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ABSTRACT

In this work, we report the development and experi-
mental validation of a coupled statistical thermo-
dynamic model allowing prediction of the
structural transitions executed by a novel DNA
nanodevice, for quantitative operational design.
The efficiency of target structure formation by this
nanodevice, implemented with a bistable DNA
molecule designed to transform between three
distinct structures, is modeled by coupling the
isolated equilibrium models for the individual struc-
tures. A peculiar behavior is predicted for this
nanodevice, which forms the target structure
within a limited temperature range by sensing
thermal variations. The predicted thermal response
is then validated via fluorescence measurements to
quantitatively assess whether the nanodevice
performs as designed. Agreement between predic-
tions and experiment was substantial, with a
0.95 correlation for overall curve shape over a
wide temperature range, from 30�C to 90�C. The
obtained accuracy, which is comparable to that
of conventional melting behavior prediction for
DNA duplexes in isolation, ensures the applicability
of the coupled model for illustrating general
DNA reaction systems involving competitive du-
plex formation. Finally, tuning of the nanodevice
using the current model towards design of a
thermal band pass filter to control chemical
circuits, as a novel function of DNA nanodevices is
proposed.

INTRODUCTION

DNA is a useful material for the construction of
nanostructures (1,2) and functional nanodevices (3,4),
due to its natural compliance with a simple Watson–
Crick base pairing rule, by which complementary se-
quences in one or more DNA strands hybridize with spe-
cificity. The function of DNA nanodevices is realized by
structural transitions, generated in response to external
stimuli according to the physical properties of DNA. In
addition to stepwise hybridization directed by the addition
of short DNA strands (5–7), various characteristic DNA
reactions, including the B–Z transition of a helix triggered
by an ionic strength change (8), a structural transition
triggered by a pH change (9,10) and the melting of a
DNA hairpin triggered by heating (11) have been
introduced as engines to drive nanodevices.
A physical model that enables a designer to predict the

efficiency behavior of the structural transitions executed in
a reaction system is essential to the rational design of
DNA nanodevices. In general, both the intramolecular
folding of a DNA strand into its optimal fold and inter-
molecular hybridization between complementary DNA
strand pairs are intrinsically incomplete reactions, due to
competition between the formation of optimal and
suboptimal structures. Beyond predicting the optimal
structure, a quantitative assessment of the impact of
such competition requires a coupled model of system
behavior. To date, an experimental study to characterize
a DNA nanodevice in vitro at equilibrium was imple-
mented under an isolated condition, which was virtually
optimized so that a small number of DNA species were
assumed to perform hybridization only to form the
targeted optimal structure as expected. It is required to
bridge a gap between experimental analysis of elementary

*To whom correspondence should be addressed. Tel: +81 097 7781226; Fax: +81 977 78 1123; Email: jarose@apu.ac.jp; URL: http://www.apu.ac
.jp/jarose/

Published online 12 April 2010 Nucleic Acids Research, 2010, Vol. 38, No. 13 4539–4546
doi:10.1093/nar/gkq250

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



nanodevices and the construction of nanodevice systems
for achieving advanced functionality. The number of
target structures and/or DNA species will increase to
comprise practical nanodevice systems, accompanied by
an increase in the probability of forming undesired
non-target structures via accidental hybridization
between partially complementary regions. Moreover, it
might be expected that useful behaviors will emerge
from complex nanodevice systems, due to competition
between multiple competing structures. However, such be-
haviors can be difficult to predict and design via isolated
models of structure formation.
For achieving practical tasks using DNA nanodevices,

the development of novel methodologies allowing identi-
fication of systems characteristics such as efficiency and
error rate is, therefore, inevitable. In this regard, we
have previously developed a coupled statistical thermo-
dynamic model for assessing error upon DNA hybridiza-
tion (12,13), yielding an ensemble average error measure
referred to as the computational incoherence. Although
such a coupled model of efficiency that allows the quanti-
tative prediction of the behavior of nanodevices on a mo-
lecular scale is theoretically regarded as promising, its
experimental validation still remains to be performed.
In this study, we report the development and experi-

mental validation of a coupled statistical thermodynamic
model for predicting the efficiency of the structural tran-
sition of a novel DNA nanodevice. The present DNA
nanodevice is implemented with a so-called bistable
DNA molecule that transforms between three distinct
structures. First, the sophisticated thermal response of
this nanodevice, in which formation of a target structure
is controlled in a competitive manner, is quantitatively
predicted as the operational design of the nanodevice.
The efficiency of structural transition is represented in
terms of the distribution of DNA molecules across the
accessible structures of the reaction system, under equilib-
rium conditions. The efficiency behavior of formation of
the targeted hairpin by the bistable DNA, which poten-
tially forms two hairpin structures and a fully melted coil,
is modeled by coupling the isolated equilibrium models for
the individual hairpins. The peculiar behavior of this
bistable DNA as a DNA nanodevice, which forms the
targeted hairpin structure within a limited temperature
range by sensing thermal variations was predicted.
Then, the predicted thermal response is validated via an

experimental analysis based on fluorescence measurements
with a dual fluorophore-labeled DNA. It is usually diffi-
cult to confirm suboptimal structure formation, as the
corresponding fractional population (FP) is too small to
be measured, due to competition with formation of the
optimal structure. In this study, a relatively high FP of
0.2 was set as a consequence of careful sequence design.
Beyond the conventional use of fluorescence quenching
between the two fluorescent dyes in close proximity for
qualitatively assessing formation of an optimal structure
by a DNA nanodevice, the rare formation of the targeted
suboptimal structure was quantitatively validated.
Comparison between the predictions and experiment
demonstrated good agreement over a wide temperature
range from 30�C to 90�C, yielding a correlation of 0.95.

The current results indicated that a model based on the
statistical thermodynamics of DNA duplex formation is
reliably applicable to quantitative design of the efficiency
behavior of DNA nanodevices. It should be noted that the
assignment of ‘target’ versus ‘error’ labels to individual
structures is arbitrary. Therefore, both the transforming
efficiency of DNA nanodevices similar to that in the
present study and error hybridization (12,13) upon inter-
molecular duplex formation are predicted by following the
same modeling framework. The current results are taken
to provide general experimental validation of the applica-
tion of a coupled statistical thermodynamic model to
provide quantitative predictions of both efficiency and
error behaviors of DNA nanodevices.

Finally, we propose a novel design principle for a DNA
nanodevice according to coupled statistical thermodynam-
ic considerations, for achieving advanced functionality
that is novel to DNA nanodevices, based on the intention-
al use of the suboptimal structure adopted in this study.
The transforming efficiency behavior of the present DNA
nanodevice could be modified by tuning the lengths of the
elementary structures, which comprise the DNA hairpin
structures. We found the stringently limited formation of
the targeted hairpin structure to be applicable as a thermal
band pass filter to control chemical circuits.

MATERIALS AND METHODS

Bistable DNA system

The structural formation of DNA at equilibrium is
governed by statistical thermodynamics (12,14). In
general, complementary sequences that are longer and
more GC-rich preferentially bind with each other, result-
ing in formation of the optimal structure due to their
greater energetic stabilization. However, it is inevitable
that a small fraction of DNA molecules competitively
performs duplex formation between shorter or less
GC-rich complementary sequences, to form less favorable
structures. Thus, an isolated physical model, which con-
siders only formation of the optimal structure, cannot
provide a comprehensive illustration of a DNA reaction
system, even if the system is composed of a single DNA
species. In particular, evaluation of unintended duplex
formation as erroneous operation by DNA nanodevices
or of crosstalk between them is beyond the scope of such a
model. Moreover, to support the design of DNA reaction
systems that intentionally utilize the formation of subopti-
mal structures as a key process rather than as an error, it is
necessary to establish a model that discusses both the for-
mation of optimal and sub-optimal structures. The distri-
bution of DNA molecules across the various accessible
structures, which occurs under equilibrium conditions,
may be discussed via a statistical thermodynamic
apparatus.

To validate application of a statistical thermodynamic
model to reliably predict the rare formation of substable
structures, transformation by a DNA nanodevice between
three distinct structures was modeled. The 95-nt bistable
DNA, CH employed in this study was designed to
comprise a reversible reaction system consisting of the
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two competing hairpin structures and a melted coil
(Figure 1). A coupled equilibrium model was developed
to support the quantitative prediction of the efficiency
behavior of competitive hairpin formation, by coupling
the isolated equilibrium models governing the formation
of each of the independent hairpins. The equilibrium
constant of folding for each system hairpin was modeled
via the structure’s statistical weight, estimated by the cor-
responding Gibbs factor. An equation was derived for
predicting the FP of DNA strands which fold into the
targeted hairpin formed by a 12-bp mode of duplex for-
mation between the complementary 50 and 30 terminal se-
quences as an energetically suboptimal structure, in
competition with the inhibitory hairpin formed by a
13-bp mode of duplex formation between the 50 end and
an internal sequence as the optimal structure.

Thermodynamic simulation of FP

The equilibrium behavior for CH was simulated using
a statistical thermodynamic approach, in which the
occupancies of the various accessible structures of the
system are modeled according to the Boltzmann distribu-
tion. Statistical weights of folding for each hairpin, which
are independent of folding context, were then estimated

via the corresponding Gibbs factors. In addition, a
duplex-wise all-or-none model was also adopted, which
neglects contributions due to partially melted intermedi-
ates for each of the full-length duplex structures in the
present system. A sequence-dependent Gibbs free energy,
�Go of duplex stacking was estimated via the Watson–
Crick nearest-neighbor model, using the parameters in
Ref. (14). For each hairpin stem, �Go

stem was estimated
as a sum of the temperature and ionic strength-dependent
free energy contributions of each doublet, with contribu-
tions from dangling ends included as an energetic perturb-
ation. The statistical weight of stacking for each hairpin
stem was then estimated by the Gibbs factor,
Wstem ¼ expð�Go

stem=RTÞ, where R is the molar gas
constant, with any dangling end modeled as an energetic
perturbation, as in Ref. (14). The statistical weight of loop
formation was modeled via a composition of the statistical
weights expected due to helix cooperativity and loop
closure, as follows. First, the statistical penalty of unravel-
ing at both duplex ends was modeled via the cooperativity
parameter, � ¼ expð�Go

init=RTÞ, where �Go
init was

estimated as the sum of two helix initiation parameters
(i.e. one for each end) listed in Ref. (14). Next, the statis-
tical weight of hairpin loop closure was estimated via
the Jacobson–Stockmeyer inverse-1.5 power law,

CH

F

F

T

T

T
F

Figure 1. Fluorescence bistable DNA system. A bistable DNA, CH employed for competitive hairpin formation was encoded to have a sequence of
the form: S13 - T29 - S13 - T28 - S12 (50–30). The subsequence S13 of length 13 nucleotides and its fully complementary subsequence S13 are indicated
by shading. T29 and T28 are poly-T subsequences of length 29 and 28 nt, respectively. Vertical lines represent base pairings. The fully melted coil form
is depicted simply as a curved line. FAM and TAMRA fluorophores, attached for discrimination of the targeted hairpin structure, are indicated by F
and T in gray and black circles, respectively. Upon formation of the targeted hairpin structure, the emission from FAM attached to the 50 end of CH
is preferentially quenched by the proximal TAMRA attached to the 30 end.
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Wloop ¼ ð1+nÞ�1:5 (15), where n is the number of loop nu-
cleotides. It is assumed that the impact of volume exclu-
sion and chain stiffness on loop closure can be neglected
due to the use of large hairpin loops. The net equilibrium
constant for formation of each hairpin structure is
then given by the product of these weights,
Keq ¼ �expð�Go

stem=RTÞð1+nÞ�1:5, which corresponds to
the overall statistical weight of the structure. Finally, the
estimated equilibrium constants for the targeted and in-
hibitory hairpin species, Ktg and Kih were employed to
model the efficiency of formation of the targeted hairpin
structure, ". This quantity, which predicts FP, was
estimated for the competitive hairpin system, CH via the
coupled equilibrium expression,

" ¼
Ctg

Co
¼ 1+

ð1+KihÞ

Ktg

� ��1
: ð1Þ

Here, the total strand concentration for the coupled
equilibrium is given by Co ¼ Css+Ctg+Cih, where Css, Ctg

and Cih denote the equilibrium concentrations of melted
coils, fully formed targeted hairpins and fully formed in-
hibitory hairpins, respectively. Mass action expressions for
the component equilibria, Ctg ¼ CssKtg and Cih ¼ CssKih

were also employed to obtain the final expression.
For comparison, a melting curve was also separately

simulated for the isolated hairpin structure, which is
formed by CH as the targeted suboptimal hairpin in the
coupled system above, assuming the absence of competi-
tion (Co ¼ Css+Ctg). Under an all-or-none model for for-
mation of the structure’s single full-length duplex, the
fraction of folded DNA strands for this hairpin is then
given by

� ¼
Ctg

Co
¼ 1+

1

Ktg

� ��1
: ð2Þ

Experimental implementation of CH

To investigate whether the actual behavior of FP for the
targeted hairpin is the same as designed, the competitive
hairpin formation of the bistable DNA was characterized
experimentally via a set of fluorescence measurements.
Fluorescence spectroscopy is a suitable probe for
analyzing nucleic acid conformations and estimating
thermodynamic properties (16). In addition, fluorescence
measurements can be readily performed under a variety of
solution conditions and over a wide temperature range.
We took advantage of the Förster resonance energy
transfer (FRET) and the contact quenching technique
(17,18), by which the change in the distance between the
donor and acceptor fluorescent dyes accompanying a
structural transition can be monitored via the correspond-
ing change in fluorescence intensity (FI). We adopted
two fluorescent dyes, carboxyfluorescein (FAM) and
carboxytetramethylrhodamine (TAMRA), which are com-
mercially available and the most commonly used donor
and acceptor pair in fluorescence measurements for
nucleic acids. FAM and TAMRA were attached to the
50 and 30 ends of CH, respectively (Figure 1), so that
emission from FAM is efficiently quenched upon

formation of the targeted hairpin structure by placing
them in proximity.

In conventional studies of DNA nanodevices, fluores-
cence spectroscopy has been applied only to qualitatively
confirm the formation of the expected optimal structure.
However, it is expected that the FP of DNA nanodevices
that forms a certain structure is quantitatively assessed by
making appropriate calibrations, according to the meas-
urement conditions. The FI emitted from fluorescent dyes
varies according to the surroundings, including the tem-
perature condition and attached DNA sequence (18,19).
Thus, it was necessary to calibrate and normalize the raw
thermal profile of FI obtained for the dual-labeled bistable
DNA, CH via direct monitoring of the emission from
FAM versus temperature. For this purpose, an oligo-
nucleotide, F-CH having a DNA sequence identical to
that of CH, but modified only by 50 attachment with
FAM, was used as the control for calibrating both the
sequence dependence and thermal variation of FAM
emission. All oligonucleotides were commercially
synthesized and purified by Nippon EGT (Toyama,
Japan).

Poly-T sequence insertion

The sequence of the bistable DNA, CH (Figure 1) was
designed to optimally implement the current fluorescence
spectroscopy experiment. A 28-nt poly-T sequence, T28

was inserted to reduce undesired FRET upon formation
of the inhibitory hairpin structure, by effecting a spacing
between the FAM and TAMRA fluorophores. The
fluorophore separation due to the introduced 40-nt
spacing was expected to become sufficiently larger than
the Förster radius of the pair (Ro ¼ 55 Å), defined as the
distance at which the FRET efficiency is 50%.

Experimental values for the persistence length of
single-stranded DNA (ssDNA) have been obtained using
a variety of conditions and techniques, including electron-
ic birefringence (20) and Cy3/Cy5 FRET (21), yielding
values in the range from 14 to 30 Å. A minute value for
the current experimental system and conditions was
determined as a best-fit value of L ¼ 14 Å, by maximizing
the correlation between the predicted and measured fluor-
escence footprint, described below, over values within the
reported range. Combining this value for the persistence
length with the measured value for the ssDNA inter-chain
phosphate spacing of l ¼ 6:3 Å adopted in Ref. (21), and
the well-known limiting expression for the mean square
end-to-end distance for a freely rotating chain in the
infinite-chain limit derived in Ref. (22),

hr2i� ¼ nl2+2nlðL� lÞ ð3Þ

yielded an approximate FAM/TAMRA root mean square
spacing of hr2i

1
2
� � 74 Å for our design (n ¼ 40 nt), upon

formation of the inhibitory hairpin. At this spacing, the
FRET efficiency of the FAM/TAMRA pair, estimated via
the expression,

E ¼ 1=½1+ðR=RoÞ
6
�, ð4Þ
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where the separation distance, R, approximated by hr2i
1
2
�, is

roughly E ¼ 0:14. Thus, a 14% FRET efficiency was pre-
dicted upon formation of the inhibitory hairpin.

Fluorescence measurements

Fluorescence Measurement was performed using a
real-time PCR machine, Mx3005P (Stratagene Japan
Networks) in a 20 ml solution of 1� SSC buffer (150mM
NaCl, 15mM sodium citrate, pH 7.0 (23�C); Life
Technologies Japan Ltd), containing 0.5mM CH or
F-CH. After heating, FI was monitored by cooling grad-
ually to avoid kinetic trapping and to ensure formation of
the hairpin structure under equilibrium conditions. The
temperature was incrementally changed after every
1-min incubation by 0.3�C from 30�C to 96�C for
heating, and by �0.3�C from 96�C to 30�C for cooling.
FI data was obtained at the endpoint of every 1-min
incubation.

Calibration and normalization of the measured FI profile

The thermal profile of FI obtained for the dual-labeled
bistable DNA, CH was calibrated with that obtained for
the FAM-labeled control oligonucleotide, F-CH by moni-
toring the emission from FAM versus temperature under
identical experimental conditions. The calibrated FI
values approached a maximum value, and saturated
around 80�C and above (details of calibration described
in Supplementary Figure S3). The calibrated FI values
were then normalized to allow comparison between three
independent measurements by clarifying the relative FI
values. The maximum calibrated FI value of each inde-
pendent measurement was set to unity for normalization.
By subtracting each value from 1, the fluorescence foot-
print [i.e. thermal profile for ð1� relativeFIÞ] was
obtained.

Tuning of transforming efficiency behavior

The melting temperatures for short DNAs are convention-
ally tuned to assure expected hybridization as a PCR
primer, etc., with the absence of consideration on the ef-
ficiency of suboptimal structure formation. It is an inter-
esting challenge to tune the equilibrium behavior of FP for
the suboptimal structure by variation of the DNA
sequence. Beyond the simple tuning of melting behavior,
the development of the sophisticated tuning of coupled
behavior based on the present model is expected to
achieve advanced functions of DNA nanodevices. For
validating the tunability of FP as the transforming effi-
ciency of a DNA nanodevice at equilibrium, the thermal
profile of FP for the targeted suboptimal hairpin was
tuned by varying the lengths of the elementary structures
comprising the DNA hairpins.

To investigate the general dependency of FP on DNA
length via simulation, mean-case free energies were
estimated by adopting mean values for the energetic par-
ameters for the elementary structures (i.e. average values
for the nearest-neighbor parameters in Ref. (14) for
base-pair doublets, duplex initiation and 50 dangling
ends). The difference in the lengths of the stem regions
between the targeted suboptimal hairpin and the

inhibitory optimal hairpin, �l, was then varied
(Figure 2). The value of the full-width half-maximum
(FWHM) was adopted as an index for the tuning of FP
behavior. For purposes of comparison, the lengths of the
total strand and the stem region of the targeted subopti-
mal hairpin structure, ltg were fixed at 95 nt and 12 bp,
respectively (the same values as CH). Note that the
targeted suboptimal hairpin was set to form a duplex
between the complementary 50 and 30 terminal sequences,
in a manner opposite to that of CH, with the intent of
enabling the targeted hairpin to implement subsequent
hybridization by its single-stranded overhang as a func-
tionally active form.

RESULTS

Predicted thermal profile of transforming efficiency

The predicted efficiency behavior of CH, in terms of FP
versus temperature, "ðTÞ, exhibited a characteristic
non-symmetric hill-shaped curve, as shown in Figure 3.
The resulting curve indicates that the present DNA
nanodevice promotively forms the targeted hairpin only
in the vicinity of a specific temperature. The temperature
at which FP reached its peak and the maximum FP value
were 62.3�C and 0.20, respectively. In contrast, the pre-
dicted efficiency behavior, �ðTÞ under an isolated condi-
tion assuming formation of only the single target hairpin
(i.e. in the absence of competition), exhibited a simple
melting curve with a sigmoidal shape.

Simulated and measured fluorescence footprints

To enable a direct comparison of simulated behavior with
experiment, "ðTÞ was further converted into the predicted
fluorescence footprint, by including the unintended
quenching effect by FRET that occurs upon formation
of the inhibitory hairpin. This minor quenching is un-
avoidable due to the rather large FRET radius. Based
on the estimated distance between the FAM and
TAMRA fluorophores (74 Å), the FRET efficiency of

5„

3„

The targeted hairpin

The inhibitory hairpin

lsp + Dl

ltg + Dl

lsp + ltg

ltg

Figure 2. Tuning by variation of the lengths of elementary structures.
The difference in the lengths of stem regions between the targeted sub-
optimal hairpin and the inhibitory optimal hairpin, �l was varied for
simulation. The total length and length of the stem region of the
targeted suboptimal hairpin structure, ltg were fixed to 95 nt and
12 bp, respectively (the same values as CH).
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the FAM/TAMRA pair in the inhibitory hairpin was
determined via Equation (4) as E � 14 %. The resulting
fluorescence footprint (Figure 4A) demonstrated good
agreement with the measured fluorescence footprint
(Figure 4B), with a correlation of 0.95. The temperatures,
Tmax ft at which the ½1� relativeFI� reached its peak, and
the corresponding maximum values of ½1� relativeFI� for
the simulated versus measured fluorescence footprint were
61.0�C versus 57.0�C, and 0:31 versus 0:36, respectively.

Stringently limited formation of the targeted hairpin
structure

The simulated FP curves for various values of �l are
shown as semi-log plots in Figure 5A. The results
indicated that the width of the FP curve, in terms of the
FWHM, was narrowed by increasing the difference in
stem length between the optimal and suboptimal hairpin
structures. Concurrently, the maximum value of FP

decreased. We found the stringently limited formation of
the targeted hairpin structure, with a FWHM of <5�C
(Figure 5B). The predicted maximum value of FP and
peak temperature were 0.0050% and 79.4�C, respectively,
for �l ¼ 24 bp.

DISCUSSION

Comparison between simulation and experiment

The application of statistical thermodynamics, along with
nearest-neighbor parameters is commonly adopted for the
prediction of melting behaviors for simple DNA systems
(14,15,23,24). However, its applicability to quantitatively
discuss the formation of alternative structures in a com-
posite system composed of competing structures remains
to be investigated. For achieving practical tasks using
DNA systems, the development of methodologies
allowing the estimation of systems characteristics such as
operational efficiency is essential. The quantitative con-
firmation of competitive structural formation, provided
by comparing simulation and experiment over a wide tem-
perature range in this study is a benchmark validation of
its applicability. The present results, shown in Figure 4,
indicated that the method of using a coupled equilibrium
model for the quantitative control and design of DNA
reaction systems is promising for DNA nanodevice
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construction. In particular, model predictions of the trans-
forming efficiency behavior for CH, accompanied by a
revision according to experimental conditions, exhibited
substantial quantitative similarity to the measurements.
The maximum values of the fluorescence footprint, 0.31
(simulation) versus 0.36 (experiment) differed by 15%,
providing substantial quantitative agreement. The corres-
ponding peak temperatures, Tmax ft =61.0�C (simulation)
versus 57.0�C (experiment) differed by 4.0�C, indicating
that the expected accuracy is comparable to the conven-
tional prediction of the melting behaviors of DNA
duplexes [e.g. agreement within 3.9�C, for hairpin
Tms (14)].

The simulated overall curve shape in Figure 4A,
indicating a non-symmetric singly-peaked hill, also
provided good agreement with that obtained by the meas-
urement in Figure 4B, with a correlation 0.95. On the
other hand, a substantial sharpening of the simulated,
relative to the measured curve, was also present. This dis-
crepancy indicates that adoption of an all-or-none model
for each system duplex may not be fully adequate, even for
coupled systems involving rather short DNA duplexes. In
particular, the observed sharpening might be attributed to
the negligence of the contribution of partially melted inter-
mediates to duplex melting behavior inherent in an
all-or-none model. Detailed identification of the

limitations and accuracy of the present model, and its im-
provement is, therefore, expected to be achieved by
adopting a more complete model, such as a statistical
zipper model.
It should be noted that the singly peaked hill-shaped FP

curve predicted for the substable structure formation is
beyond the scope of illustrations based on considerations
of the uncoupled component equilibria. As shown in
Figure 3, uncoupled model predictions similar to that
for �ðTÞ, which assume the absence of competition,
commonly provide sigmoidal FP curves. Accordingly,
the design of DNA nanodevices based on an uncoupled
model or with the use of only the optimal structure may
limit the function of such devices to that of simple low or
high pass filters. For the construction of devices with
advanced functions, the quantitative illustration of
complex behaviors, beyond the simple melting behaviors
expected for individual duplexes in isolation, is required.

Bistable DNA nanodevice

The transformation of the present nanodevice imple-
mented with a bistable DNA is controlled by temperature.
In contrast to DNA nanodevices controlled by intermo-
lecular DNA hybridization (5–7), our device can operate
at a rate independent of DNA concentration. In addition,
among environmental triggers, including an ionic strength
change (8) and a pH change (9,10), a temperature change
appears promising, as it could be provided locally and
quickly by laser irradiation. Identification of the kinetic
properties of the present nanodevice, along with kinetic
modeling is another interesting challenge.
The design principle for the present DNA nanodevice,

which utilizes a substable structure as the target, is a novel
one. As a consequence, a peculiar transforming efficiency
behavior, namely, exhibiting formation of the targeted
structure limited within a certain temperature range, was
established beyond the common simple melting behavior.
Tuning of the transforming efficiency behavior of the

bistable DNA nanodevice in this study was motivated
by riboswitches (25,26) and RNA thermometers (27),
found in many biological events to control chemical
circuits in vivo by mediating translation. Certain messen-
ger RNAs are not simply substrates for translation, but
also contain control elements that modulate their own
expression via structural transition. In contrast to
riboswitches that transform between alternative structures
triggered by ligand binding, to our current knowledge,
RNA thermometers consisting of several hairpins basic-
ally rely on simple dynamics of structure formation and
melting. Therefore, they can function only as thermal low
or high pass filters for subsequent chemical circuits. Here,
we propose the tuning of the behavior of the current
bistable DNA nanodevice, in order to endow it with an
advanced function as a thermal band pass filter. The
current simulation results indicate that DNA nanodevices
can exhibit the stringently limited formation of the
targeted structure. This behavior after tuning could not
be observed via the fluorescence measurements performed
in the present study, since the maximal FP for the targeted
structures formed by the nanodevice is fairly small.
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Figure 5. Simulated FP curves. (A) Simulated FP curves for various
values of �l are shown as semi-log plots. The width (FWHM) and
maximum value obtained for FP decreased with increasing �l.
(B) Stringently limited formation of the targeted suboptimal hairpin
was found after tuning. The predicted maximum value for FP
and peak temperature were 0.0050% and 79.4�C, respectively, for
�l ¼ 24 bp.
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However, it is expected to be applicable as a regulator of
chemical reactions that possess amplification procedures
triggered by DNA structure formation. A single DNA
molecule would be programmed via sequence design
according to a coupled thermodynamic model, to act as
a thermal band pass filter for chemical circuits.
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