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Abstract

Aspen (Populus tremuloides Michx) is a widespread commercial forest tree of high eco-

nomic importance in western Canada and has been subject to tree improvement efforts

over the past two decades. Such improvement programs rely on accurate estimates of the

genetic gain in growth traits and correlated response in adaptive traits that are important for

forest health. Here, we estimated genetic parameters in 10 progeny trials containing

>30,000 trees with pedigree structures based on a partial factorial mating design that

includes 60 half-sibs, 100 full-sib families and 1,400 clonally replicated genotypes. Esti-

mated narrow-sense and broad-sense heritabilities were low for height and diameter (~0.2),

but moderate for the dates of budbreak and leaf senescence (~0.4). Furthermore, estimated

genetic correlations between growth and phenology were moderate to strong with tall trees

being associated with early budbreak (r = -0.3) and late leaf senescence (r = -0.7). Survival

was not compromised, but was positively associated with early budbreak or late leaf senes-

cence, indicating that utilizing the growing season was more important for survival and

growth than avoiding early fall or late spring frosts. These result suggests that populations

are adapted to colder climate conditions and lag behind environmental conditions to which

they are optimally adapted due to substantial climate warming observed over the last sev-

eral decades for the study area.

Introduction

Trembling aspen (Populus tremuloides Michx) is an ecologically and commercially important

tree species with high genetic diversity and a broad natural range, including the boreal forest

of North America, the eastern United States, and the western mountain ranges from Mexico to

Alaska [1, 2]. Aspen can regenerate both via sexual and asexual reproduction [2, 3]. Root
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suckering often produces large single-species stands after fire disturbances in boreal regions

[3,4]. Over the last two decades, aspen has become one of the most important commercial for-

estry species in western Canada due to hardwood demand from pulp and paper mills, and the

development of oriented strand board (OSB) production [5]. Aspen and its hybrids have been

utilized in short rotation forestry [6–8]. In Alberta, Canada, aspen tree improvement programs

have been developed to maximize the yield in short rotation forestry systems [9,10]. Three geo-

graphic breeding regions in Alberta were initially delineated to develop locally adapted and

improved planting stock [9], of which two have active tree breeding programs [10].

Successful tree selection and breeding programs depend on sufficiently high heritability for

traits of commercial interest. Specifically, additive genetic variance components and narrow-

sense heritabilities are of interest to predict the genetic gain from normal recurrent selection. In

aspen, dominance and epistatic genetic variance components are of interest as well for clonal

selection, because the species can readily be clonally propagated to generate reforestation stock

[11]. Broad-sense heritability of height and diameter at breast height (DBH) has previously been

estimated in clonal trials and ranges from 0.36 to 0.64, where 262 clones and 11,152 ramets were

tested [10]. In a similar experiment, the broad-sense heritability was reported ranging from 0.23

to 0.35 for height and diameter, in which 18 clones and 417 ramets were tested [12]. Heterosis

and genotype-by-environment interactions have been studied in juvenile aspen [13,14]. Hetero-

sis of interspecific crosses was also reported for growth and wood quality improvement [9,15].

Estimates of narrow-sense heritabilities, relevant for breeding programs, are usually not

available because the additive and non-additive genetic effects are confounded in clonal trials.

Also lacking for trembling aspen is the estimate of heritability and genetic correlations of adap-

tive traits that are important to avoid mal-adaptation and minimize the risk of mortality in

plantations [16–18]. For example, unseasonal frost events in spring and fall may damage buds

and leaves, and eventually jeopardize productivity and survival [19]. In selection and breeding

for tree growth, the inadvertent response of other traits related to fitness may occur as a

byproduct. Antagonistic pleiotropy, where one gene controls multiple traits, may play a role in

trade-offs between traits that show high negative genetic correlations [20]. Such antagonistic

pleiotropy may result in unexpected responses to selection when the correlated response in

adaptive traits compromises expected gains in productivity. Pleiotropic loci contributing to

phenological traits were reported in Populus trichocarpa [21].

Here, we investigate whether improved growth characteristics can be accomplished through

tree breeding, while controlling for risks of maladaptation. We evaluate ten progeny trials con-

taining more than 30,000 trees with known pedigree structure, including 60 half-sib families,

100 full-sib families and 1,400 clones to estimate the breeding potential and genetic parameters

for collections from Alberta. This paper focuses on the genetic variation within populations

and within families which is essential for tree improvement. We estimate additive and non-

additive genetic variance components for two growth traits, height, and diameter at breast

height, and two adaptive traits, the timing of budbreak and leaf senescence. Further, we esti-

mate genetic correlations among these traits to assess potential trade-offs between growth and

adaptive traits. We test the hypothesis that selection for growth may have a correlated response

that leads to utilizing a longer growing season, and thereby increases the risk of exposure to

late spring frosts or early fall frosts.

Materials and methods

Study area and plant material

Active tree improvement programs in western Alberta exist for a northern and a southern

breeding region with different climate conditions (Fig 1). The tree improvement programs
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Fig 1. Study areas in Alberta that were evaluated in this case study. Circles are the parental sources. Stars and

numbers represent the location of trials. Map data was obtained from https://open.alberta.ca/opendata.

https://doi.org/10.1371/journal.pone.0229225.g001
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initially tested a large number of clones collected from natural stands, targeting plus trees with

good form and without signs of pathogens and diseases. In a similar manner, 122 individuals

were selected as male or female parents for a partial factorial mating design (to be detailed

below). The offspring were planted in ten progeny trials, established between 2005 and 2008

by the Western Boreal Aspen Corporation (WBAC), an industrial collaborative that includes

Norbord Inc. (formerly Ainsworth Engineered Canada LP), Mercer Peace River Pulp (previ-

ously Daishowa-Marubeni International Ltd.), and Weyerhaeuser Canada Ltd. Detailed ori-

gins of the parental material for the progeny trials were previously documented [22].

There were 64 half-sib families as well as 100 full-sib families generated in a partial factorial

mating design for the two breeding regions [22]. Each male and female parent was represented

by one or two full-sib families and each female parent was also pollinated with a polymix to

generate half-sib families. The pedigree structures of northern and southern breeding regions

were constructed separately. Trials 1 and 2, planted in 2005, were seedling trials planted in the

southern breeding region, sharing the same half-sib and full-sib families. Trials 3 to 8 were

planted in 2007 and utilized families from both breeding regions. Families were clonally repli-

cated prior to planting so that these trials have half-sib, full-sib, and clonal structure (i.e., mul-

tiple ramets of the same clone, with clones replicating multiple individuals of full-sib families).

Trials 9 and 10 were established in 2008, containing different clonal material but overlap in

half-sib and full-sib families with trials 3 to 7. These trials were connected through shared half-

sib and full-sib families [22].

Seedlings for Trials 1 and 2 were grown in a greenhouse in April to May 2004, hardened in

September to October, packed and cold-stored in a refrigerator in winter before planting in

May 2005. Clonal planting stock for trials 3–10 was produced over a two-year cycle using a

rootling methodology described by Brouard et al. [23]. First, seedlings were grown in 1-gallon

pots (3.76 liters) at the Weyerhaeuser Tree Improvement Center in Drayton Valley, Alberta

(53˚13’N, 114˚58’W, 869 m) to generate root mass. The following year, the root masses were

washed and root cuttings were propagated in Beaver Plastics Styroblock-512 (60 cavities/block

220 ml plug volume) containers at Woodmere Forest Nursery in Fairview, Alberta (56˚04’N,

118˚24’ W, 670 m). The resulting rootling ramets were then hardened, packed and cold-stored

in a refrigerator in winter before planting in May 2007 and 2008 [23].

Experimental design and phenotypic measurements

All trials were constructed using an alpha design [24]. The use of alpha designs allowed for the

flexible allocation of treatment and block numbers, and advantage over conventional random-

ized incomplete block designs. The location, exact experimental design, numbers of half-sib

and full-sib families and clones for each trial are provided in Table 1. Over 30,000 individual

trees were planted in this progeny trial series. Border trees surrounded each trial, and all trials

except 7 and 10 were fenced to prevent browsing. Mulch layers or brush blanket mats were

used to control competing vegetation, and spacing was 3×3m.

Height measurements were carried out multiple times between 2005 and 2013 with extend-

able measuring poles, and diameter at breast height (DBH) was assessed with a diameter tape.

Budbreak scores were obtained based on a repeated scoring method according to Li et al. [25].

Score 0 was recorded for dormant buds, score 1 indicated a swollen bud, score 2 indicated bro-

ken bud scales, score 3 was given for the emergence of green leaves, score 4 indicated leaf

extension, score 5 indicated more than two leaves emerged, and score 6 indicated fully

unfolded leaves. Scores were recorded for each individual tree on April 12, 20, 22, 24, 26, May

1, 3, 9, 11, 13, 15, 17, 19 in 2010 at trial 2. At trial 3, scores were recorded on April 18, 21, 25,
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27 and May 2, 10, 12, 14, 16, 18, 20 in 2010. In trial 8, scores were recorded on April 11, 18, 23,

26, May 3, 9, 10, 13, 15, 17, 19, 21 in 2010.

For leaf senescence scores, scoring was based on an eight-level scale according to Frache-

boud et al. [26]. Score 0 represented uniformly green leaves, score 1 indicated darker than pale

green leaves, score 2 indicated a majority of pale green leaves, score 3 indicated more green

than yellow leaves, score 4 indicated a majority of yellow leaves, score 5 indicated only yellow

leaves, score 6 indicated 20% brown leaves, score 7 was 50% leaf abscission, and score 8 repre-

sented�90% leaf abscission. Observation dates for fall phenology in trial 2 were September 1,

7, 21, 29 October 5, 20 in 2011. Scores in trial 3 were recorded on September 1, 6, 23, 30 and

October 6, 21 in 2011. Trial 8 was assessed on August 31, 7, 21, 29 September and October 20,

2011.

The day-of-year of a phenology event (DoY) was subsequently calculated for a critical score

that showed the best separation among genotypes: score 3 for spring phenology (emergence of

green leaves) and score 7 for fall phenology (50% leaf abscission). The date when the phenol-

ogy reached the critical score of individual trees was determined by either the first record of

the critical score, or by linear regression from the bracketing dates. The phenology data is pro-

vided as S1 Dataset in the supporting information section.

Statistical and quantitative genetic analysis

All quantitative genetic analysis was conducted with the ASReml-R package [27]. For the seed-

ling trials (1 and 2) we employed the following mixed linear model:

Y ¼ Xbþ Z1aþ Z2f þ Z3r þ Z4bþ Z5pþ e ½1�

where Y is the vector of observations of traits (tree height, day-of-year of budbreak or leaf

senescence etc.); β is a vector of fixed effects; a, f, r, b and p are vectors of additive genetic

Table 1. Locations, experimental design, family structure, clonal structure and measurement averages for sapling height, DBH, survival, day-of-the year (DoY) of

budbreak, and day-of-year (DoY) of leaf senescence (leaf sen.) for ten progeny trials of Populus tremuloides in Alberta. Note that Trials 1 & 2 do not have clonal repli-

cations of genotypes.

Trial Est.

year

Latitude Longitude Elevation

(m)

Experimental

Design1
Half-

sibs

Full-

sibs

No of

clones

No of

trees

Height

(m)

DBH

(cm)

Surv.

(%)

Budbreak

(DoY)

Leaf sen.

(DoY)

Southern Breeding Region

01 2005 55˚60’ -120˚48’ 662 6×10×9×3 33 51 - 1,620 4.77 4.80 72 - -

02 2005 53˚18’ -116˚30’ 962 6×10×9×3 33 50 - 1,620 3.27 3.30 69 128 267

03 2007 53˚48’ -115˚30’ 968 9×24×24×1 37 83 560 5,184 1.36 5.50 70 135 268

04 2007 55˚12’ -120˚48’’ 808 9×20×25×1 36 73 508 4,500 1.02 - 64 - -

08 2007 52˚42’ -116˚00’ 1,234 9×8×6×1 2 28 47 432 0.70 - 71 135 273

Northern Breeding Region

05 2007 56˚24’ -118˚48’ 525 9×20×24×1 33 71 471 4,320 1.32 3.70 71 - -

06 2007 56˚48’ -118˚24’ 570 9×21×21×1 32 77 455 3,969 2.00 65 - -

07 2007 56˚48’ -119˚36’ 850 9×8×6×1 2 27 47 432 0.52 18 - -

09 2008 56˚36’ -118˚06’ 650 9×21×20×1 31 61 491 3,780 2.01 1.70 81 - -

10 2008 56˚24’ -118˚48’ 525 9×21×20×1 32 53 459 3,780 0.40 50 - -

1) The experimental design is described as the number of: complete blocks × incomplete alpha blocks within complete blocks × treatments within alpha blocks × trees

per treatment in a row plot. The maximum number of treatments (clones or families) in the experiment is determined by the number of alpha bocks × treatments within

each alpha block. However, the actual number of tested clones or tested families may be smaller, with filler trees or additional treatment replications filling the gaps. Est.

year, year of establishment.

https://doi.org/10.1371/journal.pone.0229225.t001
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effects, full-sib family (cross) effects, replicate effects, block-within-replicate effects and plot

effects, respectively; e is a vector of random residuals; X is the incidence matrix of the fixed

effects relating β to observations Y; and Z1 to Z5 are the incidence design matrices relating the

random effects a, f, r, b and p to observations Y. We assume that the observation vector follows

a normal distribution with the expected value of E(Y) = Xβ and with the covariance matrix of

Var(Y) = V, i.e., Y~N(Xβ,V). For our data, the β vector has only one element (the overall

mean). The vectors of five random effects a, f, r, b, and p, as well as the vector of random resid-

ual e are assumed to follow the normal distributions Nð0;As2
AÞ, Nð0; Ifs

2
f Þ, Nð0; Irs

2
r Þ,

Nð0; Ibs2
bÞ, Nð0; Iplots

2
pÞ, Nð0; Ies

2
eÞ respectively. Here, s2

A is the additive genetic variance, A is

the pedigree kinship matrix for describing the additive genetic relationships among individual

trees, s2
f represents 25% of the dominance genetic variance, s2

r ; s
2
b; s

2
plot and s

2
e are the variance

components corresponding to the vectors of random effects r, b, plot and residual e respec-

tively, It is the identity matrix of order t (t = f, r, b, plot, e). Thus, the total variance matrix can

be partitioned into components due to the five vectors of random effects described above as

well as the residuals,

V ¼ s2

AZ1AZ
0

1
þ s2

f Z2Z
0

2
þ s2

rZ3Z
0

3
þ s2

bZ4Z
0

4
þ s2

plotZ5Z
0

5
þ s2

eIe ½2�

The best linear unbiased estimation (BLUE) of fixed effect (β) and best linear unbiased pre-

diction (BLUP) of random effects (a, f, r, b, p) are solutions to the following mixed model

equations,

b̂
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For the trials with clonal single tree plot trials, we modified model (1) into the following lin-

ear mixed model:

Y ¼ Xbþ Z1aþ Z2f þ Z3cþ Z4bþ Z5r þ e ½4�

where the model remains the same as (1) except the plot effect is removed and the effects of

clones within full-sib family (c) are added. The c factor accounts for the epistasis and ¾ of the

dominance [28,29]. We also assumed that a, f, r, b, p, and e followed the normal distributions

as above respectively; random effect c followed the normal distribution as N(0,IcσC
2).

Narrow-sense and broad-sense heritabilities were calculated based on following functions:

ĥ2

i ¼
ŝ2

A

ŝ2
P

¼
ŝ2

A

ŝ2
A þ ŝ

2
NA þ ŝ

2
e

½5�

where ŝ2
A is the additive genetic variance component; ŝ2

P is the phenotypic variance compo-

nent represented by the sum of ŝ2
A, ŝ2

NA and ŝ2
e ; ŝ

2
NA is the variance of non-additive genetic
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effects; the residual error is ŝ2
e [30]. The broad-sense heritability was estimated as:

Ĥ 2

i ¼
ŝ2

G

ŝ2
P

¼
ŝ2

A þ ŝ
2
NA

ŝ2
A þ ŝ

2
NA þ ŝ

2
e

½6�

The standard errors of the heritability were calculated with the delta method [31].

We estimated the additive genetic correlation in seedling trials, genetic correlation in clonal

trials (rG), phenotypic correlation (rP) based on individual trees observations. The linear

model of tree growth and leaf phenology for a single site is:

yijlmn ¼ tn þ rin þ gnim þ enimj ½7�

where ynimj is the observation of j-th tree of im-th genotype for the n-th trait; tn represents the

n-th trait effect, rin is the i-th replicate effect of n-th trait, gnim is the additive genetic effect of

m-th genotype of n-th trait in i-th replicate in the seedling trial, while in the clonal trails, gnim
is the genetic effect. In the seedling trial, the genotypes are seedlings nested in replicates, while

in the clonal trial, genotypes are clones evenly assigned in each replicate. In seedling trial 2, the

genetic correlation is due to the additive genetic effect. In the clonal trials, the genetic correla-

tion is due to the total genetic effect, though the additive genetic effect is more significant, and

enimj is the experimental error for each trial. The fixed effects of the mixed model are similar as

the previous model, although the trait effect is added as a fixed factor. The genetic correlation

(rGij
) was of the form

rGij
¼

ŝGij

ŝGi
ŝGj

½8�

where ŝGij
is the estimated genotypic covariance between trait i and j; ŝGi

is the estimated phe-

notypic standard deviation of trait i. For seedling trials the genetic correlation is the additive

genetic effect. The phenotypic correlation was calculated as follows:

rPij ¼
ŝPij

ŝPi
ŝPj

½9�

where ŝPij
is the estimated phenotypic covariance between trait i and j; ŝPi

is the estimated phe-

notypic standard deviation of trait i.
Based on BLUPs, the breeding value reliability of half-sib parents and individual clones

were calculated as follows:

Ri ¼ 1 �
PEV
ŝ2

i

¼ 1 �
se2

i

ŝ2
A

½10�

where Ri is the reliability of the breeding value of the i-th parent, where PEV is the prediction

error variance that equals to the standard error square of the predicted breeding value [32];

and ŝ2
A is the estimated additive genetic variance component.

The correlations of breeding values among sites were calculated as the Pearson’s correlation

coefficients of half-sibs (breeding values) and clones (genetic values) between trials with chart.
correlation of the R package PerformanceAnalytics. Bootstrapping of correlation coefficients of

survival was carried out with the R boot package [33]. The G×E effect is explored with the

Type-B genetic correlation for tree height, where the same trait measured in two or more envi-

ronments over the same genetic composition can be treated as two different genetically

PLOS ONE Genetic parameters of growth and adaptive traits

PLOS ONE | https://doi.org/10.1371/journal.pone.0229225 March 3, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0229225


correlated traits. R code for estimating genetic parameters according to the models above are

available in the Appendix in [22].

Results

Genetic parameters of growth traits

Genetic parameters for height and diameter were estimated at a relatively young age. Trees

were between 5 and 8 years old at the time of evaluation with the oldest seedling trials having

an average height of 3-4m and most clonal trials reaching average heights of 1-2m (Table 1).

Dominance and epistatic variance components for height and diameter were small, less than

10% of the phenotypic variance component, so that most broad-sense heritabilities were only

marginally higher than narrow-sense heritabilities (Table 2). The highest heritabilities were

estimated for a relatively small seedling trial 1 with values around 0.5. For all other trials, heri-

tabilities for height and diameter were quite low (or unreliable) with narrow-sense heritabili-

ties typically ranging from 0.1 to 0.2, and broad-sense heritabilities typically ranging from 0.2

to 0.3.

Type-B genetic correlations based on shared clones and shared full-sib families could only

be calculated for sister trials (1–2, 3–4, 5–6, 7–8, and 9–10). Genetic correlations among sister

trials yielded rGB values around 0.7 with a standard error of approximate 0.08 for the first three

pairs, indicating a relatively low degree of genotype-by-environment interactions (G×E). Pairs

7–8 and 9–10 did not yield reliable estimates. Correlations of parental breeding values could

be calculated for a larger number of trial pairs that shared parents through the partial factorial

mating design. Parent breeding values between sister trials in trials 1 through 6 were generally

well correlated, which can be interpreted as low G×E. Trial 8 showed a negative correlation

with all other trials, and it should be noted that this trial was planted in a relatively cold envi-

ronment with the highest elevation (Table 1).

Genetic parameters for adaptive traits

The phenology traits budbreak and leaf senescence were measured at three trials (Table 1), had

moderate broad- and narrow-sense heritabilities (Table 3). Narrow-sense heritabilities for

budbreak ranged from 0.4 to 0.5, while heritabilities for leaf senescence were slightly lower

Table 2. Estimates of narrow-sense and broad-sense heritabilities at ten aspen progeny trials for tree height and diameter at breast height (DBH). Standard errors

of the estimates are given in parentheses.

Trial Age of Measurement Narrow-sense heritability (ĥ2) Broad-sense heritability (Ĥ2)

Height DBH Height DBH

Southern Breeding Region

01 8 0.55 (0.16) 0.54 (0.17)

02 8 0.08 (0.10) 0.03 (0.09)

03 5 0.21 (0.08) 0.19 (0.07) 0.33 (0.03) 0.25 (0.02)

04 5 0.11 (0.05) 0.14 (0.02)

08 5 No estimate 0.03 (0.03)

Northern Breeding Region

05 5 0.10 (0.03) 0.06 (0.03) 0.14 (0.02) 0.09 (0.02)

06 5 0.13 (0.04) 0.20 (0.02)

07 5 0.42 (0.45) 0.42 (0.22)

09 3 0.11 (0.06) 0.14 (0.05) 0.19 (0.02) 0.17 (0.02)

10 3 0.07 (0.03) (0.02)

https://doi.org/10.1371/journal.pone.0229225.t002
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with values between 0.3 and 0.4. Broad-sense heritabilities were only marginally higher than

narrow-sense heratibilities, and could not be estimated for the seedling trial 2 (Table 3). Also

here, additive genetic variation was most important and dominance and epistatic variance

components ranged from zero to 10% of the phenotypic variation. Moderate to strong genetic

correlations were found between growth and phenology (r = -0.3 to -0.2 between height and

bud break, and 0.6 to 0.8 between height and leaf senescence) with tall trees being associated

with early budbreak and late leaf senescence (Table 4). Survival was not compromised by early

budbreak or late leaf senescence. In fact, the reverse appeared to be true with negative correla-

tions between survival and budbreak and positive correlations between survival and leaf senes-

cence, just as for growth traits (Table 4).

Trait variation across the landscape

The correlations between fall phenology and height and survival were generally stronger than

those between spring phenology and height and survival, indicating that the adaptive value of

fall phenology is high. Neither fall phenology nor budbreak showed strong spatial patterns of

breeding values across both breeding regions (Fig 2). However, correlations between height

and leaf senescence are visible in these maps: comparing Figs 2 and 3, high breeding values for

height (green dots) are often associated with late leaf senescence (pink and purple), with a

Pearson’s correlation coefficient of 0.65 (p<0.0001).

Discussion

Positive associations between height and survival as well as increased growth and survival in

trees that break bud early and abscise leaves late suggest that utilization of the growing season

may be more important than the avoidance of early fall frosts or late spring frosts at all three

test sites where phenology was assessed. Strong additive genetic correlations between growth

Table 3. Estimates of narrow-sense and broad-sense heritabilities at three aspen progeny trials for budbreak and leaf senescence. Broad-sense heritabilities were not

estimated for the seedling Trial 02. Standard errors of the estimates are given in parentheses.

Trial Code Age of Measurement Narrow-sense heritability (ĥ2) Broad-sense heritability (Ĥ2)

Budbreak Leaf senescence Budbreak Leaf senescence

Southern Breeding Region

02 0.46 (0.15) 0.33 (0.14)

03 0.37 (0.10) 0.42 (0.10) 0.46 (0.03) 0.46 (0.03)

08 0.36 (0.07) no estimate 0.36 (0.07) 0.05 (0.05)

https://doi.org/10.1371/journal.pone.0229225.t003

Table 4. Estimates of genetic and phenotypic correlations at three aspen progeny trials for budbreak (BUD), leaf senescence (LS), height (HT) and survival (SURV).

Genetic and phenotypic correlations were estimated using an individual tree model for BUD, LS, and HT for the seedling Trial 02, with half-sib families excluded. For the

clonal Trials 03 and 08 we used an individual clone model. Phenotypic correlations of survival with all other traits were based on family means (Trial 02) and clone means

(Trials 03 and 08) with standard errors determined through bootstrapping.

Trial 02 Trial 03 Trial 08

Correlation Genetic Phenotypic Genetic Phenotypic Genetic Phenotypic

HT—BUD -0.30 (0.21) -0.23 (0.06) -0.19 (0.05) -0.25 (0.02) no estimate -0.42 (0.05)

HT—LS 0.83 (0.09) 0.57 (0.04) 0.58 (0.04) 0.37 (0.02) no estimate 0.28 (0.06)

BUD—LS -0.08 (0.22) -0.05 (0.07) 0.15 (0.07) 0.00 (0.03) no estimate -0.20 (0.06)

SURV—BUD -0.34 (0.09) -0.07 (0.06) -0.03 (0.20)

SURV—LS 0.55 (0.11) 0.29 (0.04) 0.20 (0.12)

SURV—HT 0.58 (0.11) 0.42 (0.04) 0.00 (0.15)

https://doi.org/10.1371/journal.pone.0229225.t004
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and phenology indicate that much of the genetic gain at the early stage of stand development

will be due to expanding the growing season, which may increase the risk of frost damage in

spring and fall.

In studies with Populus species [34–36] and other species [37], high heritabilities of fall phe-

nology traits, and positive genetic correlations between productivity and fall phenology have

previously been observed. Genotypes with a delayed senescence in fall may nevertheless be

exposed to increased frost risks. However, climate warming trends that have materialized over

the last several decades in Alberta may have decreased the risks of early fall frosts [38]. This

might potentially explain our positive association of an extended growing season in fall with

high survival. Similar to the expectations of Olson et al. [39], genotypes that utilize a longer

growing season may be favored by climate warming at northern latitudes. Inadvertent selec-

tion, where individuals with better height and diameter growth are chosen, and the genetically

correlated leaf senescence is extended in fall, may therefore be an unplanned but effective cli-

mate change adaptation strategy. That said, other climatic factors are likely to change, and

while the length of time suitable for growth is likely to continue to increase, water limitations

may lead to an overall reduction of boreal forest productivity [40,41]

In contrast, budbreak is a highly plastic trait in response to interannual variation and long-

term trends in temperature. Populations can generally be expected to respond appropriately to

climate change trends as long as daily temperature variances do not change for given baseline

values. In other words, the frost risk associated with a certain heatsum that triggers budbreak

needs to remain the same. Yet, the day-of-year for budbreak may have shifted, when this heat-

sum is reached. Late spring frosts are also considered a more severe threat than early fall frosts,

Fig 2. Breeding values (BV) of parents on southern breeding region test sites for phenology. The size of the circle

indicates the reliability of the estimate (reliability: 0.1 = small circles, 0.7 = large circles). Map data was obtained from

https://open.alberta.ca/opendata.

https://doi.org/10.1371/journal.pone.0229225.g002
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as they may destroy buds and juvenile leaves and severely compromise early-season growth

[42]. In our study, genetic correlations between growth and budbreak were negative (i.e. early

budbreak associated with better growth), but they were not nearly as strong as genetic correla-

tions with leaf senescence. Furthermore, survival was not compromised in genotypes that

started the growing season relatively early. We, therefore, conclude that correlated selection

for early budbreak poses only a small risk. In fact, the results could be interpreted as indicating

an adaptational lag with respect to changing climate. The utilization of a longer growing sea-

son appears to increase the growth and survival at least in this sample of three field tests. Our

within population genetic analysis corroborates results from provenance research that demon-

strated adaptational lag among populations through wide-ranging reciprocal transplant exper-

iments [43].

The previous interspecific hybrid breeding mainly exploits heterosis/specific combining

ability for growth and wood quality trait improvement [9,15,44]. In our study, intra-specific

crosses and within family selection after field selection provide potential gain for growth and

predictable phenology response due to the non-additive genetic effect such as specific combin-

ing ability and epistasis effect. Instead of producing hybrids with northern species such as P.

davidiana and P. tremula [9], for regional tree improvement, adjacent breeding zones could

exchange parentages, crosses, and clones in places like Alberta without severe frost risk con-

cern in spring and fall even in the northern plantation sites [10].

We noted that heritabilities found in this study were generally much lower than those

reported in previous studies by Gylander et al. [10] in comparable trial series that investigated

Fig 3. Height breeding values (BV) of parents tested northern breeding region test sites (left panel) and the

southern breeding region sites (right panel). The size of the circle indicates the reliability of the estimate (reliability:

0.1 = small circles, 0.7 = large circles). The color spectrum of red to green indicating low to high BVs, with values

ranging from -55 to 45 cm. Map data was obtained from https://open.alberta.ca/opendata.

https://doi.org/10.1371/journal.pone.0229225.g003
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wild clonal selections, and Gylander et al. [10] reported broad-sense heritabilities of 0.51–0.58

from clonal trials. Kanaga et al. [45] Calculated broad-sense heritabilities for growth traits

ranging from 0.30 to 0.50 in a short-term common garden study using 13 aspen clones. Our

low heritability estimates for growth traits are likely due to strong environmental microsite

variation at post-harvest planting sites and the juvenile age at which trees were evaluated. Heri-

tabilities were particularly low for Trials 7 and 10, and only Trial 7 could not be fenced and

showed evidence of browsing, while Trial 8 was located at the more elevated site in the study

area. For growth selection at multiple sites, results of>8 growing seasons are adequate for

mediocre sites and the productive site. We conclude that selection for growth traits at the cur-

rent stage promises only small to moderate genetic gains, but higher heritabilities may emerge

at a later date of trial evaluation.

Genetic correlations among fall phenology and spring phenology traits with growth traits

were nevertheless already high in this study, and could further increase as the influence of

microsite variation of the planting site decreases with the age of the trees. Survival was also not

compromised, but was positively associated with early budbreak or late leaf senescence, indi-

cating that the growing season length was more important for survival and growth than avoid-

ing early fall or late spring frosts. We found that a substantial portion of the tested genotypes

are adapted to a shorter growing season than they have experienced during the testing period.

Selecting genotypes for reforestation that utilize a longer growing season may be unproblem-

atic under continued climate warming in northern latitudes, and may lead to overall increases

in forest productivity as long as water availability under increased evapotranspiration does not

become a dominant limiting factor.

Supporting information

S1 Dataset. Phenology data for bud break and leaf senescence. A data table in comma sepa-

rated values (CSV) format, containing phenology data for Trials 2, 3, and 8. The first 14 rows

contain descriptions of the variables.

(CSV)
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