO K270 as a

crucial regulator of RANKL-induced osteoclastogenesis, and that RANKL appears to utilize this lysine

site to exert its osteoclast ‘restraining’ (negative-feedback) mechanism. Second, we provide novel

evidence that mutation of NEMO Lys270 to Ala inflicts an uncontrolled pathologic response that

exacerbates osteoclastogenesis. Third, mice harboring myeloid NMEOK270A develop severe osteo-

penia and joint erosion. Fourth, we identified novel RANKL-induced expression and regulation of

ISG15. Consistently, we also provide new evidence that BMMs lacking ISG15 generate more osteo-

clasts compared with WT littermates, suggesting that ISG15 plays a negative role in this process.

Finally, we identified autophagy as key regulatory system recruited by ISG15 through NEMOK270 to

dampen NF-kB signaling and maintain homeostatic osteoclastogenesis. Altogether, we conclude

that ISGylation of NEMO at Lys270 is essential for recruitment of the autophagy machinery to down

regulate RANKL signaling.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, Strain
backgroud
Mus musculus

Ikbkg (Nemo)-
floxed

Dr. Manolis Pasparakis,
Cologne, Germany

NM-f/f C57BL/6 background

Strain, Strain
backgroud
Mus musculus

Ikbkg (Nemo)-
K270A-floxed

Mouse Genetics Core,
Washington University
in St.Louis

NM-KA-f/f C57BL/6 background

Strain, Strain
backgroud
Mus musculus

Ikbkg (Nemo)-
WT-Tg-floxed

Mouse Genetics Core,
Washington University
in St.Louis

NM-WT-Tg f/f C57BL/6 background

Strain, Strain
backgroud
Mus musculus

Lyz2 (Lysozyme
M)-cre

LysM-cre C57BL/6 background

Strain, Strain
backgroud
Mus musculus

LysM-cre-
NEMO-flox

This Paper NM-cKO C57BL/6 background

Strain, Strain
backgroud
Mus musculus

LysM-cre-
NEMO-K270A-f/f

This Paper NM-KA C57BL/6 background

Strain, Strain
backgroud
Mus musculus

LysM-cre-
NEMO-WT-f/f

This Paper NM-WT-Tg C57BL/6 background

Strain, Strain
backgroud
Mus musculus

RELA (NF-KB)-
GFP-luciferase
reporter

The Jackson
Laboratory

NF-KB reporter
mice

C57BL/6 background

Recombinant
DNA reagent

pMX- retroviral vector Cell biolabs Cat# RTV-010 Retroviral vector

Recombinant
DNA reagent

pMX-GFP This paper GFP version of pMX
retroviral vector

Recombinant
DNA reagent

pMX-flag-NEMO-
WT-RFP

This paper NEMO WT with flag tag and RFP
on pMX backbone-Available in
Dr. Yousef Abu-Amer’s lab

Continued on next page
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Continued

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

pMX-flag-NEMO-
K270A-RFP

This paper NEMO K270A mutant with flag
tag and RFP on pMX backbone -
Available in Dr. Yousef
Abu-Amer’s lab

Recombinant
DNA reagent

pMX-flag-NEMO-D304N This paper NEMO D304N mutant on pMX
backbone -Available in
Dr. Yousef Abu-Amer’s lab

Recombinant
DNA reagent

pMX-flag-NEMO-K319A This paper NEMO K319A mutant with Flag
tag on pMX backbone -Available in
Dr. Yousef Abu-Amer’s lab

Recombinant
DNA reagent

pMX-flag-NEMO-WT-GFP This paper NEMO WT with Flag tag and GFP
on pMX backbone -Available in
Dr. Yousef Abu-Amer’s lab

Recombinant
DNA reagent

pMX-HA-ISG15 This paper ISG15 with HA tag on pMX
backbone -Available in
Dr. Yousef Abu-Amer’s lab

Recombinant
DNA reagent

pMX-flag-NEMO-
WT-ISG15-GFP

This paper NEMO WT-ISG15 fusion
construct with GFP tag on pMX
backbone -Available in
Dr. Yousef Abu-Amer’s lab

Recombinant
DNA reagent

pMX-flag-NEMO-
K270A-ISG15-GFP

This paper NEMO K270A-ISG15 fusion
construct with GFP tag on pMX
backbone -Available in
Dr. Yousef Abu-Amer’s lab

Recombinant
DNA reagent

PMRX-GFP-LC3-RFP
retrovirus

AddGene Cat# 84573 LC3 wth GFP and RFP
on PMRX backbone

Recombinant
DNA reagent

Xtreme gene 9 Roche Cat# 6365809001 Transfection reagent

Cell line
(Homo-sapiens)

PLAT-E Cell biolabs Cat# RV-101 For generating retroviruses

Commercial
assay or kit

TRAP-Leukocyte kit Millipore-Sigma Cat# 387A-1KT Identify osteoclasts

Commercial
assay or kit

luciferase activity GoldBio Cat# I920-50 NFkB activity assay

Commercial
assay or kit

BCA assay Thermo Fisher Cat# 23227 Quantitation of protein

Other Cell lysis buffer Cell Signaling Cat# 9803S Western blot reagent

Antibody donkey anti-rabbit
and anti-mouse

LI-COR Biosciences Cat# 926–32213,
RRID:AB_621848

WB(1:10,000)

Antibody NEMO
(Rabbit polyclonal/
Mouse monoclonal)

Santa Cruz Cat# SC-8330,
RRID:AB_2124846

IF(1:200), WB(1:1000)

Antibody LAMP-1
(Mouse monoclonal)

Santa Cruz Cat# SC-20011,
RRID:AB_626853

IF(1:200)

Antibody ISG15
(Mouse monoclonal)

Santa Cruz Cat# SC-166755,
RRID:AB_2126308

IF(1:200), WB(1:1000)

Antibody phos-p65
(Rabbit polyclonal)

Cell Signaling Cat# 3031,
RRID:AB_330559

WB(1:1000)

Antibody p65
(Rabbit polyclonal)

Cell Signaling
Technology,

Cat# 8242,
RRID:AB_10859369

WB(1:1000)

Antibody LC3
(Rabbit polyclonal)

Cell Signaling
Technology,

Cat# 3868,
RRID:AB_2137707

IF(1:200), WB(1:1000)

Antibody Flag
(Rabbit polyclonal)

Millipore-Sigma Cat# F1804,
RRID:AB_262044

WB(1:1000)

Antibody b-actin
(Mouse monoclonal)

Millipore-Sigma Cat# A2228,
RRID:AB_476697

WB(1:5000)

Continued on next page
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Continued

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Antibody anti-B220
(Rat monoclonal)

Thermo Fisher Cat# 14-0452-82,
RRID:AB_467254

FACS (1 mL per test)

Antibody anti-CD3e
(Armenian hamster
monoclonal)

Biolegend Cat# 100301,
RRID:AB_312666

FACS (1 mL per test)

Antibody anti-Gr1
(Rat monoclonal)

Thermo Fisher Cat# 14-5931-82,
RRID:AB_467730

FACS (1 mL per test)

Antibody anti-Ter119
(Rat monoclonal)

BD Bioscience Cat#550565,
RRID:AB_393756

FACS (1 mL per test)

Antibody anti-Sca1 PerCP Cy5.5
(Rat monoclonal)

Thermo Fisher Cat# 122523,
RRID:AB_893621

FACS (1 mL per test)

Antibody anti-c-Kit APC eFluor 780
(Mouse monoclonal)

Thermo Fisher Cat# 47-1171-82,
RRID:AB_1272177

FACS (1 mL per test)

Antibody anti-CD34 FITC
(Mouse monoclonal)

Thermo Fisher Cat# 343503,
RRID:AB_343503

FACS (1 mL per test)

Antibody CD16/32 eFluor450
(Rat monoclonal)

Thermo Fisher Cat# 48-0161-82,
RRID:AB_1272191

FACS (1 mL per test)

Antibody colloidal gold conjugated
secondary antibodies

Jackson Immuno
Research Laboratories

Cat# 715-205-150,
RRID:AB_2340822

Electron microscopy
(1:25)

Antibody Alexa Fluor 568
(goat anti-mouse IgG)

Thermo Fisher Cat# A11031,
RRID:AB_144696

IF
(1:2000)

Antibody Alexa Fluor 488
(goat-anti-rabbit IgG)

Thermo Fisher Cat# A11034,
RRID:AB_2576217

IF (1:2000)

Commercial
assay or kit

multiplex mouse
cytokine kits

R and D Systems Cat# AYR006 Inflammation markers

Commercial
assay or kit

multiplex mouse
cytokine kits

Millipore-Sigma Cat# MCYTMAG-
70K-PX32

Inflammation markers

Commercial
assay or kit

RatLaps
(CTX-1) EIA

Immunodiagnostic
Systems

Cat# AC-06F1 Serum cross-linked telopeptide
of type I collagen (CTX-I)-bone
resorption marker

Commercial
assay or kit

Mouse TRAP
(TRAcP 5b) kits

Immunodiagnostic
Systems

Cat# SB TR-103 osteoclast marker

Commercial
assay or kit

PureLink RNA
mini kit

Thermo Fisher Cat# 12183025 RNA isolation

Other iTaq universal SYBR
green super-mix

BioRad Cat# 1725120 Real-Time PCR reagent

Sequence-
based reagent

TRAP_F IDT PCR primer CGACCATTGTTAGCCACATACG

Sequence-
based reagent

TRAP_R IDT PCR primer CACATAGCCCACACCGTTCTC

Sequence-
based reagent

CTSK_F IDT PCR primer ATGTGGGTGTTCAAGTTTCTGC

Sequence-
based reagent

CTSK_R IDT PCR primer CCACAAGATTCTGGGGACTC

Sequence-
based reagent

MMP9_F IDT PCR primer ACTGGGCTTAGATCATTCCAGCGT

Sequence-
based reagent

MMP9_R IDT PCR primer ACACCCACATTTGACGTCCAGAGA

Sequence-
based reagent

NFATC1_F IDT PCR primer CCGGGACGCCCATGCAATCTGTTAGT

Sequence-
based reagent

NFATC1_R IDT PCR primer GCGGGTGCCCTGAGAAAGCTACTCTC

Software,
algorithm

ImageJ Imagej.nih.gov IF image processing,
count

Continued on next page
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Animals
Ikbkg (Nemo)-floxed (NM-f/f) mice on a C57BL/6 background were provided by Dr. Manolis Paspar-

akis (Cologne, Germany). The NEMO-K270A-floxed and NEMO-WT-Tg-floxed mice were generated

at the Mouse Genetics Core, Washington University (St. Louis, MO). To generate NEMO-K270A and

NEMO-WT-floxed transgenic mice; cDNA encoding NEMO-K270A mutation and NEMO-WT pre-

ceded by a loxP-flanked STOP cassette was cloned into the ubiquitously expressed Gt(ROSA)26Sor

locus (Figure 2—figure supplement 1A–B). In order to conditionally delete NEMO and express

NEMO-K270A or NEMO-WT-Tg in myeloid cells, the NEMO f/f, NEMO-K270A-f/f and NEMO-WT-

Tg f/f mice were crossed with Lyz2 (LysozymeM)-cre mice to generate LysM-cre-NEMO-flox (NM-

cKO), LysM-cre-NEMO-K270A-f/f (NM-KA) and LysM-cre-NEMO-WT-f/f (NM-WT-Tg) respectively.

RELA (NF-KB)-GFP-luciferase reporter mice were purchased from The Jackson Laboratory (Bar Har-

bor, ME, USA). ISG15 (ISG15) knock-out mice were provided by Dr. Deborah Lenschow (Washington

University in St. Louis, MO, USA). All the animals were housed at the Washington University School

of Medicine barrier facility. All experimental protocols were carried out in accordance with the ethi-

cal guidelines approved by the Washington University School of Medicine Institutional Animal Care

and Use Committee.

MicroCT and X-Ray analysis
6–7 weeks old mice were sacrificed and Intact long bones (femur and tibia) from different animals

were isolated. The bones were fixed overnight in 10% neutral buffered formalin. After fixation, they

were washed with Phosphate Buffer Saline (PBS) and transferred to 70% ethanol (v/v). After fixation,

bones were then scanned using Scanco Medical micro-CT systems (Scanco, Wayne, PA, USA) at the

core facility at the Musculoskeletal Research Center at Washington University (St. Louis, MO). Briefly,

Images were scanned at a resolution of 20 mm, slice increment 20 mm, voltage 55 kV, current 145 mA

and exposure time of 200 ms. After scanning, contours were drawn from the growth plate toward

trabecular regions of femur. Approximately 150 slices were analyzed. Later contours were drawn

and 3D images were constructed. X-ray analysis of whole body and isolated knee joints were per-

formed using Faxitron Ultra Focus 100 on automatic settings and at 3X and 5X magnification,

respectively.

Histology
6–7 weeks old mice were sacrificed and long bones (femur and tibia) from different animals were iso-

lated. The bones were fixed overnight in 10% neutral buffered formalin. After fixation, bones were

then decalcified for 2 weeks in decalcification buffer (14% (w/v) EDTA, NH4OH, pH 7.2), dehydrated

in graded ethanol (30–70%), cleared through xylene, and embedded in paraffin. Paraffin sections

were stained for TRAP to visualize osteoclasts in the bone sections.

Transfection and retroviral infection
For exogenous expression studies, various constructs (cDNA) were cloned in retroviral pMX- retrovi-

ral vector (Cell biolabs, San Diego, CA). For different studies we generated pMX-GFP, pMX-flag-

NEMO-WT, pMX-flag-NEMO-K270A-RFP, pMX-flag-NEMO-D304N, pMX-flag-NEMO-K319A, pMX-

flag-NEMO-WT-GFP, pMX-HA-ISG15, pMX-flag-NEMO-WT-ISG15-GFP, pMX-flag-NEMO-K270A-

ISG15-GFP. To generate retroviral production pMX-vectors were first transfected into PLAT-E cells

(Cell biolabs, San Diego, CA) using xtreme gene 9 (Roche, San Francisco, CA, USA), followed by col-

lection of virus containing media for next 2 days. This virus containing media with Polybrene (0.8

mg/ml) was used to transduce primary bone marrow cells.
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Cell culture and osteoclastogenesis
Total bone marrow cells were isolated from the long bones (femur and tibia) and cultured in a-MEM

media supplemented with 100 units/mL penicillin/streptomycin and 10% FBS (v/v) with 10 ng/mL

M-CSF overnight to separate the adherent cells. One day after isolation, the non-adherent cells

were collected and used as enriched bone marrow–derived macrophage (BMMs). BMMs were fur-

ther cultured with M-CSF (20 ng/mL) and RANKL (50 ng/mL) for 4 days followed by fixation and

TRAP staining using TRAP-Leukocyte kit (Sigma, St Louis, MO, USA). To investigate changes in

autophagy, BMMs were cultured in M-CSF (20 ng/mL) and RANKL (50 ng/mL) for 2 days and used as

pre-osteoclast (preOC) for different experiments. To investigate the effect of exogenous expression

of different NEMO, NEMO mutants and ISG15, the BMMs after one day of isolation, were trans-

duced with retroviral particles (generated using PLAT-E cells) and osteoclast differentiation was initi-

ated after 2 day of viral transduction.

RelA-Luc reporter assay
BMMs isolated form NF-KB-GFP-luciferase reporter mice were transduced with different pMX-retro-

viral particles. One day after transduction, the cells were cultured in the presence of M-CSF for two

days, followed by RANKL treatment. Post RANKL transfection, cells were lysed and RelA-luciferase

activity was measured using luciferase assay system (GoldBio, St. Louis, MO). The luciferase activity

was normalized with total protein concentration (BCA assay, Pierce, Invitrogen).

Western blot analysis
BMMs and/or pre-OC (BMMs treated with RANKL for 2 days) were lysed in cell lysis buffer (Cell Sig-

naling Technology, Danvers, MA, USA) post treatments. Protein concentration was determined using

BCA (Pierce, Invitrogen) and equal amounts of protein was loaded onto SDS-PAGE. After transfer,

and blocking in 5% BSA for 1 hr at room temperature, membranes were probed with primary anti-

bodies in 5% BSA in PBS-Tween (1% v/v) for overnight and then washed with PBS-Tween (3x) and

probed with secondary antibodies from LI-COR (Odyssey Imager; donkey anti-rabbit and anti-

mouse) for 1 hr at room temperature. Membranes were then with PBST (3x) and scanned by using

LI-COR Odyssey Imager (LI-COR Biosciences, Lincoln, NE, USA). Western blots were also performed

(for LC3 and actin) using capillary-based immunoassay using the Wes-Simple Western method with

the anti-rabbit detection module (Protein Simple). Protein expression was measured by chemilumi-

nescence. The NEMO and ISG15 antibody were purchased from Santa Cruz, Dallas, TX, USA; phos-

p65, p65 and LC3 antibodies were purchased from Cell Signaling Technology, Danvers, MA, USA;

Flag and b-actin was purchased from Sigma, St. Louis, MO, USA.

Flow cytometer analysis
Single cell suspensions from bone marrow were prepared by flushing the marrow out of femur and

tibia of mice injected with BrdU (100 ml of 10 mg/mL solution of BrdU in sterile 1X DPBS) 1 days

before sacrifice. Following red blood cell lysis, whole bone marrow cells were stained by Zombie UV

dye to distinguish live/dead cells. Then bone marrow cells were resuspended in PBS with 2% FBS

(FACS buffer), and further stained with biotin-conjugated lineage Ab cocktail (anti-B220, anti-CD3e,

anti-Gr1, anti-Ter119). LSK+ (Lin-Sca1+ckit-) cells were stained with Ab cocktail (anti-Sca1 PerCP

Cy5.5, anti-c-Kit APC eFluor 780, anti-CD34 FITC, and CD16/32 eFluor450). All FACS antibodies

were purchased from either eBioscience, BioLegend (San Diego, CA, USA) or BD Bioscience (San

Diego, CA, USA). Following incubation on ice for 45 min, Ab-labeled cells were washed with FACS

buffer and subjected to flow cytometric analysis (BD X-20). Data were analyzed with FlowJo software

(Tree Star Inc). To measure autophagy flux, flow cytometry analysis of LC3-GFP levels in NEMO WT

and NEMO K270A preOC was performed, in response to autophagy induction by serum starvation.

preOC were transduced with PMRX-GFP-LC3-RFP retrovirus generated in PLAT-E packing cells.

Cells were serum starved for 6 hr and a flow cytometry analysis was done to detect GFP signal. Data

were analyzed using FlowJo V10.1 software.

Multiplex ELISA
Blood from NM-WT and NM-KA mice were collected from submandibular vein and serum was sepa-

rated using BD-Microtainer tubes. The serum inflammatory cytokine levels were measured using
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multiplex mouse cytokine kits (R and D Systems [Minneapolis, MN, USA] and Millipore [San Diego,

CA, USA]). Serum cross-linked telopeptide of type I collagen (CTX-I) and TRAP levels were measured

using the RatLaps (CTX-1) EIA and Mouse TRAP (TRAcP 5b) kits (Immunodiagnostic Systems, Bol-

don, UK) using manufacturer’s protocol.

Quantification of mRNA levels by Real-time PCR
BMMs were cultured in presence of M-CSF (20 ng/mL) and RANKL (50 ng/mL) for 3 or 4 days as indi-

cated in the figures. mRNA was isolated using PureLink RNA mini kit (Ambion, Grand Island, NY,

USA) and cDNA were prepared using high capacity cDNA reverse transcription kit (Applied Biosys-

tems). Realtime PCR was carried out on BioRad CFX96 real time system using iTaq universal SYBR

green super-mix (BioRad, Hercules, CA, USA). mRNA expressions were normalized using b-actin as a

housekeeping gene. The following primers were used for qPCR analysis. (ACP5) TRAP-F: CGACCA

TTGTTAGCCACATACG, TRAP-R: CACATAGCCCACACCGTTCTC, CTSK (CathepsinK)-F: ATG

TGGGTGTTCAAGTTTCTGC, CTSK-R: CCACAAGATTCTGGGGACTC, MMP9-F: ACTGGGCTTAGA

TCATTCCAGCGT, MMP9-R: ACACCCACATTTGACGTCCAGAGA, NFATC1-F: CCGGGACGCCCA

TGCAATCTGTTAGT, NFATC1-R: GCGGGTGCCCTGAGAAAGCTACTCTC.

Immuno-Electron microscopy
For immunolocalization at the ultrastructural level, preOC from NM-WT and NM-KA mice were fixed

in 4% paraformaldehyde/0.05% glutaraldehyde (Polysciences Inc, Warrington, PA) in 100 mM PIPES/

0.5 mM MgCl2, pH 7.2 for 1 hr at 4˚C. Samples were then embedded in 10% gelatin and infiltrated

overnight with 2.3M sucrose/20% polyvinyl pyrrolidone in PIPES/MgCl2 at 4˚C. Samples were

trimmed, frozen in liquid nitrogen, and sectioned with a Leica Ultra cut UCT7 cryo-ultramicrotome

(Leica Microsystems Inc, Bannockburn, IL). Ultrathin sections of 50 nm were blocked with 5% FBS/5%

NGS for 30 min and subsequently incubated with indicated primary antibodies for 1 hr at room tem-

perature (Note that I tried some of the labeling with primary antibody overnight at 4˚C). Following

washes in block buffer, sections were incubated by the appropriate colloidal gold conjugated sec-

ondary antibodies (Jackson ImmunoResearch Laboratories, Inc, West Grove, PA) for 1 hr. Sections

were stained with 0.3% uranyl acetate/2% methyl cellulose and viewed on a JEOL 1200 EX transmis-

sion electron microscope (JEOL USA Inc, Peabody, MA) equipped with an AMT eight megapixel dig-

ital camera and AMT Image Capture Engine V602 software (Advanced Microscopy Techniques,

Woburn, MA). All labeling experiments were conducted in parallel with controls omitting the primary

antibody. These controls were consistently negative at the concentration of colloidal gold conju-

gated secondary antibodies used in these studies.

Mass-spectroscopy
Protein identification
MS raw data were converted to peak lists using Proteome Discoverer (version 2.1.0.81, Thermo-

Fischer Scientific) with the integration of reporter-ion intensities of TMT 10-plex at a mass tolerance

of ±3.15 mDa (Werner et al., 2014). MS/MS spectra with charges +2, +three and +four were ana-

lyzed using Mascot search engine (Perkins et al., 1999) (Matrix Science, London, UK; version 2.6.2).

Mascot was set up to search against a SwissProt database of mouse (version June, 2016, 16,838

entries) and common contaminant proteins (cRAP, version 1.0 Jan. 1 st, 2012, 116 entries), assuming

the digestion enzyme was trypsin/P with a maximum of 4 missed cleavages allowed. The searches

were performed with a fragment ion mass tolerance of 0.02 Da and a parent ion tolerance of 20

ppm. Carbamidomethylation of cysteine was specified in Mascot as a fixed modification. Deamida-

tion of asparagine, formation of pyro-glutamic acid from N-terminal glutamine, acetylation of protein

N-terminus, oxidation of methionine, and pyro-carbamidomethylation of N-terminal cysteine were

specified as variable modifications. Peptide spectrum matches (PSM) were filtered at 1% false-dis-

covery rate (FDR) by searching against a reversed database and the ascribed peptide identities were

accepted. The uniqueness of peptide sequences among the database entries was determined using

the principal of parsimony. Protein identities were inferred using a greedy set cover algorithm from

Mascot and the identities containing �2 Occam’s razor peptides were accepted (Koskinen et al.,

2011).
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Protein relative quantification
The processing, quality assurance and analysis of TMT data were performed with proteoQ (version

1.0.0.0, https://github.com/qzhang503/proteoQ), a tool developed with the tidyverse approach

(https://CRAN.R-project.org/package=tidyverse) under the free software environment for statistical

computing and graphics, R (https://www.R-project.org/) and RStudio (http://www.rstudio.com/).

Briefly, reporter-ion intensities under 10-plex TMT channels were first obtained from Mascot, fol-

lowed by the removals of PSM entries from shared peptides or with intensity values lower than 1E3.

Intensity of PSMs were converted to logarithmic ratios at base two, in relative to the average inten-

sity of reference samples within a 10-plex TMT. Under each TMT channel, Dixon’s outlier removals

were carried out recursively for peptides with greater than two identifying PSMs. The median of the

ratios of PSM that can be assigned to the same peptide was first taken to represent the ratios of the

incumbent peptide. The median of the ratios of peptides were then taken to represent the ratios of

the incumbent protein. To align protein ratios under different TMT channels, likelihood functions

were first estimated for the log-ratios of proteins using finite mixture modelling, assuming two-com-

ponent Gaussian mixtures (R package: mixtools:: normalmixEM http://www.jstatsoft.org/v32/i06/).

The ratio distributions were then aligned in that the maximum likelihood of the log-ratios are cen-

tered at zero for each sample. Scaling normalization was performed to standardize the log-ratios of

proteins across samples. To discount the influence of outliers from either log-ratios or reporter-ion

intensities, the values between the 5th and 95th percentile of log-ratios and 5th and 95th percentile of

intensity were used in the calculations of the standard deviations.

Informatic and statistical analysis
Metric multidimensional scaling (MDS) and Principal component analysis (PCA) of protein log2-ratios

was performed with the base R function stats::cmdscale and stats:prcomp, respectively. Heat-map

visualization of protein log2-ratios was performed with pheatmap (Raivo Kolde (2019). pheatmap:

Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap). Linear

modelings were performed using the contrast fit approach in limma (Ritchie et al., 2015), to assess

the statistical significance in protein abundance differences between indicated groups of contrasts.

Adjustments of p-values for multiple comparison were performed with Benjamini-Hochberg (BH)

correction.

Immunofluorescence
Post-treatments preOCs were fixed using 4% para-formaldehyde and 0.1% glutaraldehyde for 20

min at room temperature. Post-fixation the cells were washed using PBS (3x) followed by blocking

and permeabilization using 0.5% Goat serum and 0.1% saponin (in PBS). Permeabilized cells were

later incubated with Primary antibodies (LC3, NEMO, ISG15 and LAMP1 at 1:200 dilution) and

Alexa-Fluor secondary antibodies diluted (1:2000) in antibody incubation buffer (1% BSA in 0.1%

Saponin in PBS). Fluorescent images were taken at 40X magnification. The images were analyzed

using Image-J software.

Statistical analysis
Statistical analyses were performed by using Student t test and Mann Whitney U test. Multiple treat-

ments were analyzed by using one-way ANOVA. For Serum-cytokines analysis outliers were identi-

fied using ROUT method. Values are expressed as mean ± SD. P values are indicated where

applicable. All the statistical analyses were done using GraphPad Prism software. Double-blind anal-

ysis was performed to analyze the IF and EM images. Number of experiment repeats, biological rep-

licates and P values are indicted in figure legends.
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