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Abstract

Background: In June of 2009, the World Health Organization declared the first influenza pandemic of the 21st century, and
by July, New York City’s New York-Presbyterian Hospital (NYPH) experienced a heavy burden of cases, attributable to a novel
strain of the virus (H1N1pdm).

Methods and Results: We present the signs in the NYPH electronic health records (EHR) that distinguished the 2009
pandemic from previous seasonal influenza outbreaks via various statistical analyses. These signs include (1) an increase in
the number of patients diagnosed with influenza, (2) a preponderance of influenza diagnoses outside of the normal flu
season, and (3) marked vaccine failure. The NYPH EHR also reveals distinct age distributions of patients affected by seasonal
influenza and the pandemic strain, and via available longitudinal data, suggests that the two may be associated with
distinct sets of comorbid conditions as well. In particular, we find significantly more pandemic flu patients with diagnoses
associated with asthma and underlying lung disease. We further observe that the NYPH EHR is capable of tracking diseases
at a resolution as high as particular zip codes in New York City.

Conclusion: The NYPH EHR permits early detection of pandemic influenza and hypothesis generation via identification of
those significantly associated illnesses. As data standards develop and databases expand, EHRs will contribute more and
more to disease detection and the discovery of novel disease associations.
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Introduction

The first cases of infection by a novel swine-origin influenza A

virus (H1N1pdm) [1] were reported in Mexico and the US in the

spring of 2009 [2,3]. By June 11, 2009, when the World Health

Organization declared the first influenza pandemic of the 21st

century, 28,774 cases of laboratory-confirmed H1N1pdm infec-

tions, including 144 deaths, were reported in 74 countries [4,5]. In

New York City, by July 8, 2009, a total of 909 laboratory-

confirmed cases had been hospitalized with H1N1pdm, of which

77% were under the age of 50 [6]. In addition, by the end of July,

more than 27% of pediatric patients admitted to the city’s New

York–Presbyterian Hospital (NYPH) had a chief complaint of

influenza-like illness (ILI) [7]. The spread of H1N1pdm continued

into 2009–2010 influenza season and according to the Centers for

Disease Control and Prevention (CDC), over 99% of the subtyped

influenza cases in the season were found to be due to H1N1pdm.

NYPH, like other health care facilities around the US,

increasingly uses electronic health records (EHRs) to document

patient visits. The use of EHRs is set to rapidly increase over the

next decade, driven by existing trends away from paper-based

records and various government incentive programs [8,9]. EHRs

not only facilitate improvements in quality of care [10,11], they

also facilitate clinical research and epidemiological studies,

particularly as they increase the availability of patients’ longitu-

dinal medical information [12,13].

However, EHRs challenge researchers with the task of accurately

identifying patients with a given medical condition [14,15]. Detailed

medical information about patients is found in textual discharge

summaries authored by the physician responsible for their care that

are only available for patients admitted to the hospital. Retrieving

data requires employing natural language processing algorithms to

turn the text into computable information [16]. Alternate sources of

patient information include International Classification of Diseases

diagnosis and procedure codes (ICD-10 and ICD-9), as well as the

information from prescription orders and lab results. While the ICD

codes are more easily extractable from EHRs, they are often entered

by personnel not directly responsible for patients care, and so are

not always accurate indicators of medical conditions [17,18].

Datasets may also be discrepant due to dissimilar recording criteria
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and practices at different patient care sites, as a patient might have

positive lab results for influenza, but not have the corresponding

ICD code recorded at one site, and vice-versa at another site.

Nevertheless, in cases of influenza, and at institutions like NYPH

where influenza testing is routinely performed, ICD diagnoses can

identify a minimal dataset, providing a lower bound for the actual

number of flu patients [19,20].

In this manuscript, we present the signs of the 2009 influenza

pandemic evident in the EHR database collected at New York-

Presbyterian Hospital in New York City from 2003 to 2009. These

signs include an excess in the number of influenza patients,

especially at expectedly low points of the flu season, and marked

vaccine failure. In particular, the increase in the rate of influenza

incidents is observed at a resolution as high as a zip code. We also

investigate the differential age distribution of pandemic and

seasonal influenzas, and analyze the EHRs for underlying health

conditions that may be more prevalent among pandemic than

seasonal influenza patients.

Methods

The NYPH IRB protocol for this project was marked as Non

Human Subject Research and thus was exempt from the

requirement of formal approval by the IRB. The NYPH EHR

was de-identified in accordance with the HIPPA regulations and

all data that could identify patients was removed before the study

was commenced. This limited dataset includes various tables

containing the demographics information, diagnoses and proce-

dures data (indicated by their respective ICD-9 codes), lab results,

and lists of prescription orders.

Considering the previously discussed inaccuracies of ICD

coding, we selected our set of patients based on the general

ICD-9 code for influenza (487) and its subcategories. At NYPH

influenza testing is routinely performed and in particular, it was

mandated for all patients admitted to the hospital with ILI during

the 2008-2009 season. The number of patients selected, therefore,

represents the lower bound for the actual number of influenza

patients who visited NYPH.

We assume that patients diagnosed with influenza after May of

2009 were symptomatically ill with H1N1pdm, identifying them as

pandemic influenza patients. Similarly, patients diagnosed with in-

fluenza before May 2009 are identified as seasonal influenza patients.

To identify patients vaccinated with influenza vaccine, we refer to

the ICD-9 procedure code 99.52 (prophylactic vaccination against

influenza) and 5 NYPH internal Medical Entity codes from

procedure tables. Using these codes, we are able to identify the

patients who received the influenza vaccine in 2003–2009 seasons.

At NYPH, vaccines are administered as per New York City

Department of Health guidelines: the seasonal influenza vaccine is

recommended for pregnant women, health care workers, anyone 6

months through 18 years of age, anyone 50 years or older, anyone

caring for infants less than 6 months of age, and anyone with an

underlying health condition that increases the risk of complications

from influenza (asthma, heart disease, diabetes, etc.) [21]. Of note,

the codes used to identify vaccination events capture only

vaccination performed at NYPH – not vaccination reported by

patients as having occurred elsewhere. We also exclude any

vaccinations against H1N1pdm, as their analysis belongs to the

2009–2010 influenza season. We finally define an incident of

vaccine failure when a vaccinated patient is diagnosed with

influenza during the same season, at least 30 days after the

inoculation.

To find the excess in number of patients in each age group per

season, relative to the total number of influenza patients, we define

Age Dependent Risk (ADR) by

ADR(g)~log2 Fi gð Þ=Ft gð Þð Þ:

Here, Fi(g) is the normalized number of influenza patients of age

group g in season i, relative to the total number of patients in the

season, and Ft(g) is the normalized number of seasonal influenza

patients of age group g in all seasons, relative to the total number

of patients.

For every influenza patient, we collected the ICD-9 diagnoses

codes recorded in various periods of some months before and after

the influenza diagnosis. For each time interval, we computed the

one-tail hypergeometric probability distribution to find whether

there are any statistically significant differences in the prevalence

of medical conditions in pandemic versus seasonal patients. Next,

we calculated the False Discovery Rate (FDR) to adjust the p-

values given the multiple hypotheses tested. FDR for probability

p0, is defined as

FDR p0ð Þ~
N pvp0ð Þ

NEHR pvp0ð Þ ,

where NEHR is the number of hypotheses with p-values smaller

than p0 derived from the EHR pandemic and seasonal datasets. N
is the expected number of such hypotheses, calculated via a

bootstrapping method; fixing the number of patients in each

dataset, we randomly assigned patients to the bootstrapped

pandemic or seasonal datasets, without changing their sets of

diagnoses. The one-tail hypergeometric probabilities for each

diagnosis were then recalculated and the two bootstrapped

datasets were compared. We repeated the bootstrapping step

2000 times (approximately the number of patients in each dataset),

and found N as the average number of p-values less than p0 per

bootstrapped dataset.

Results

Employing the specific ICD-9 code for influenza (487 and its

subcategories) to select the influenza patients of the past 6 seasons

between 2003 and 2009 (from September 2003 to September

2009), we identified 3368 distinct patients for whom the majority

of the diagnoses are recorded as ‘‘Influenza with other respiratory

manifestations’’ (ICD-9 code 487.1). No influenza strain subtype is

available in this dataset.

Figure 1A shows the number of flu patients during this period,

with a substantial increase in the number of patients after May

2009, when the H1N1pdm epidemic started in New York City.

We also observe that the increase in flu patients during the months

of the pandemic occurred when the average number of seasonal

flu patients per month typically falls (Fig. 1B).

We compared the seasonal and pandemic influenza patients

regarding their age and found substantial dissimilarities in the

mean ages (36 years in seasonal vs. 26 years in pandemic patients)

and median ages (33 years in seasonal vs. 20 years in pandemic

patients). Figure 2A shows the respective age distributions’

Empirical Cumulative Distribution Functions, for which both

nonparametric Mann-Whitney (p,0.001) and Kolmogorov-Smir-

nov (p,0.001) tests indicate statistically significant difference.

These tests respectively compare the two cumulative distributions

via their ranking difference and their maximum difference. Of

note, we did not find a statistically significant difference between

2009 Flu Pandemic in NYPH EHR
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the gender distributions of the seasonal and the pandemic

influenza patients.

We also calculated Age Dependent Risk (ADR) for influenza

patients of 2008–2009 season, in which H1N1pdm was the

predominant strain, versus the whole dataset, as a measure of the

expected age distribution. We found an increase in the number of

patients between ages of 5 and 25 and a distinct decrease in the

number of patients older than 60 (Fig. 2B).

Furthermore, we collected a set of patients who are recorded as

being vaccinated between the 2003–2004 and 2008–2009

influenza seasons. This set is not complete, as vaccinations were

not routinely documented in the NYPH EHR during these time

intervals; however, we were able to identify patients with influenza

diagnoses given in the season when the vaccination occurred –

patients who point to incidents of vaccine failure. Figure 3 shows

the ratio of these influenza patients relative to the total number of

vaccinated individuals in each season. The ratio of patients who

received the vaccine and later were diagnosed with influenza in the

2008–2009 season is substantially increased compared to the

previous seasons. (It should be noted that there were low numbers

of EHR-recorded cases of vaccination during the 2004–2005

season, which is consequently seen in the large error-bars in

Figure 3B.)

Moreover, we employed the longitudinal diagnosis data

available for the influenza patients in our dataset to identify

medical conditions associated with pandemic influenza (according

to their ICD-9 coding). Prior analyses have utilized ICD-9

diagnoses given at the same time as the diagnosis of interest to

construct mortality risk models [22,23]; we present the set of

associated diagnoses found in the database during a variable time

window (Table 1 and Table S1). Increasing the size of the interval

increases the number of diagnoses associated with seasonal and

pandemic influenza patients, and so increases the number of

hypotheses tested. P-values listed in Table 1 are the one-tail

Figure 1. An increase in the number of influenza patients. (A) Number of patients between 2003–2009 influenza seasons. A marked increase
in the number of recorded influenza cases is apparent by the beginning of May 2009. (B) Average Number of patients per month, before and after the
H1N1pdm pandemic. Between 2003 and 2009, seasonal influenza cases consistently peaked from December to March, whereas the peak of the
pandemic occurred in May and June 2009.
doi:10.1371/journal.pone.0012658.g001

Figure 2. Age Distribution of Pandemic vs. Seasonal influenza Patients. (A) The differential age distribution of the pandemic influenza cases
compared to seasonal cases is statistically significant, according to Mann-Whitney (p,0.001) and Kolmogorov-Smirnov (p,0.001) nonparametric
tests. (B) Age Dependent Risk for influenza patients of 2008–2009 season versus the whole dataset. An increase in the number of patients between
ages of 5 and 25 and a distinct decrease in the number of patients older than 60 is observed.
doi:10.1371/journal.pone.0012658.g002

2009 Flu Pandemic in NYPH EHR
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Figure 3. Vaccine Failure in 2008–2009 influenza season. (A) The increase in the number of patients who received the vaccine and later were diagnosed
with influenza and (B) their ratio to the total number of recorded vaccinations are statistically significant in 2008–2009 season compared to the previous
seasons. (There were low numbers of EHR-recorded cases of vaccination during the 2004–2005 season, which is consequently seen in the large error-bars.)
doi:10.1371/journal.pone.0012658.g003

Table 1. ICD-9 codes associated with pandemic influenza, compared to seasonal.

Inquiry Interval
(time pre/post flu) ICD9 Codes * Diagnoses P-values { FDR { Ratio (Pandemic/Seasonal)

8 months (6/2) 493.9 Asthma, unspecified ,0.001 ,0.001 2.06

V12.61 Personal history of pneumonia ,0.001 0.013 6.31

787.2 Dysphagia, unspecified 0.001 0.055 5.41

348.39 Other encephalopathy 0.002 0.064 8.11

110.9 Dermatophytosis 0.002 0.097 6.01

315.8 Other specified delays in development 0.004 0.116 3.60

709.8 Other specified disorders of skin 0.004 0.128 7.21

345.9 Epilepsy unspecified 0.005 0.121 2.58

789.59 Other ascites 0.006 0.173 10.8

V22.2 Pregnant state incidental 0.009 0.212 2.03

262 Other protein-calorie malnutrition 0.010 0.219 6.31

338.29 Other chronic pain 0.010 0.219 6.31

599.7 Hematuria, unspecified 0.012 0.251 4.81

315.9 Other specified delays in development 0.013 0.243 2.92

577 Acute pancreatitis 0.014 0.265 3.60

6 months (5/1) 493.9 Asthma, unspecified ,0.001 ,0.001 2.05

787.2 Dysphagia, unspecified ,0.001 0.002 19.8

V12.61 Personal history of pneumonia ,0.001 0.021 5.86

110.9 Dermatophytosis 0.001 0.022 9.01

348.39 Other encephalopathy 0.002 0.054 8.11

315.8 Other specified delays in development 0.004 0.106 3.60

709.8 Other specified disorders of skin 0.004 0.117 7.21

789.59 Other ascites 0.006 0.151 10.8

262 Other protein-calorie malnutrition 0.010 0.207 6.31

379.92 Swelling or mass of eye 0.010 0.207 6.31

V22.2 Pregnant state incidental 0.011 0.208 2.23

*ICD codes and diagnoses lists include all p-values ,0.015, excluding symptoms of influenza infection, and procedure-related supplemental (V) or external injury (E)
codes (see Supplemental Material Table S1 for additional time windows and Table S2 for all excluded ICD codes and diagnoses)
{one-tail hypergeometric p-values, uncorrected;
{false discovery rate (FDR) described in Methods — significant at FDR ,0.05 (bolded)
doi:10.1371/journal.pone.0012658.t001
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hypergeometric probabilities, along with their False Discovery

Rate (FDR) derived via a bootstrapping method, correcting for the

multiple hypotheses tested.

Though the associations listed in Table 1 must be interpreted

with caution, we found associations for which the null hypothesis is

not rejected (i.e., FDR,0.05) and their significance hold through

multiple intervals of inquiry. In particular, we found significantly

more pandemic flu patients with diagnoses associated with asthma

and underlying lung disease. However, pregnancy and obesity,

preliminarily reported as potential risk factors [24,25], do not have

statistically significant associations with pandemic influenza in the

NYPH EHR. (Also, see Table S2 for all excluded ICD codes and

diagnoses.)

NYPH serves all five boroughs of New York City, although it is

predominantly visited by people from Manhattan. EHRs provide

demographic information allowing patient groups in specific areas

to be studied. This type of information is especially useful during

an epidemic or a pandemic, since it allows the source of the

outbreaks to be discerned [26]. Available data however, typically

monitors populations over large geographic areas such as country,

state, or city (for example, CDC Flu homepage [27], WHO

FluNet [28,29], and European Influenza Surveillance Network

[30]). Figures 4A and 4B show the distribution of influenza

patients before and during the 2009 pandemic. The distribution of

patients remains very similar during both periods. This shows that

the number of people with symptomatic influenza rose across all

five boroughs at similar rates, indicating that the whole city was

affected. Although NYPH is mostly visited by people from the

northern Manhattan neighborhood surrounding it, we find that

the number of influenza patients from the Bronx increased rapidly

during the spring of 2009, peaking in April and May,

corresponding to the incidence pattern of H1N1pdm. The NYPH

EHR is therefore capable of tracking diseases at a resolution as

high as particular zip codes (Figs. 5A and 5B).

Discussion

NYPH began using an EHR database in 1988 and has

progressively increased the use of such systems ever since so that

the primary method of data entry in the hospital is now electronic.

The amount of data entered into the database per year has been

increasing at an exponential rate since 1990, doubling every 8 years;

by the end of 2008, more than 700 million data entries (notes,

reports, batteries of test, etc.) had been entered into the system. The

number of entries per person has also been increasing linearly, with

an average of 300 entries generated per patient in 2008.

EHRs represent a new set of tools to assist the early identification

of pandemic illness, and the NYPH records already shows several

signs distinguishing H1N1pdm from prior seasonal influenza

outbreaks. A marked increase in the number of recorded influenza

cases is apparent by the beginning of May 2009 (Fig. 1A). The trend

in average number of influenza diagnoses per month also

distinguishes H1N1pdm from seasonal influenza (Fig.1B): according

to the NYPH EHR, during the past 6 years, seasonal influenza cases

consistently peaked from December to March, whereas the peak of

the pandemic occurred in May and June 2009.

EHRs not only help to identify a novel disease outbreak, but

they do so with high geographic resolution [26]. The distribution

of patients in the five boroughs of New York City before and

during the pandemic (Figs. 4A and 4B) suggests that patterns of

EHR usage remain fairly consistent. If more people get influenza,

more patients will come to NYPH, so that the records reflect the

trends in a large part of New York City. In particular, we observe

a substantial increase in the number of visits by influenza patients

from Manhattan and the Bronx who were diagnosed during the

pandemic months. Figure 5 shows the rate of influenza patients in

Manhattan and the Bronx in each zip code per 1000 people

according to the 2000 census population numbers, further

demonstrating that the EHRs’ geographic information is valuable

for tracking the spread of the disease and as a potential predictor

of future outbreaks.

Moreover, the NYPH EHR confirms preliminary reports

indicating that a significant majority of pandemic influenza

patients were younger than 60 years old [31]. Figure 2A shows

the Empirical Cumulative Distribution Functions of the age

distributions of the seasonal influenza patients of the past 6 seasons

and the influenza patients of the 2009 pandemic. We observe that

the differential age distribution of pandemic influenza cases

compared to seasonal cases is statistically significant (p,0.001).

Furthermore, Figure 2B shows the Age Dependent Risk (ADR) of

pandemic influenza versus seasonal, where there is a substantial

increase in the number of pandemic influenza patients aged

between 5 and 25 and a marked decrease in the number of

pandemic influenza patients aged older than 65. These results are

Figure 4. NYPH serves all five boroughs of New York City, mostly Manhattan and also some parts of the Bronx. Although cases of
patients with influenza from Staten Island, Brooklyn, and Queens are present, they appear to be fairly isolated cases and do not reflect the movement
patterns of the New York populace, as seen (A) before and (B) during the pandemic.
doi:10.1371/journal.pone.0012658.g004
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in accordance with the preliminary results in New York City

[6,25] and nation-wide [32]. However, this feature of the EHR

data may not suffice as a means to distinguish H1N1pdm from

seasonal influenza because a similar differential age distribution

has also been observed between seasonal strains, where the

symptomatic influenza due to seasonal H1N1 is distributed mainly

in a younger population relative to seasonal H3N2 [33,34].

We also identify signs of vaccine failure in NYPH EHR (Fig. 3),

which further help to distinguish H1N1pdm from prior seasonal

influenza outbreaks. Figure 3 shows the substantial increase in the

number of vaccine failures in 2008–2009 season. However,

vaccine failure, like age distribution, may be insufficient alone to

identify pandemics; seasonal influenza vaccines are not always

designed effectively, especially when an infecting influenza virus is

Figure 5. Distribution of influenza patients in Manhattan and the Bronx during 2009. (C) Distribution of influenza patients during 2009,
mostly visiting from northern Manhattan. (D) Interestingly, we find that the number of influenza patients from south parts of the Bronx also increased
rapidly during the spring of 2009, peaking in April and May corresponding to the incidence pattern of H1N1pdm. Patient rates are calculated per
1000 people in each zip code, according to the 2000 census population numbers. From left to right, the zip codes are ordered from north to south in
Manhattan and the Bronx.
doi:10.1371/journal.pone.0012658.g005

Figure 6. The False Discovery Rate (FDR) versus the one-tail hypergeometric probabilities, p0, for p-values less than 0.05. The error-
bars are the standard errors for the time interval of 6 months before and 2 months after the influenza diagnosis. FDR is the ratio of the expected
number hypotheses with p-values less than p0, derived from bootstrap datasets, to the number of such hypothesis in the EHR pandemic and seasonal
datasets.
doi:10.1371/journal.pone.0012658.g006
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antigenically dissimilar to the expected strains that are included in

the vaccine design [35]. This was the case in the 2003–2004 season

(Fig. 1A), when the vaccine failed for adults [36], although it was

partially effective for those younger than 9 years of age [37].

The limited recording of vaccinations in the NYPH EHR raises

the issue of data quality – there is no doubt that whilst NYPH

continues the transition from paper to electronic health records, its

database will remain incomplete. The cases of pandemic and

seasonal influenza analyzed here must be regarded as a minimal

data set, perhaps only partially representative of the larger set of

influenza cases actually treated at NYPH. Nevertheless, statisti-

cally significant associations between pandemic influenza and

various comorbid conditions can be detected in the NYPH EHR.

In Table 1, we propose a method for variable-interval inquiries of

EHRs. Longer intervals are less specific, but are necessary to

ascertain associations with time-sensitive diagnoses (such as

pregnancy, which was identified by the CDC early in the course

of the pandemic as a potential risk factor for H1N1pdm), whereas

shorter intervals of inquiry yield fewer ICD-9 codes [25].

When the pandemic versus seasonal comparison probabilities

for the diagnoses in each time interval are calculated, we find more

than 70% of the hypotheses with p-values larger than 0.5. These

high p-values are due to diagnoses with low number of recorded

patients, which could never reach a high level of statistical

significance. Given the high number of associations with high p-

values, traditional corrections for statistical significance in

situations of multiple hypotheses testing (such as the Bonferroni

or Benjamini-Hochberg methods) are not applicable – they falsely

increase the number of tested hypotheses, reducing the number of

significant candidates. Therefore, to correct for multiple hypoth-

esis testing while maintaining the structure of the dataset, we

calculate the False Discovery Rates (FDRs) via a bootstrapping

method (Fig. 6).

The associations for which the null hypothesis is not rejected

(i.e., FDR,0.05) that persist through multiple intervals of inquiry

(e.g., asthma, prior pneumonia, dysphagia) might be of clinical

interest and help to confirm or refute preliminary reports of

H1N1pdm (Table 1). Of note, pregnancy and obesity (potential

risk factors identified in such reports [24,25]) do not have

statistically significant associations with pandemic influenza in

the NYPH EHR. Notably, this analysis excludes considerations of

disease severity.

EHRs allow unprecedented access to large sets of patients’

longitudinal medical information and allow analysis of such

information to occur in near real-time. In particular, substantial

excess in the number of patients, especially at a period outside of

the normal influenza season, and significant vaccine failure,

readily evident in EHRs, are clear indicators of a circulating strain

to which the public lacks immunity. Even the sparse data available

at NYPH permits early detection of pandemic influenza and

hypothesis generation via identification of those significantly

associated illnesses, demonstrating the benefits that EHRs might

extend to population health. As data standards develop and

databases expand, EHRs will contribute more and more to disease

detection and the discovery of novel disease associations.
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