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1. The functional importance of the cholinergic system

The cholinergic system helps to transduce experiences through the modulation of functional 

circuits in the brain. It is a neurotransmitter system implicated in many complex cognitive 

processes; including attention, fear and anxiety, memory storage and cognitive flexibility. 

Cholinergic neurons fire in response to salient stimuli which contributes to heightened 

attentional states. The release of the excitatory neurotransmitter, acetylcholine, functions 

to amplify signal to noise ratios (Disney et al., 2007). For example, behaviorally driven 

cholinergic transients have been shown to aid in cue-detection (Sarter et al., 2014), 

maintaining information in the presence of distractors (Suzuki et al., 1997) and thus 

influencing attentional performance. In addition, cholinergic activity has been detected in 

response to unexpected reward (Hangya et al., 2015), and sustained attention (Gill et al., 

2000; Himmelheber et al., 2000).

The cholinergic system aids in the encoding of experiences into long-term memories 

(Letzkus et al., 2011). The cholinergic signalling plays a role in the sleep-wake cycle 

and memory consolidation during sleep. Activation of cholinergic neurons is associated 

with sleep-wake cycles, and during wakefulness acetylcholine facilitates thalamocortical 

signaling by directly exciting thalamocortical relay neurons while reducing activity in 

the reticular nucleus of the thalamus (Yamakawa et al., 2016). In addition, blockade of 

cholinergic signalling during REM sleep impaires off-line consolidation motor skills (Rasch 

et al., 2009), and low levels of acetylcholine during slow wave sleep mediate critical 

declarative memory consolidation processes (Gais and Born, 2004). Due to the complex 

nature of the attentional and memory-driven functions mediated by acetylcholine, several 

regulation mechanisms of the cholinergic system exist.

2. Structural elements of the cholinergic system

Cholinergic neuronal cell bodies are relatively localized, with cholinergic neuronal cell 

bodies resident in the basal forebrain and brain-stem. Their terminals, however, radiate 

broadly throughout the central nervous system (Zoli et al., 1999; Dani, 2001; Zaborszky, 
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2002; Dani and Bertrand, 2007; Guo et al., 2015). The release of acetylcholine is not 

confined within the synaptic cleft and thus extra-synaptic transmission to cholinergic 

receptors is possible. The widely radiating axonal projections of these discretely clustered 

cholinergic neurons might suggest a broad action for cholinergic signaling were it not 

for several layers of regulatory mechanisms. The connectivity of cholinergic neurons to 

their targets subserves functionally and spatially selective signaling (Zaborszky, 2002; 

Ballinger et al., 2016, Li et al., 2018). Previously, cholinergic signaling was thought to 

be carried largely through volume transmission with a slow diffuse release and spatially 

broad changes in ACh concentration over time and space (Runfeldt et al., 2014; Sarter 

et al., 2009). Emerging evidence from studies utilizing new technological advances such 

as optogenetics, however, suggests a role for temporally precise ACh release with acute 

cholinergic signaling (Ballinger et al., 2016). For instance, recent studies provide evidence 

for precise functional connectivity from cholinergic projections neurons to specific targets 

that results in a spatially selective transmission (Chandler and Waterhouse, 2012; Bloem 

et al., 2014; Unal et al., 2015; Zouridakis et al., 2019, Li et al., 2018). This precise 

functional connectivity may subserve distinct functioning to specific stimuli and represent 

targeted networks rather than the classical model of broad cholinergic signaling. Cholinergic 

projection neurons from the basal forebrain to the basolateral amygdala (BLA) can 

produce varying responses depending on the BLA cell type, which may result in state

dependent behaviors such as learning in fear conditioning only during specific patterns of 

unconditioned and conditioned stimuli presentations (Unal et al., 2015). In another study 

basal forebrain projections to the medial prefrontal cortex were demonstrated to display 

a frontocaudal organization with correlations between the rostral/caudal position in the 

basal forebrain with distribution in mPFC (Bloem et al., 2014). The role of cholinergic 

functional connectivity may facilitate control over precise stimuli or represent coordinated 

regulation between several brain regions for complex behaviors that is different from the 

regulation ensued by volume transmission. Acetylcholine signals through two families of 

neurotransmitter receptor classes, G-protein-coupled muscarinic receptors (mAChRs) and 

ion channel-containing nicotinic receptors (nAChRs), which bind muscarine and nicotine, 

respectively. Nicotinic receptors are present on both pre- and post-synaptic neuronal 

subdomains. Central cholinergic neurotransmission can therefore alter neuronal excitability 

by changing the presynaptic release of neurotransmitters, depolarizing neurons on which 

they are expressed, inducing secondary messenger cascades, and/or coordinating the firing 

of groups of neurons (Rice and Cragg, 2004; Kawai et al., 2007; Kutlu and Gould, 2015).

Both decreases and increases in cholinergic signaling can have deleterious or suboptimal 

effects (Picciotto, 2003; Dani and Bertrand, 2007; Picciotto et al., 2012). Optimal 

operation of the cholinergic system is dependent on several regulatory mechanisms that 

fine-tune the activity of the cholinergic system (Miwa et al., 2012). Factors include 

the number and activity of cholinergic neurons, the level of acetylcholine release, the 

presence of acetylcholinesterase, the state of calcium stores, or receptor composition. 

Acetylcholinesterase is highly efficient enzyme, breaking down the neurotransmitter 

acetylcholine, and shortening the duration of acetylcholine signal. Genetic abnormalities 

within the choline transporter is associated with attention deficit hyperactivity disorder 
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(ADHD) and result in higher than normal levels of ACh synthesis (English et al., 2009), and 

aberrant cholinergic signaling is associated with schizophrenia (Higley and Picciotto, 2014).

Nicotinic acetylcholine receptors (nAChRs) are nonselective ligand-gated cation channels 

that exist as pentamers composed of many variations of 15 possible subunits (Changeux 

et al., 1998; Picciotto et al., 2001). Nicotinic receptors typically exist as heteromeric 

combinations of α (2–10) and β (2–4) subunits (most commonly α4β2) or as α 
homopentamers (α7, α9, etc.) (Picciotto, 2003; Albuquerque et al., 2009) and are dispersed 

on the surface of neurons, including presynaptic terminals, cell bodies, and axons (Hill et al., 

1993; McGehee et al., 1995; Wonnacott, 1997; Nashmi and Lester, 2006; Hurst et al., 2013). 

The most abundant subtypes in the brain are α4β2 and α7 nAChR subtypes. Receptor 

composition gives rise to specificity of the cholinergic response, as each combination 

displays distinct biophysical and pharmacological properties, such as agonist affinity and 

desensitization kinetics (Brown and Wonnacott, 2014). Differences in stoichiometry among 

heteromeric subunits results in differential response profiles and sensitivity to ligands, for 

instance the low sensitivity (LS) stoichiometry of α4β2 consists of three α and two β 
subunits (α4)3(β2)2, whereas the high sensitivity (HS) stoichiometry consists of two α and 

three β subunits, (α4)2(β2)3 (Marks et al., 1999; Gotti et al., 2007; Govind et al., 2012). The 

net sum of cholinergic activity and the effects on behavior will depend upon the integration 

of these multiple factors.

3. Lynx prototoxins, protein modulators of nicotinic receptors

Nicotinic receptor function is regulated by prototoxin protein modulators of the Ly6/uPAR 

superfamily. ly6/uPAR superfamily members adopt a three-loop β-rich fold structure 

stabilized by cysteine bonds (Lyukmanova et al., 2011; Tsetlin, 2015; Vasilyeva et al., 

2017; Miwa et al., 2019) that is also observed for elapid snake venom α-neurotoxins that 

bind to nAChRs and other receptors with high affinity. Snake toxins evolved via functional 

mimicry of pathways operating in the prey, such as endogenous prototoxins (Fig. 1). The 

identification of Ly6/uPAR family members in the mammalian brain (Kuhar et al., 1993) 

and their homology to the cysteine-rich signature of α-neurotoxins, was suggestive that this 

family of prototoxins might bind to and regulate similar molecular targets (Miwa et al., 

1999).

Members of the uPAR superfamily include CD59, lymphocyte antigen genes, ly6A-H, 

transforming growth factor β receptor ectodomains, and uPAR. In total, at least 2583 

sequences within seven subfamilies have been identified (Kessler et al., 2017). Further, 

the human genome contains at least 45 genes encoding the three-fingered domain (Galat 

et al., 2008). Three-fingered proteins exert an influence over a wide-array of physiological 

processes, including cell proliferation, differentiation, inflammation, and neuromodulation. 

Within this large superfamily, prototoxin members with significant expression in the brain 

include lynx1 (Miwa et al., 1999), lynx2/lypd1 (Dessaud et al., 2006; Wu et al., 2015), lypd6 

(Darvas et al., 2009; Zhang et al., 2009), lypd6B (Demars and Morishita, 2014), PSCA 

(Jensen et al., 2015), and Ly6H (Horie et al., 1998). These are considered to be peripheral 

membrane proteins, attached via a GPI-anchor embedded into the neuronal membrane. The 
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focus of this review will explore the in vivo role of prototoxins, members of this family 

expressed in the brain.

4. Biophysical mechanism of lynx1 action

The first characterized and most well-studied brain-expressed member of the prototoxin 

family is lynx1. Lynx1 exerts its modulatory effect on the cholinergic system by direct 

interactions with nAChRs. In pull-down experiments from rat cortical extracts, lynx1 has 

been shown to interact with all nAChR subunits tested (α3–7, β2, and β4) (Thomsen et al., 

2016). lynx1 has been shown to functionally modulate α4β2 (Ibanez-Tallon et al., 2002; 

Nichols et al., 2014), α3β4, α5α3β4 (George et al., 2017), α6 (Parker et al., 2017), and α7 

(Lyukmanova et al., 2011; 2013) nicotinic acetylcholine receptor subtypes. The influence of 

this interaction on heteromeric nAChR function can be multifactorial, influencing agonist 

affinity, desensitization kinetics, receptor number at the cell surface, and single-channel 

kinetics (Ibanez-Tallon et al., 2002; George et al., 2017; Nichols et al., 2014) and dependent 

on nAChR subtype (Parker et al., 2017), and isoform of lynx1, whether GPI-anchored or 

soluble (Lyukmanova et al., 2013; Thomsen et al., 2014).

Oocytes co-expressing α4β2 nicotinic receptors and lynx1 have a faster rate of 

desensitization to agonist, acetylcholine, and the agonist sensitivity is reduced, as assessed 

by a right-ward shift in the EC50 to acetylcholine (Ibanez-Tallon et al., 2002). These effects 

could be due to changes in receptor stoichiometry or the gating functions of lynx1. Removal 

of the GPI anchor by PI-PLC treatment did not alter the ACh dose-response properties of 

α4β2 nAChRs (Nichols et al., 2014), suggesting that influence on nAChR stoichiometry 

through receptor assembly could be the predominant effect of lynx1. A shift in the single 

channel species from faster inactivating, larger amplitude currents openings (Ibanez-Tallon 

et al., 2002), commonly thought to be correlated with LS nAChR stoichiometry, supports the 

idea the lynx1 can influence stoichiometry during nAChR assembly.

5. GPI-anchored vs secreted versions of prototoxins

Clear gating effects of lynx1 applied acutely as an engineered water-soluble version (ws

lynx1), have also been demonstrated, which are differentiated from the native GPI-anchored 

native membrane protein. Ws-lynx1 has an inhibitory effect on agonist sensitivity and 

peak amplitude and can inhibit α7, α4β2, and α3β2, although the functional effects were 

more pronounced with α4β2 nAChRs. The inhibitory effect is concentration specific and 

apparently can act in a non-competitive manner (Lyukmanova et al., 2011; 2013). Evidence 

supports lynx1 function on both gating and receptor assembly of α4β2 nAChRs. It should be 

noted that differential effects have been reported for lynx1 when co-expressed with nAChRs 

- and thus GPI-anchored membrane proteins - (Ibanez-Tallon et al., 2002) as opposed to 

when delivered as a soluble form of protein (Lyukmanova et al., 2013; Miwa and Walz, 

2012). Thus in vitro studies on ws-lynx1 should be considered in this context. It is clear 

from the actions of elapid snake toxins and secreted mammalian family members such 

as SLURPs, that significant gating effects are capable when prototoxins are bound to the 

nAChR and not otherwise attached to the membrane (Vasilyeva et al., 2017; Durek et al., 

2017; Chimienti et al., 2003; Lyukmanova et al., 2016). The functional effects of SLURPs 

Anderson et al. Page 4

Neuropharmacology. Author manuscript; available in PMC 2021 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on nAChRs have been reported mostly outside the central nervous system (Adeyo et al., 

2014; Chimienti et al., 2003).

6. Concatameric nAChR studies

To constrain the number of variables between multiple factors of stoichiometry, receptor 

number, and gating, concatemeric nAChRs have been used to fix nAChR receptor 

stoichiometry (George et al., 2017). In these studies, the five subunit cDNAs for α3β4 

nAChRs were fused into a single polypeptide, inhibiting any potential heterogeneity in 

stoichiometry at the fifth position. In these studies, the effect of lynx1 on either the 

(α3)2(β4)3 or (α3)2(β4)3 nAChR stoichiometry can be carried out independently. The 

identity of the nAChR subunit in the fifth position is an important determinant of 

desensitization and agonist sensitivity (Wu and Lukas, 2011). In these studies, lynx1 

reduced cell surface expression but not gating of (α3)2(β4)3, whereas it had marked single

channel effects of the (α3)3(β4)2 stoichiometry (decreased unitary conductance, altered 

burst proportions, and enhanced long closed dwell-times). The differential effect of lynx1 

on stoichiometry lends support to the hypothesis, generated from data on α4β2 nAChRs 

(Nichols et al., 2014), that lynx1 could have preferential binding affinity for α:α over β:β 
interfaces. Reduced cell-surface expression and increased closed dwell times accounted for 

the reduction in (α3)2 (β4)2α5 function mediated by lynx1. More defined structure-function 

studies will be required before a clearer understanding can be determined.

7. Structural information on lynx1 nAChR complexes

The lynx1 protein demonstrates some topological features of snake venom toxins, such as 

the the three loop toxin fold(Lyukmanova et al., 2011). α-btx is one of the most widely used 

snake toxins for the study of nAChRs. It exhibits nearly irreversible affinity for nicotinic 

receptors, while in contrast lynx1 is able to compete reversibly with other nAChR ligands. 

Residues on loop II and III are important for the interaction although the effects can be 

more diverse than that seen with toxin binding and function. There is limited structural 

information for prototoxins, relative to α-neurotoxins (Tsetlin, 2015), due to the lack of 

crystallographic data for lynx1. nAChR subunit structural information is emerging as more 

subunits (Kouvatsos et al., 2014; Zouridakis et al., 2019), or AChBP complexes (Shahsavar 

et al., 2012; Kaczanowska et al., 2014) are being reported (Giastas et al., 2018). The 

NMR solution structure of lynx1 has been solved, indicating the β-sheet rich three finger 

structure reminiscent of the toxin fold of α-neurotoxins (Lyukmanova et al., 2013; Tsetlin, 

2015). This structure indicates the lynx1 contains multiple β-sheets forming the first and 

second loop structures and disulfide pairing similar to α-neurotoxins. This solution structure 

also indicates a flexible, relatively disordered third loop, a feature which could make 

crystallization efforts more difficult. Mutagenesis studies have indicated residues which 

are also important for lynx1 binding or function (Lyukmanova et al., 2013), particularly in 

the key second loop region which has been mapped as important for binding within the 

related α-neurotoxins (Tsetlin, 2015). Computational models of lynx1 with nAChRs have 

indicated possible interactions within important parts of the nAChR structure, for instance 

the cys-loop and C-loops (Lyukmanova et al., 2013; Nissen et al., 2018; Dong et al., in 
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press), which have been shown to be involved in the transduction of agonist binding to the 

receptor open state, and with ligand binding, respectively.

These computational models support interfacial binding of lynx1 to the nAChR, for instance 

with α7 or (Lyukmanova et al., 2011; 2013), or α4* (Nissen et al., 2018) nAChRs=. This 

helps to bolster vitro experimental evidence of interfacial binding in studies carried out in 

mammalian cells (Nichols et al., 2014) and oocytes (George et al., 2017).

8. Cortical plasticity influenced by lynx prototoxins

The overall effect of lynx1 on the major nAChR subtypes primarily acts as a negative 

allosteric modulator of nAChRs. The role of prototoxins in vivo has been addressed through 

transgenesis and knockout technologies. lynx1 null mutant (lynx1KO) mice have been a 

useful research tool for the understanding of the role of lynx1 in plasticity and learning 

and memory behaviors. The function of lynx1 through nAChRs has been shown to mediate 

plasticity in the adult visual cortex and auditory cortex (Morishita et al., 2010; Takesian et 

al., 2018). lynx1 mRNA and protein levels increase in the primary visual cortex (V1) during 

the time of closure of the critical period in primary visual cortex. Removal of lynx1 in 

lynx1KO mice lead to extended ocular dominance (OD) plasticity in adulthood (Morishita et 

al., 2010; Sadahiro et al., 2016). The mechanism of lynx1 action on ocular dominance 

plasticity is correlated with a functional association of lynx1 with tissue plasminogen 

activator (tPA), a molecule implicated in spine turnover (Morishita et al., 2010; Bukhari 

et al., 2015). The turnover of spines in V1 layers 5 and L2/3 pyramidal neuronal dendrites 

are doubled in lynx1KO mice, and there is a higher loss rate in layer 5 (Sajo et al., 2016). 

These observations indicate a role for lynx1 in the structural remodeling and spine dynamics 

required for plasticity in the visual cortex.

9. Multiple plasticity periods altered by lynx1 regulation

Within the auditory cortex, a nearly 2-fold developmental increase of lynx1 expression has 

been observed in the primary auditory cortex (A1) between postnatal days P11 and P20. 

This is consistent with the closing of the critical period in the primary auditory cortex. 

This was accompanied by a decrease in nAChR sensitivity in 5-HT3AR positive cells, as 

compared to plasticity in the visual cortex. lynx1 has also been linked to a reduction in 

auditory plasticity via association with the α4-containing nAChR in 5-HT3AR positive 

cells (Takesian et al., 2018). Heightened nicotine sensitivity was observed in A1 neurons 

of lynx1KO mice which was blocked using the α4 nAChR specific antagonist, DHβE 

(Takesian et al., 2018). There is an emerging concept that multiple critical periods associated 

with various brain areas and that critical periods for sensory processing are shorter and end 

earlier than critical periods for higher complex functions (Morrone, 2010). The reduction 

of α4 nAChR signaling across development by the expression of lynx1 within specific A1 

cells may explain how lynx1 serves as a cortical plasticity brake in that region. It will 

be interesting to see if control of multiple critical periods can be explained by different 

temporal regulation of lynx1 within different cortical regions.
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10. Removal of the lynx1 brake on nAChRs augments associative learning

Lynx1KO mice demonstrate augmented cued fear conditioned learning (Miwa et al., 2006), 

but no differences in basal anxiety or contextual conditioning, suggesting a specific role 

of lynx1 in associative learning. This type of learning involves fear and anxiety centers, 

such as the medial prefrontal cortex, amygdala, somatosensory and auditory cortices. 

The amygdala, auditory cortex, and medial prefrontal cortex receive cholinergic input 

(Woolf, 1991; Hill et al., 1993; Séguéla et al., 1993; Whalen et al., 1994; Mesulam, 

1995; Mark et al., 1996; Passetti et al., 2000; Parikh et al., 2007; Mineur et al., 2007; 

Mansvelder et al., 2009; Poorthuis et al., 2014). Acetylcholine is released rapidly after 

aversive stimuli and is important for fear learning. A disinhibitory network is activated 

to regulate fear conditioning. Pairing of foot shocks with a sound causes activation 

of basal forebrain afferents to layer 1 interneurons in A1, which in turn inhibit layer 

2/3 parvalbumin-positive interneurons (Letzkus et al., 2011). Reduction in intracolumar 

inhibition results in enhancement of excitatory output by layer IV pyramidal neurons. Such 

changes within A1 (Takesian et al., 2018) might be sufficient to account for all of the 

associate leaning augmentations, though other regions have not been explicitly addressed. 

Within other cortical regions, the mPFC expresses both α7* and α4β2* nAChRs which 

mediate cholinergic signaling in all layers (Poorthuis et al., 2013; Arroyo et al., 2014; 

Bloem et al., 2014; Verhoog et al., 2016). This fear conditioning lynx1KO phenotype does 

not appear to be due to alterations in pain processing, as nociception is not augmented in 

lynx1KO animals in a standard hot-plate assay (Nissen et al., 2018). Removal of lynx1, 

rather, has an augmented antinociceptive effect when lynx1KO animals are injected with 

nicotine relative to wild-type mice. This is consistent with reports that nAChR activation has 

an antinociceptive effect (Freitas et al., 2013) and hypersensitivity of nAChRs due to lynx1 

removal (Miwas et al., 2006).

11. Subcortical effects of lynx1

In vitro studies indicate a positive functional effect of lynx1 on α6* nAChR activity 

in nicotine-evoked flux assays in striatal synaptosomes. This is somewhat at odds with 

the inhibitory role of lynx1 on most other nAChR subtypes studied thus far. Consistent 

with the restricted expression of α6* nAChRs in dopaminergic neurons, lynx1 KO mice 

demonstrate reduced levels of nicotine-evoked dopamine release from striatal synaptosomes. 

On the other hand, dopaminergic neurons from lynx1KO mice do not demonstrate changes 

in dopaminergic firing, nicotine-elicited responses in dopaminergic neurons, or dopamine 

measurements in fast-scan voltammetry studies (Parker et al., 2017). The lack of clear 

dopaminergic phenotype could be due to compensation due to the multiplicity of nAChR 

subtypes expressed within dopaminergic neurons. The composition of nAChRs expressed 

in the VTA dopaminergic projections to the NAc include α3, α4, α5, α6, α7 and β2, 

β3, and β4 subunits in various combinations (Klink et al., 2001; Mansvelder et al., 2009). 

Most VTA GABAergic neurons express α4 and β2 subunits while most VTA pre-synaptic 

glutamatergic terminals express α7* nAChRs (McGehee et al., 1995; Mansvelder et al., 

2009). Cholinergic regulation of dopamine has been widely studied in the context of nicotine 

addiction. Nicotine can stimulate dopamine release in the NAc (Picciotto et al., 1998). 
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Similarly, stimulation of VTA nAChRs increases excitability of dopamine neurons (Corrigall 

et al., 2002).

12. Complementary expression patterns of prototoxins in the brain

Spatial control over nicotinic receptor responses can also be achieved because prototoxins 

exhibit mostly non-overlapping expression patterns in the CNS (Miwa et al., 2012). For 

instance, within the hippocampus, lynx1 is expressed in the CA3 subfield and select cells 

in the hilar region, whereas lynx2 is expressed in the CA1 subfield and dentate gyrus. 

In general, however, the expression patterns of prototoxins are widespread. For instance, 

lynx1 has highest levels in the hippocampus and cerebellum (Miwa et al., 1999), but is also 

found extensively throughout other brain regions, and can be found in the retina (Maneu 

et al., 2010), the lung (Fu et al., 2012), and the spinal cord (Meyer, 2014). In addition 

to differential spatial expression, lynx1 has an interesting temporal expression profile with 

expression beginning at around postnatal week 2 or 3 in a mouse model (Miwa et al., 1999; 

Thomsen et al., 2014) correlating with the close of the critical period in the visual system. 

Other prototoxins, such as lypd6, are expressed in more limiting patterns, for instance, to 

defined GABAergic subpopulations (Demars and Morishita, 2014). The cell type and region 

specific expression can influence an array of distinct functions, in addition to the nAChR 

subtype binding specificity, and gating function on those receptors.

13. Orchestrating cholinergic responsiveness through opposing lynx 

gene expression: lypd6 and lynx1

Prototoxins exist within a larger family of genes (Tsetlin, 2015). Some evidence suggests 

that lynx1 opposed some of the effects of another prototoxin family member, lypd6. One 

piece of evidence lies in responsiveness to somatosensory processing. Overexpression 

of lypd6 (e.g. Synapsin-driven lypd6 transgenic mice) produced a reduced sensitivity to 

painful stimuli. In these studies, antinociception was also assessed by the writhing test, 

measuring the response to acetic acid (Darvas et al., 2006). These animals showed decreased 

responsiveness in this test. Nicotine-evoked nAChR currents in trigeminal neurons displayed 

higher calcium fluxes in transgenic mice as compared to those of wild-type mice. While 

the studies differed in the types of assays, genetic removal of lynx1 in lynx1 KO mice or 

addition of lypd6 in transgenic mice seems to produce similar cellular effects (e.g. elevated 

calcium levels), suggesting that they act differently at the biophysical level on nAChRs 

(Parker et al., 2017). These differences appear to manifest in apposite at the behavioral level 

too with respect to analgesia (Nissen et al., 2018; Darvas et al., 2006).

The pattern of expression of prototoxin family members within distinct interneurons places 

them in a position to potentially sculpt the activity patterns of circuits in the visual cortex. 

The two prototoxins, lynx1 and lypd6, demonstrate complementary temporal and spatial 

expression patterns within inhibitory subpopulations in the visual cortex (Fig. 2). Lynx1 

is found in parvalbumin positive interneurons, whereas lypd6 is found in somatostatin

positive interneurons localized to deep cortical layers, a cell type in which lynx1 was 

not detected (Demars and Morishita, 2014). Somatostatin-positive interneurons synapse 

robustly onto parvalbumin-positive interneurons. Considering that lypd6 can augment the 
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calcium component of nicotine-evoked currents, the release of acetylcholine could increase 

the inhibitory drive more robustly in somatostatin-positive interneurons, as compared to 

parvalbumin ones due to the differential expression of these two prototoxins and lypd6 

is highly expressed in other brain regions and spinal cord of mice and humans (Darvas 

et al., 2009; Zhang et al., 2009). Lypd6 has been shown to form complexes with α3, 

α4, α5, α6, α7, β2, and β4 nAChR subunits and competes with α-btx for binding α7 

subunits (Arvaniti et al., 2016). Previous studies have also reported, however, that blockade 

of α7 with α-btx and methyllycaconitine does not affect the modulation of nicotine-induced 

currents by lypd6 (Darvas et al., 2009). The function of lypd6 has been demonstrated in 

several model systems. For example, in PC12 cells, a soluble version of lypd6 completely 

inhibits nicotine-induced phosphorylation of ERK, which is an important pathway activated 

during plasticity induction. Furthermore, lypd6 KO mice exhibit decreased baseline levels 

of anxiety-like behavior in two-independent behavioral assessments (i.e., elevated plus maze 

and marble burying tests) (Arvaniti et al., 2018). Lypd6, however, also contains a Nxl motif, 

which allows it to bind LRP5/6, a member of the Wnt signaling pathway (Zhao et al., 2018), 

and therefore some of the phenotypes may be mediated by the Wnt coreceptor, low density 

lipoprotein receptor-related protein 6 LRP5/6.

14. Lynx1 and disease relevance

Alzheimer’s Disease (AD) pathology is associated with an increase in soluble β-amyloid 

(Aβ), a peptide cleaved from the amyloid precursor protein. Aβ been shown to gain entry 

through nAChRs and to elicit toxic effects (Thomsen et al., 2016; Inestrosa et al., 2013). 

There is evidence that lynx1 and Aβ1–42 compete for binding to nAChRs (Thomsen et 

al., 2016). In pull-down experiments from rat cortical extracts, water soluble lynx1 (ws

lynx1) pulled down all nAChR subunits tested (α3–7, β2, and β4), but the only subunits 

in which Aβ1–42 led to reduced lynx1/nAChR interactions were the α3, α4, α5, and 

α7 nAChR subunits. In contrast, the α6, β2, and β4 nAChR subunits were not sensitive 

to Aβ1–42 competition (Thomsen et al., 2016). Although the authors speculated that the 

interactions occurred at the cell membrane these interactions were insensitive to β subunits 

suggesting a significant association of lynx1 with individual α subunits or non-pentameric 

receptors. Interactions of a nAChR lacking a β subunit are likely to occur beneath the 

membrane surface, consistent with the reported interaction of lynx1 with nAChR dimers in 

the endoplasmic reticulum prior to receptor maturation (Nichols et al., 2014). Conversely, 

when Aβ1–42 was used to pull-down nAChR complexes, it also pulled down all nAChRs 

tested, and lynx1 could compete at α7 and β2 subunits. Such findings are in accordance with 

the results of previous studies, which reported that Aβ1–42 can bind α7, α4β2, and α4α5β2 

receptors (Dougherty et al., 2003; Lamb et al., 2005; Wu et al., 2004). These results indicate 

that lynx1 and Aβ1–42 bind at similar sites on nAChRs. Aβ1–42 is thought to bind at the 

orthosteric binding site, whereas the lynx1 binding site on nAChR has yet to be mapped.

If the lynx1 and Aβ1–42 interactions are significant in vivo, lynx1 may exert protective 

effects against the pathological progression of AD (Thomsen et al., 2016; Thomsen and 

Mikkelsen, 2012). Supporting this, a small but significant (e.g. 10%) reduction in lynx1 

messagerRNA is associated with Alzheimer’s pathology (Thomsen et al., 2016), and 

wslynx1 has been shown to block the inhibitory effect of Aβ1–42 on long-term potentiation 
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(Bychkov et al., 2018). A protective role for lynx is supported by in vitro (Miwa et al., 2006) 

and in vivo (Miwa et al., 2006; Kobayashi et al., 2014) studies in lynx1KO mice. Thus, 

further studies are required to elucidate the role of Aβ1–42 in normal and disease states 

(Kroker et al., 2013).

Although the role of lynx1 on disease states has focused primarily on Alzheimer’s, recently 

(Artoni et al., 2019) utilized the enhanced cholinergic tone of lynx1 KO mice to investigate 

if alterations in cholinergic circuit alter arousal dynamics similar to those observed in mouse 

models of Autism Spectrum Disorder (ASM). These studies determined lynx1 KO mice 

exhibited a shifted distribution toward maximal pupil size similar to ASD model mice 

(Artoni et al., 2019). lynx1 KO mice were also used to screen for genes differentially 

regulated and linked to genes in patients with risk for neurodevelopmental disorders such as 

epilepsy and schizophrenia (Smith et al., 2018).

15. Lynx2 prototoxin and anxiety regulation

Another member of the lynx family, lynx2, is expressed within key regions of the anxiety 

response circuitry, namely the amygdala and medial prefrontal cortex. Characteristic of the 

three-looped structure of the ly6/uPAR super family (Dessaud et al., 2006), the lynx2 protein 

binds to and suppresses the activity of nAChRs within these regions (Tekinay et al., 2009; 

Wu et al., 2015). In vitro immunoprecipitation experiments have demonstrated that lynx2 

forms stable complexes with α7, α4β2, and α4β4 nAChRs (Tekinay et al., 2009; Wu et al., 

2015). Co-expression of lynx2 and α4β2 leads to faster desensitization kinetics in response 

to acetylcholine (Tekinay et al., 2009) and a shift in the EC50 for acetylcholine (Tekinay et 

al., 2009), nicotine, and epibatidine (Wu et al., 2015). The presence of lynx2 also decreases 

the expression of α4β2 at the cell surface, suggesting an additional potential mechanism for 

the decreased response to agonists (Wu et al., 2015). There is also evidence that the lynx2 

protein can blunt nicotine-induced upregulation of α4β2 (Wu et al., 2015).

Key regions associated with anxiety, the amygdala and medial prefrontal cortex, not only 

express lynx2 but also receive cholinergic input (Woolf, 1991; Hill et al., 1993; Séguéla 

et al., 1993; Whalen et al., 1994; Mesulam, 1995; Mark et al., 1996; Passetti et al., 2000; 

Parikh et al., 2007; Mineur et al., 2007; Mansvelder et al., 2009). Nicotinic receptors have 

been implicated in the regulation of anxiety responses (Picciotto, 2003; Klein and Yakel, 

2006; Gozzi et al., 2010; Mineur et al., 2016; Jiang et al., 2016; Wilson and Fadel, 2017). 

Anecdotal evidence comes from smokers wherein individuals have reported using nicotine 

to ameliorate anxiety symptoms (Moylan et al., 2012). nAChRs have been shown to regulate 

activity in anxiety/fear circuits and have been linked to fear and anxiety-related behaviors 

in animal studies, particularly the amygdala and substructures of the amygdala such as the 

basolateral amygdala (BLA)(Picciotto, 2003; Klein and Yakel, 2006; Gozzi et al., 2010; 

Mineur et al., 2016; Jiang et al., 2016; Wilson and Fadel, 2017).

Endogenous acetylcholine modulates excitability of the BLA, as well as stimulating cortical

BLA inputs. Activation of nAChRs with nicotine increases glutamatergic transmission in the 

BLA and post-synaptic glutamatergic currents from cortical inputs into the BLA, whereas 

blockade of nAChRs decreases activity in the BLA (Mineur et al., 2007; Jiang and Role, 
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2008; Jiang et al., 2016). Behavioral consequences of altered nAChR signaling is highly 

dependent upon the activity of the amygdala and its inputs. For example, α7 nAChRs can 

modulate the activity of both excitatory and inhibitory neurons, and the outcome depends 

upon the starting conditions (Jiang and Role, 2008; Pidoplichko et al., 2013). Both of the 

most common nAChR subtypes are involved in anxiety-like behavior as focal knockdown of 

α7* and β2* (*indicates containing that subunit) within the amygdala have anxiolytic-like 

effects (Mineur et al., 2016). Only β2* nAChRs were shown to be involved in social defeat 

(Mineur et al., 2016). In fear extinction, activation of cholinergic terminals in the BLA 

hinders the acquisition of extinction and maintains the fear memory by increasing the firing 

of BLA principal neurons (Jiang et al., 2016).

Behaviorally, Lynx2 null mutant mice (lynx2 KO) exhibit increased sensitivity to nicotine 

in pyramidal neurons in the medial prefrontal cortex as compared to wild-type controls 

(Tekinay et al., 2009). These data suggest that ligand sensitivity is altered in the presence 

of lynx2, and that lynx2 also acts to inhibit the activity of nAChRs. The functional 

consequences of lynx2 deletion include increased anxiety-like behaviors across several 

paradigms (e.g. light-dark box, thigmotaxis, and elevated plus maze), as well as reduced 

social interaction in a standard social interaction test (Tekinay et al., 2009). Thus, lynx2 

may play an important role in limiting or regulating the function of its cognate receptors to 

respond adaptively in circuits mediating anxiety-like behavior, and deletion of lynx2 in mice 

can serve as a robust model of excessive anxiety.

16. Prototoxin family members

Several members of the ly6/uPAR/neurotoxin superfamily have been shown to bind to and 

differentially modulate the function of multiple nAChRs (Wu et al., 2015; Arvaniti et al., 

2016; Puddifoot et al., 2015) (Table 1). One example, LYPD6 interacts with α3, α4, α5, 

α6, α7, β2, and β4 nAChR subunits and is expressed in somatostatin interneurons of the 

V1 layers 5 and 6 (Darvas et al., 2009). Other prototoxins, however, are known to show 

decided preferences specific nAChR partners. For example, LYPD6B has been shown to 

modulate α3β4-containing but not α7-containing nAChRs (Ochoa et al., 2016), Ly6g6e 

interacts with potentiated α4β2 nAChRs (Wu et al., 2015), and Ly6h interacts with α7 

nAChRs (Puddifoot et al., 2015) Prostate stem cell antigen (PSCA), another prototoxin 

modulator of nAChR function, has a preferential modulatory effect on α7-containing but not 

α3β4-containing nAChRs (Hruska et al., 2009). Recent work demonstrates that prototoxins 

can also have significant preferences for interacting with particular subunit interfaces within 

nAChR complexes.

In addition to the proteins discussed prior, several members of the prototoxins family 

are expressed and function peripherally to inhibit signalling of the nicotinic system (e.g., 

SLURP1, SLURP2, lypdg6e, PATE-M, PATE-B, etc.). Although each of them plays an 

important role in signalling regulation and are therefore are worth mentioning, their 

distribution and targets remain generally peripheral and ultimately fall outside of the scope 

of this review.
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17. Therapeutic potential of nicotinic receptors

Considerable efforts have been made to develop agonists against nAChRs for a number 

of indications. Nicotinic receptors suffer from some challenges as a therapeutic target. 

They are part of a large gene family with very similar sequences, making them difficult 

to target selectively. Secondly, nicotinic receptors are wide-spread throughout the brain, 

so a drug could have multiple functional consequences (Mineur and Picciotto, 2008). 

Nicotinic receptors also desensitize quickly and down-regulate, making selective targeting 

a short-term proposition in some cases (Quik and Wonnacott, 2011), thus subject to 

tachyphylaxis. Lastly, neurons usually express more than one subtype generally, and 

the potential for receptor compensation is a complexity that requires more exploration. 

Therefore combinatorial targeting of multiple subtypes within a neuron, which might be an 

ideal strategy, is a challenge. Also the inverted U-shaped curve of nicotinic receptor based 

therapeutics means that efficacy and safety are a hurdle higher than other targets (Colquhoun 

and Patrick, 1997). The ability to successfully create new nicotinic therapeutics has largely 

been unsuccessful with several failed clinical trials pointing to a translational gap (Bertrand 

and Terry, 2018; Vieta et al., 2013).

Several features make lynx prototoxins intriguing as possible therapeutic targets for the 

cholinergic system, and could possibly circumvent some of the issues associated with direct 

targeting of nicotinic receptors. Lynx genes have a degree of regional selectivity, some 

more restricted than others (Dessaud et al., 2006; Miwa et al., 1999; Thomsen et al., 2014). 

The advantage of multiple lynx family members is the possibility of exerting better spatial 

or temporal control over the cholinergic system by selectively acting on a single lynx 

family member which is associated with a specific function or region. Thus, targeting the 

lynx-receptor interface, could increase the possible specificity of action over the receptor 

alone. This has the potential of lowering unwanted side-effects. Removal of lynx1 leads 

to reduced levels of desensitization (Ibanez-Tallon et al., 2002), suggesting that lynx-based 

drugs could be less sensitive to either desensitization or tachyphylaxis. The reported effects 

on the number, stoichiometry, and desensitization kinetics of nicotinic receptors at the 

neuronal cell surface due to lynx interactions (George et al., 2017; Wu et al., 2015), suggest 

changes in nicotinic receptor number could also be a beneficial outcome of lynx targeting, 

and consideration of possible intracellular effects of a lynx-based therapeutics is warranted 

(Lester et al., 2012).

18. Overview

Shaping the responsiveness of acetylcholine through modulation of nAChRs has significant 

influence on a number of complex brain functions adaptive to the organism. Different 

prototoxins have been shown to be selectively expressed in different cell types within 

circuits and have differential binding capacity on nAChR subtypes. At present, the 

majority of reports of prototoxin function have been inhibitory on α4β2, α3β4, α5α3β4 

(e.g. lowering agonist response property, lowering receptor number, or accelerating 

desensitization of nAChRs, etc.). Exceptions to this are the reports of lypd6, as well as the 

positive effects of lynx1 for α6β2, and α6* nAChR function. As of yet, no in vivo role of 

a prototoxin has been reported on mAChRs, so the nicotinic selectivity of prototoxins could 
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also influence the relative degree of muscarinic drive over the nicotinic one in response 

to acetylcholine release. The detailed understanding of the relative weighting of nicotinic 

function imparted through nAChR subtypes in complexes with specific prototoxins will 

require further in vitro and circuit-based investigations. Lynx prototoxin regulation of the 

cholinergic system holds promise as a therapeutic target for a wide range of disordered states 

by imparting both spatial and subtype specific regulation of a widespread neurotransmitter 

system.
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HIGHLIGHTS

• Cholinergic signaling is broad due to widespread cholinergic axonal radiation.

• Prototoxins exert spatial selectivity by binding to specific nAChR subtypes.

• Different prototoxins up- and down-regulate nAChR function.

• Cell-type specific prototoxins effect nuanced circuit responses to 

acetylcholine.

• Circuit modulation alters plasticity, learning, anxiety, etc.
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Fig. 1. 
Schematic of lynx1 interaction with nAChRs.

A model of lynx1 (orange) is depicted interacting with A. two a4 nAChR subunits (from 

Nissen et al., 2018) and B. two a7 nAChR subunits (Lyukmanova et al., 2011). From 

Hoffman et al., 2019.)
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Fig. 2. 
Selective expression of lynx1 and lypd6 prototoxins within circuits. From Demars and 

Morishita (2014).
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