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Abstract

In silico simulations play an indispensable role in the development and

application of statistical models and methods for genetic studies. Simu-

lation tools allow for the evaluation of methods and investigation of

models in a controlled manner. With the growing popularity of evolu-

tionary models and simulation‐based statistical methods, genetic simula-

tions have been applied to a wide variety of research disciplines such as

population genetics, evolutionary genetics, genetic epidemiology, ecology,

and conservation biology. In this review, we surveyed 1409 articles from

five journals that publish on major application areas of genetic simula-

tions. We identified 432 papers in which genetic simulations were used

and examined the targets and applications of simulation studies and how

these simulation methods and simulated data sets are reported and shared.

Whereas a large proportion (30%) of the surveyed articles reported the use

of genetic simulations, only 28% of these genetic simulation studies used

existing simulation software, 2% used existing simulated data sets, and

19% and 12% made source code and simulated data sets publicly available,

respectively. Moreover, 15% of articles provided no information on how

simulation studies were performed. These findings suggest a need to en-

courage sharing and reuse of existing simulation software and data sets, as

well as providing more information regarding the performance of

simulations.
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1 | INTRODUCTION

In silico genetic simulations—or computer modeling
of genetic data under specified assumptions—and the

software tools used to generate these simulations
(which we define as genetic simulators) have played
an important role in the development and applications
of statistical methods for genetic studies in multiple
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disciplines (Daetwyler et al., 2013; Epperson et al.,
2010; Hoban et al., 2012; Peng et al., 2015). These si-
mulations have been used for different applications,
such as to validate statistical methods with model‐
specific assumptions (Zheng et al., 2019); to test the
robustness of methods against deviations from model
assumptions (Skotte et al., 2019); to estimate the Type‐
I error, sensitivity (Chen et al., 2018), specificity, and
power (Zhao et al., 2018) of statistical methods using a
large number of replicated simulations; to compare
the performance between multiple methods (Ram-
stetter et al., 2018; Zhou et al., 2017); to infer para-
meters of statistical models from simulations that best
match empirical data (Oaks et al., 2019); and to ex-
plore outcomes of evolutionary processes under
varying assumptions (Mooney et al., 2018).

Genetic simulations vary greatly in the types of
data being simulated (which we will refer to as targets
of simulations), methods and tools used to simulate
data or certain processes, and in the roles that they
play in genetic studies. Samples simulated under the
null hypothesis (e.g., genotypes that are unrelated to a
disease) can be used to evaluate how likely a method
would identify a wrong signal (Type‐1 error), and
samples simulated under the alternative hypothesis
(e.g., genotypes that are related to a disease) can be
used to evaluate how likely a method can successfully
detect a true signal (empirical power). Simulations
can also be performed to explore parameter space with
no assumptions of an underlying hypothesis (ex-
ploratory simulations), or to infer parameters of their
hypothesis‐based models by comparing simulated
data sets with observed ones (statistical inference). In
silico simulations can be used to validate different
analytical methods. For example, samples that are
simulated according to assumptions of a statistical
model can be used to validate if the model works
under its assumed conditions (validation of statistical
models), or samples that are simulated under non-
conforming assumptions (e.g., different statistical
distributions of input data and the presence of missing
data or outliers) can be used to test the robustness of a
method, or samples that mimic properties of real‐
world data sets (therefore independent of model as-
sumptions) can be used to test validity and perfor-
mance of statistical models in real‐world applications.
Finally, applications of simulations have been im-
portant in the development of statistical methods,
where they have been used to test the validity of the
method, evaluate Type‐1 error, power, robustness,
sensitivity and specificity, and perhaps most im-
portantly, compare the performance of a novel meth-
od with existing ones.

Different applications of genetic simulations demand
different designs and implementations. For example, si-
mulations designed to validate a statistical method need
to follow the assumptions of the method closely and often
employ model‐based simulations, whereas simulations
designed to test real‐world performance need to follow
the properties observed in real data. The latter typically
use sideway methods (i.e., a method that generates si-
mulated data sets by using existing data and resampling
it) and is also preferred for comparing performance
across multiple statistical methods as it is not as likely to
bias toward any particular method being compared. Due
to these different requirements, the level of sophistication
of genetic simulations inevitably varies (Dasgupta et al.,
2011; Engelman et al., 2016; Fragoulakis et al., 2019), and
dedicated computer programs have been developed to
perform genetic simulations and generate simulated data
sets designed with different modeling emphases (Peng
et al., 2013).

To obtain a better understanding of how genetic si-
mulations are being generated, used, reported, and
shared, we conducted a review of the literature. In this
review, we provide details from 423 articles from five
journals that publish on major application areas of ge-
netic simulations, such as, epidemiology, bioinformatics,
biomedical discoveries, and evolution theory. In addition,
we examined whether simulations were performed using
pre‐existing software and whether the data and/or code
were publicly available.

2 | METHODS

We performed a review of the literature to examine the
approaches used for genetic simulations. We focused on
in silico simulations that used computers to generate
“hypothetical” data, manipulated empirically collected
data sets, such as those from genetic epidemiological
studies, or used genetic computer simulations in other
genetics studies, spanning a variety of disciplines related
to genetics.

2.1 | Selection of journals

To select articles for this review, we identified all the
journals that were included as either “citations” or “ap-
plications” in the Genetic Simulation Resource (GSR)
catalog (Peng et al., 2013). These journals included
American Journal of Human Genetics (AJHG), Bioinfor-
matics, BMC Bioinformatics, BMC Genomics, Evolution,
Frontiers in Genetics, Genetic Epidemiology, Genetics,
Hereditary, Molecular Biology and Evolution, Molecular
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Ecology Resources, Nature Communication, Nature Ge-
netics, PLoS Genetics, PLoS One, Proceedings of Biological
Sciences, Proceedings of the National Academy Sciences of
the United States of America, and Scientific Reports. First,
we selected one recent issue from each of the 19 journals
and recorded the number of articles that reported using
simulations. Next, we selected the five journals with the
highest proportion of articles that included simulated
data within distinct scientific topic areas (Table S1). For
instance, BMC Bioinformatics and Bioinformatics both
reported a relatively high fraction of articles using genetic
simulations, but we randomly selected only Bioinfor-
matics because of overlap in the content area with BMC
Bioinformatics.

The five journals that we ultimately selected for
detailed analysis were AJHG, Bioinformatics, Evolu-
tion, Genetic Epidemiology, and Nature Genetics. These
journals represent major scientific areas of genetic
simulations such as epidemiology, bioinformatics,
biomedical research, and evolution theory. We sear-
ched these journals starting from the end date of July
2019 and reviewed all previous issues until we iden-
tified either 100 articles using simulated data (for
journals with a large number of simulation papers) or
up to 2 years of articles for journals that had published
fewer than 100 articles using genetic simulations. This
strategy was used to ensure a review of a sufficient,
roughly equal number of articles to make meaningful
conclusions.

2.2 | Selection of articles

We defined an article to contain simulated data if the
data were generated completely using in silico models
or simulated from real data or parameters. We ex-
cluded studies that used empirical data sets (e.g., 1000
genomes; Auton et al., 2015) to validate or compare
statistical methods although the difference between
simulated and empirical data sets can be subtle. For
example, a simulation study could ascertain random
samples from empirical data sets, and some empirical
data sets could be computationally enhanced (e.g.,
imputed against reference genome). We define simu-
lation studies as the use of computers to manipulate
data by the authors and consider random ascertain-
ment of empirical data as simulations. Targets of si-
mulations included genetic data (e.g., genetic markers
and DNA sequences, RNA sequences and gene ex-
pressions, protein sequences, and protein abundances),
observed characteristics associated with genetic data
(e.g., qualitative and quantitative traits), the relation-
ship between genetic data (e.g., pathways, networks,

and phylogenetic trees), and mathematical models that
describe genetic data. Other targets of simulations in-
cluded were cells (type, shape, growth, etc.), drugs, and
treatment effects, among others.

2.3 | Data collected

We abstracted information from the articles using si-
mulated data, summarized in Table S2. The informa-
tion collected included: date of publication, target
of simulation, application of simulation, and how

SUMMARY BOX 1 Categories of applica-
tions of simulations

Application Characteristics

Estimation of Type 1
error, sensitivity,
specificity, or
statistical power

Application of statistical
methods on multiple
replicates of simulated
data sets to quantify
success rate of
detecting signals
(or no signal) in the
data sets

Validation of
correctness or
robustness of models

Application of statistical
methods on data sets
simulated according
to or deviate from
specific model
assumptions

Statistical inference Simulations of data with
varying parameters
and the identification
of simulations (and
therefore parameters)
that best match
empirical data

Comparison of
performance of
statistical methods

Application of multiple
statistical methods on
the same set of
simulated data sets for
the purposes of
comparing results

Exploratory simulations Exploration of results
from simulations with
varying parameters to
observe possible
outcomes associated
with a parameter
space
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simulations were conducted and reported. Any in-
dividual article may contain multiple simulations;
therefore, several characteristics were not mutually
exclusive. We consider a simulation to be developed
using in‐house methods if the script or software was
developed by the article authors without using exist-
ing simulation software or simulated data sets, in-
dependent of whether such a method was later made
publicly available. Other information abstracted in-
cluded how the software was used, whether the si-
mulations were conducted using particular software,
and whether and where the data and the code for the
simulation are available. Over 50% of the articles were
quality controlled by a second reviewer.

We classify applications of simulations into five ca-
tegories (Summary Box 1). We report multiple applica-
tions for articles that use more than one simulation
studies for multiple purposes (e.g. for both validation and
performance comparison).

3 | RESULTS

We included for review 423 articles with simulations
from 1409 total articles surveyed from the five selected
journals. The complete abstracted data are provided as
supplementary material 2B. Genetic Epidemiology
published the highest proportion of articles that uti-
lize genetic simulations (72.4%), followed by Evolution
(35.7%), Bioinformatics (31.6%), Nature Genetics
(22.5%), and AJHG (12.4%; Table 1). Some character-
istics were similar across all five journals. For ex-
ample, the frequency of articles that reported using
pre‐existing methods ranged 25.6%–31.0%. However,
other characteristics, such as the proportion of articles
that provided details on the simulated data sets or
provided source codes, varied by a journal. Specifi-
cally, out of the 423 articles, 49 (11.6%) provided
publicly available simulated data sets and 82 (19.4%)
provided source codes. When this data was examined
by journal, most of these articles were from the jour-
nal Evolution; almost half of the articles reported de-
tails of simulations in the format of source code
(N = 47) and almost a third of the articles provided
simulated data sets (N = 28), in contrast to the other
four journals.

3.1 | Methods used to conduct
simulations

Even though 67 (15%) articles provided little to no in-
formation on how the simulation studies were T
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performed, most articles described the methods used. The
majority of the articles reported using in‐house simula-
tion methods (72% of 423), and the proportions were si-
milar across the five journals (from 69% in Evolution to
74% in Nature Genetics). Many of the in‐house methods
were implemented using general‐purpose scripting lan-
guages such as R, Python, and MATLAB and only one-
fifth were made publicly available.

The remaining 117 (27%) articles (ranging from 12
in AHSG to 31 in Evolution, Table 1) reported using an
existing simulator, which are listed in Table S2.
Overall, COSI (N = 13, of which 11 in Genetic Epide-
miology;Schaffner et al., 2005), HapGen2 (N = 8, all in
Genetic Epidemiology; Su et al., 2011), and SLiM
(N = 6, of which 4 in Nature Genetics; Haller & Messer,
2017, 2019) were the most commonly used simulators
for the simulation of genotype data in this sample of
articles, whereas PhyTools (Revell, 2012; N = 11, all in
Evolution) was the most popular for the simulation of
phylogenetic trees. Other tools were used sparsely for
other specific applications, including GeneNetWeaver
(Schaffter et al., 2011; N = 3 in Bioinformatics),
DWGSIM, and ART (Huang et al., 2012; N = 2 in
Bioinformatics). Other tools were only used once each
(Huang et al., 2012; Schaffter et al., 2011).

Eight of the 423 articles (1.8% or 8 of 423, of which
7 in Bioinformatics, Table 1) used pre‐existing simu-
lated data sets. Out of the eight, three used DREAM
Challenges data (Cao et al., 2019; Ghanbari et al.,
2019; Zheng et al., 2019), one used the CAMI2 simu-
lated human microbiome data sets (Shi et al., 2019),
and the remaining four used simulated data sets from
previously published papers (Caetano et al., 2018; Han
et al., 2019; Kim et al., 2019; Yu et al., 2018).

3.2 | Sharing of simulation programs
and data sets

Among 49 articles with publicly available simulated data
(11.3%), most simulated data sets were saved to re-
positories such as DRYAD (N= 22), GitHub (N= 6),
GitBuckets (N= 1), FigShare (N= 1), and UniShare.nl
(N= 1). Others were provided as supplementary material
(N= 3), posted on authors’ personal websites (N= 2), and
one was available upon request. The size of shared si-
mulated data sets varied greatly, with the largest data sets
saved to UniShare.nl (53 GB; Xu & Etienne, 2018) and
DRYAD (23 GB; Culshaw et al., 2019 and 18 GB; Hvala
et al., 2018). Similarly, among 82 articles with publicly
available source codes for simulation studies, most were
saved to code sharing platforms: 29 to DRYAD, 29 to
GitHub, 2 to FigShare, 1 to GitBucket, and 1 to Zenodo.
The source code was available as supplementary material
in five articles and available upon request in two articles.

3.3 | Targets and applications of
simulations

Overall, genetic simulations have simulated a wide array
of data and processes (targets), played many roles (ap-
plications) in genetic studies, and the distributions of
targets and applications varied from journal to journal
(Tables 2 and 3). Many studies simulated multiple targets
for multiple applications. For example, many genetic
epidemiological studies simulated both genotype and
phenotype data estimated the power (and Type‐I error,
etc.) of a new genetic association test, and compared its
performance with existing methods.

TABLE 2 Numbera and proportionb of articles by targets of genetic simulations by journal

Target of genetic
simulationc

Genetic
Epidemiology Bioinformatics

American Journal of
Human Genetics

Nature
Genetics Evolution

Genotype 88 (90.7%) 71 (71.0%) 32 (72.7%) 64 (78.0%) 20 (20.0%)

Phenotype 87 (89.7%) 30 (30.0%) 17 (38.6%) 36 (42.7%) 24 (24.0%)

Relationship 35 (36.1%) 21 (21.0%) 13 (29.5%) 16 (19.5%) 32 (32.0%)

Mathematical models 5 (5.2%) 11 (11.0%) 8 (20.5%) 10 (12.2%) 11 (11.0%)

Others 1 (1.0%) 8 (8.0%) 2 (4.5%) 5 (6.1%) 39 (39.0%)

Total number of articles
reviewed

97 100 44 82 100

aNumber of articles does not add up to the total due to multiple types of data simulated in each article.
bProportion of articles do not add to 100%.
cTarget of genetic simulation are defined in Section 2.

RIGGS ET AL. | 135



The targets of simulation studies reflected the
scope of the articles that the journals publish. As the
field of genetic epidemiology focuses largely on deci-
phering genetic causes of human diseases and traits, it
is not surprising that 90% of simulation studies in this
journal simulated genotypes and phenotypes. Upon
closer examination, 86.4% of these articles simulated
DNA (markers, sequences, and sequencing reads)
while the remainder simulated RNA and other types
of genetic data such as gene expression (see Table S2
for details). Compared with Genetic Epidemiology, the
journals Bioinformatics, AJHG, and Nature Genetics
place less emphasis on phenotypes and included a
broader range of genetic studies. Although genotypes
remained the most common targets for simulations
performed in these journals, around half of the studies
published simulated RNA and corresponding expres-
sions, microbiome, summary statistics, and annota-
tions. A large portion of articles in Evolution simulated
phylogenetic trees to study the relationship among species
and genes. Articles in this journal also simulated targets
that are less commonly studied in the other four journals,
such as mating patterns and seed banking strategies
(McCullough et al., 2018).

Likewise, the types of applications varied by journal,
where 70% of articles in Genetic Epidemiology used ge-
netic simulations to evaluate the performance of statis-
tical methods. The proportion of published articles that
evaluated the performance of statistical methods were
substantially lower in the other journals, especially Evo-
lution. Similarly, we observed differences in the percen-
tages of papers published by journal that compared the
performance of existing statistical methods. For this ap-
plication type, Bioinformatics published the largest pro-
portion of such articles. This finding is consistent with its

aims where studies published in Bioinformatics often fo-
cus on identifying the best methods to address specific
bioinformatic challenges, rather than on developing new
methods. Finally, not surprisingly, simulations used for
the purposes of statistical inference were most frequently
observed in Evolution followed by Nature Genetics, as the
aim of these journals is to draw conclusions from ge-
netic data.

4 | DISCUSSION

We surveyed 1409 articles from journals and identi-
fied 423 (30%) articles that utilized genetic simula-
tions. Based on our abstraction of these 423 articles,
we observed less than onethird of these publications
reported using pre‐existing simulation methods and
only eight used pre‐existing data sets. About 15% of
articles provided no information about how simula-
tions were performed. In addition, the proportion of
articles that shared data (11.6%) or source code
(19.4%) was limited. We also observed variability
across journals in the proportion of articles that uti-
lized genetic simulations, where 72% of articles in the
journal of Genetic Epidemiology used genetic simula-
tions compared with 12.4% of articles in AJHG. Fur-
thermore, we observed differences in patterns of
targets and applications that were simulated across
the journals, likely reflecting differences in the aim
and scope of each journal. For example, 70% of the
articles in Genetic Epidemiology that reported using
genetic simulations were for the validation and com-
parison of performance of statistical methods com-
pared with journals that focus more on applications of
genetic studies, such as AJHG and Nature Genetics.

TABLE 3 Numbera and proportionb of articles by applications of genetic simulations by journal

Applications of genetic
simulationc

Genetic
Epidemiology Bioinformatics

American Journal of
Human Genetics

Nature
Genetics Evolution

Type‐1 error, power, and
sensitivity

68 (70.1%) 23 (23.0%) 19 (43.2%) 30 (36.6%) 9 (9.0%)

Comparison of statistical
methods performance

84 (86.6%) 69 (69.0%) 20 (45.5%) 21 (25.6%) 4 (4.0%)

Validation/robustness 31 (32.0%) 50 (50.0%) 13 (29.5%) 33 (40.2%) 19 (19.0%)

Exploratory analysis 3 (3.1%) 0 (0%) 2 (4.5%) 5 (6.1%) 32 (32.0%)

Statistical inference 0 (0%) 2 (2.0%) 10 (22.7%) 24 (29.3%) 57 (57.0%)

Total number of articles
reviewed

97 100 44 82 100

aNumber of articles does not add up to the total due to genetic simulations being used for multiple applications.
bProportion of articles do not add to 100%.
cDefinitions for applications of genetic simulation are provided in Section 2.
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Approximately 70% of the publications surveyed
used in‐house genetic simulations methods, of which
only around 20% were made publicly available. Al-
though it is too early to predict how many of these in‐
house methods will be reused in the future, we ob-
served that only three articles from our review used
in‐house methods previously published (Mak et al.,
2017; Wainberg et al., 2019; Wang et al., 2017), pos-
sibly indicating that most in‐house methods are rarely
reused. A large number of in‐house simulation
methods and their limited sharing and reuse are likely
due to multiple reasons. Some of the genetic studies
used simple simulations for one‐time use only; these
were based on general‐purpose scripting languages,
such as the use of random number generators to
generate phenotypes with certain distributions or
random sampling process to ascertain samples from a
pool of data sets. Researchers may prefer to develop
their own in‐house methods to more readily control
all aspects relevant to the specific research require-
ments (Chen et al., 2015). Unlike data sets generated
carefully by organizations such as the Genetic Ana-
lysis Workshop (Blangero et al., 2016) and DREAM
(Lee et al., 2018; Marbach et al., 2012), simulations
designed for a specific research paper often have
nonstandard formats, less documentation, and are
difficult to reuse. Researchers may also choose to
create their own simulation code rather than search
for available software especially when the simulations
are not very complicated. In addition, simulations
created for other statistical methods are likely based
on specific assumptions that provide important per-
formance information for those scenarios, and they
may not be suitable for evaluating or comparing the
power of methods based on different assumptions.

Additional reasons that may have contributed to
the underutilization of existing tools include a lack of
detailed description of simulations (e.g., source code
and parameters used) and the unavailability of simu-
lated data sets leading to the high proportion of in‐
house simulations observed. The National Cancer
Institute created the GSR website with the intent of
increasing awareness of existing tools; however, more
needs to be done to address the availability of data and
source code (Chen et al., 2015; Peng et al., 2013).
Reusing existing data and software would maximize
the utility of existing resources and should be en-
couraged to limit potential replication of effort and
redundancy of tools. Comparison and evaluation of
different simulators are also needed to identify the
strengths and weaknesses of available methods (Chen
et al., 2015). Furthermore, creating in‐house methods
that are tailored to answer a particular research

question may lead to an optimistic interpretation of
results (Chen et al., 2015; Mechanic et al., 2012). For
example, in genetic simulation of rare genetic var-
iants, many models assume a large percentage of
highly penetrant mutations, resulting in optimistic
power assumptions. Therefore, the use of common
simulation programs or data sets has been en-
couraged. Due to the wide range of applications for
which genetic simulations can be used, it is not fea-
sible to have a single dedicated simulation program
for all possible applications and the development of
new simulation methods may be necessary.

Among the five journals surveyed, articles pub-
lished in Evolution most consistently deposited si-
mulated data sets and related source code. Although
Figshare and some other (e.g., university) file‐sharing
mechanisms were occasionally used, almost all arti-
cles published in Evolution deposited data in DRYAD
(Khan & Weeks, 2015), which is a data repository
funded by multiple publishers and supported by
multiple institutions. We attribute this observation to
the Evolution journal's policies, which states “Authors
must make their empirical raw data and analytic
methods available to other researchers and must
specify where that material is available.” Moreover, its
guidelines to authors explicitly require, “as a condi-
tion for publication, that data supporting the results
in the paper should be archived in an appropriate
public archive, such as DRYAD, Figshare, GenBank,
TreeBASE, the Knowledge Network for Biocomplex-
ity, or other suitable long‐term and stable public re-
positories.” The other four journals surveyed did not
explicitly require authors to share data or source
codes, which may account for part of the differences
observed. The policy adopted by Evolution originated
from a Transparency and Openness Promotion fra-
mework that contains editorial guidelines for jour-
nals. The purpose of this policy is to help achieve data
and material transparency such that other researchers
can replicate the procedure and reproduce results
(Nosek et al., 2015). It is highly recommended that
disciplines such as genetics and bioinformatics follow
these guidelines.

There are several public repositories available for the
deposit of research data sets and source code. Although
some, like DRYAD, collect a service fee or is subscription
based (which is often paid by institutions), services such
as Figshare and Zenodo are available free of charge (with
some restrictions). Due to the popularity of Git repository
hosting services, websites such as GitHub and BitBucket
are frequently used to store source code, and, in some
cases, simulated data sets (da Fonseca et al., 2019).
However, source code repositories are not designed for
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the storage of data sets and have restrictions on file size
(e.g., GitHub limits files to those less than 100MB). In
addition, these general‐purpose data repositories may
exacerbate the reusability problem by accepting a wide
range of data types in a wide variety of formats (Wilk-
inson et al., 2016). Previously, in some instances, simu-
lated data sets have been deposited to the National
Institutes of Health (NIH)‐funded repositories such as
dbGaP (e.g., simulated data sets for the Framingham
Heart Study; Cupples et al., 2009). For simulated data sets
not generated from identifiable human subjects, other
alternative NIH repositories without requirements for
controlled access could be explored to promote the
sharing of these data sets.

In addition to public repositories, other common
ways for storing data and source code related to re-
search articles include personal, institutional, and
journal websites. Compared with public repositories
that are designed for the storage, display, and retrieval
of research data for a prolonged period of time, data
stored on personal, institutional, and journal websites
are less organized and sometimes inaccessible. For
example, the website that hosts data and code for one
of the articles was temporarily unavailable during our
review. For these reasons, journals often recommend
using public repositories for the deposit of research
code and data.

This survey has some limitations. One limitation is
that the survey was restricted to five journals that
were selected for inclusion. Narrowly defining the
inclusion criteria provides only a snapshot of the field.
However, the included journals represent major ap-
plication areas of genetic simulations and our ob-
servations are consistent with what has been reported
previously, suggesting that expanding the scope of
journals would not substantially change our results
(Peng et al., 2015). Another limitation is that we did
not evaluate the in‐house methods to see whether the
simulations could be performed, and hence, could not
determine the quality of the description of the in‐
house methods. This is an important open question
that should be addressed in future studies.

A large number of papers using genetic simulations
for a variety of purposes and the limited observed use of
existing simulation tools/data sets as well as sharing of
these, suggest the need for best practices for reporting
and sharing of these data sets, as was discussed pre-
viously (Chen et al., 2015). Although efforts have been
made to facilitate the sharing of data sets and software,
additional efforts are needed by journals and funding
agencies to encourage the reuse of these resources to
extract maximum benefit from research investments. We
have summarized the key findings and suggest re-
commendations based on these findings to facilitate re-
search in this area (Summary Box 2). Because genetic
simulations are essential for the study of genetics of
complex diseases, greater sharing of simulated data sets
and related source code could help accelerate the devel-
opment and application of statistical methods for genetic
studies in multiple disciplines benefiting the scientific
community.
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