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Simple Summary: This study was conducted to investigate the prognostic significance of pro-
grammed death-ligand 1 (PD-L1) expression in a large cohort of Middle Eastern papillary thyroid
carcinoma (PTC) patients and to explore the correlation of PD-L1 and BRAFV600E mutations in PTC
tumors and cell lines. We found PD-L1 over-expression in PTC patients and it was significantly
associated with aggressive clinico-pathological parameters and BRAF mutation. PTC patients with
co-existing PD-L1 over-expression and BRAF mutation had a poor disease-free survival. In vitro
studies showed that BRAF inhibition induces PD-L1 expression in BRAF-mutated PTC cell lines via
mitogen-activated protein kinase kinase/extracellular-signal-regulated kinase (MEK/ERK) pathway
activation. Silencing of PD-L1 in BRAF-mutated cell lines significantly attenuated cell growth. Our
data suggest that PD-L1 could represent a useful prognostic marker for risk stratification in Middle
Eastern PTC and that a programmed cell death protein 1 (PD-1)/PD-L1 inhibitor could be a potential
therapeutic option for aggressive PTC cancers, such as the tall cell variant, BRAF mutation-positive
patients that are unresponsive to standard PTC treatment.

Abstract: PD-L1 inhibition is a promising therapeutic target whose efficacy has been demonstrated
in several cancers. Immunohistochemistry was performed to assess PD-L1 protein expression in PTC.
We further conducted in vitro analysis to investigate the role of PD-L1 in regulating BRAFV600E
in PTC cell lines. PD-L1 over-expression was noted in 32.4% (473/1458) of cases and significantly
associated with aggressive clinico-pathological parameters. Importantly, PD-L1 was found to be an
independent poorer prognostic marker. We also found PD-L1 to be significantly associated with
BRAF mutation and patients with co-existing PD-L1 over-expression and BRAF mutation had a poor
disease-free survival compared to patients with BRAF mutation alone. In vitro analysis showed
high expression of PD-L1 in BRAF-mutated PTC cell lines compared to a BRAF wild-type cell line.
Inhibition of BRAF using vemurafenib induced PD-L1 expression in BRAF-mutated cell lines without
affecting cell growth. Knockdown of PD-L1 in BRAF-mutated cell lines significantly decreased
the cell growth and induced apoptosis. Our data suggest that PD-L1 might represent a useful
prognostic marker in Middle Eastern PTC and PD-L1 inhibition could be a potential therapeutic
option for aggressive PTC cancers, such as the tall cell variant, BRAF mutation-positive patients that
are unresponsive to standard treatment.

Keywords: PD-L1; BRAFV600E mutation; papillary thyroid cancer; recurrence-free survival; cell
growth; vemurafenib
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1. Introduction

Papillary thyroid carcinoma (PTC) is the commonest among all thyroid carcinomas [1,2].
Although PTCs are indolent, successfully curable and have an overall good prognosis,
however, 20% of PTCs show recurrence and about 5% manifest with distant metastasis
and may become resistant to radioactive iodine therapy [3–5]. Therefore, identifying new
molecular targets that could predict prognosis is essential to overcome adverse outcomes
in PTC patients.

Recently, one of the potential targets that has been under close scrutiny is programmed
cell death ligand 1 (PD-L1) [6,7]. PD-L1 is a key immune regulatory molecule that interacts
with programmed cell death protein (PD-1) to suppress T cell immune responses that help
the tumor cells to escape the immune system [8,9]. Blockade of the PD-1/PD-L1 pathway
with monoclonal antibodies is a promising therapeutic strategy that shows strong clinical
benefits in multiple malignancies [10–13]. Despite PD-L1 protein expression being used as a
predictive marker of therapeutic response to PD-L1 inhibitors in several cancers [14–17], there
are many cancers that fail to respond to anti-PD-1/PD-L1 therapies. A recent clinical trial
(Phase 1b KEYNOTE-028) in 22 advanced PTCs and follicular thyroid cancers evaluated
the safety and antitumor activity of pembrolizumab as monotherapy. Only two patients
showed a partial response (overall response rate = 9%) [18]. This might be explained by
the ability of PD-L1 to regulate tumor cells in an immune-independent manner [19,20].
Indeed, several reports have shown that PD-L1 could be involved in regulation of signaling
pathways [21–24].

PTC is a predominantly MAP kinase signaling pathway-driven cancer [25]. The
BRAFV600E mutations represent the most common genetic alteration in PTC and they
has been shown to predict PTC aggressiveness and patient prognosis [3,26]. Increased
PD-L1 expression has been shown previously to be associated with BRAFV600E point
mutation in several cancers including thyroid cancer [27–29]. Moreover, a recent report has
demonstrated that BRAFV600E mutation can upregulate PD-L1 expression, which further
supports the non-immune function of PD-L1 [30].

The level of PD-L1 expression in PTC and overall prognosis have shown conflicting
data [31–33]. However, information about PD-L1 expression in PTCs from people of Middle
Eastern ethnicity (where PTC prevalence is very high) has never been explored before.
Therefore, we conducted a comprehensive analysis to evaluate the clinico-pathological
and prognostic significance of PD-L1 expression in a large cohort of Middle Eastern PTC
patients. Given the significant association of PD-L1 and BRAFV600E mutation in our
cohort, we explored whether PD-L1 is regulated by BRAFV600E using PTC cell lines.

2. Results
2.1. Programmed Cell Death Ligand 1 (PD-L1) Expression in Papillary Thyroid Carcinoma (PTC)
and Its Clinico-Pathological Associations

PD-L1 protein expression was assessed immunohistochemically in 1512 PTC samples.
However, immunohistochemistry data were interpretable in 1458 samples and hence were
included for further analysis. PD-L1 over-expression was noted in 32.4% (473/1458) of cases
(Table 1; Figure 1). A significant association was noted between PD-L1 over-expression and
aggressive clinico-pathological characteristics such as tall cell variant (p < 0.0001), extrathy-
roidal extension (p = 0.0203) and lymph node metastasis (p = 0.0466) (Table 1). Importantly,
we also found a significant association between PD-L1 over-expression and poor disease-
free survival (DFS; p < 0.0001), as well as poor recurrence-free survival (RFS; p = 0.0006)
(Table 1; Figure 2A,B), but not overall survival (p = 0.0921). On multivariate analysis,
PD-L1 was found to be an independent predictor of DFS (HR = 2.16; 95% CI = 1.73–2.72;
p < 0.0001) and RFS (HR = 1.59; 95% CI = 1.22–2.05; p = 0.0005) (Table 2).
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Table 1. Association of clinico-pathological characteristics with PD-L1 expression in papillary thyroid
carcinoma.

Total PD-L1 High PD-L1 Low p Value
No. % No. % No. %

No. of Patients 1458 473 32.4 985 67.6

Age (Years)
<55 1189 81.5 389 32.7 800 67.3 0.6365
≥55 269 18.5 84 31.2 185 68.8

Sex
Female 1102 75.6 370 33.6 732 66.4 0.1014
Male 356 24.4 103 28.9 253 71.1

Extrathyroidal Extension
Absent 834 57.2 250 30.0 584 70.0 0.0203 (0.0271) *
Present 624 42.8 223 35.7 401 64.3

pT
pT1 400 28.5 130 32.5 270 67.5 0.5456
pT2 298 21.2 89 29.9 209 70.1
pT3 595 42.4 204 34.3 391 65.7
pT4 110 7.8 33 30.0 77 70.0

pN
pN0 582 44.4 176 30.2 406 69.8 0.0466 (0.0466) *
pN1 728 55.6 258 35.4 470 64.6

pM
pM0 1401 96.1 454 32.4 947 67.6 0.8836
pM1 57 3.9 19 33.3 38 66.7

Stage
I 1188 84.3 380 32.0 808 68.0 0.9322
II 152 10.8 53 34.9 99 65.1
III 19 1.4 6 31.6 13 68.4

IVA 19 1.4 5 26.3 14 73.7
IVB 30 2.1 10 33.3 20 66.7

Histology Type
Classical Variant 955 65.5 334 35.0 621 65.0 <0.0001 (<0.0001) *
Follicular Variant 258 17.7 54 20.9 204 79.1
Tall Cell Variant 135 9.3 54 40.0 81 60.0
Other Variants 110 7.5 31 28.2 79 71.8

BRAF Mutation
Yes 707 56.2 250 35.4 457 64.6 0.0183 (0.0271) *
No 550 43.8 160 29.1 390 70.9

Disease-Free Survival
5 years 266 62.2 751 79.2 <0.0001

Recurrence-Free Survival
5 years 354 82.0 806 86.5 0.0006

* p values in parentheses represent the Benjamini–Hochberg post hoc test p values. pT—pathologic tumor size;
pN—pathologic lymphnode metastasis; pM—pathologic distant metastasis; PD-L1—Programmed Cell Death
Ligand 1.
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Figure 1. PD-L1 immunohistochemical staining in papillary thyroid carcinoma (PTC) tissue micro-

array (TMA). Representative examples of tumors showing (A) high expression and (B) low expres-

sion (right panel) of PD-L1. A 20 ×/0.70 objective on an Olympus BX 51 microscope (Olympus 

America Inc., Center Valley, PA, USA) with the inset showing a 40 × 0.85 aperture magnified view 

of the same TMA spot. 
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Figure 1. PD-L1 immunohistochemical staining in papillary thyroid carcinoma (PTC) tissue microar-
ray (TMA). Representative examples of tumors showing (A) high expression and (B) low expression
(right panel) of PD-L1. A 20 ×/0.70 objective on an Olympus BX 51 microscope (Olympus America
Inc., Center Valley, PA, USA) with the inset showing a 40 × 0.85 aperture magnified view of the same
TMA spot.

Table 2. Cox regression model analysis for prediction of disease-free survival and recurrence-free survival.

Disease-Free Survival Recurrence-Free Survival

Univariate Multivariate Univariate Multivariate

Clinico-pathological Variables Risk Ratio
(95% CI) p Value Risk Ratio

(95% CI) p Value Risk Ratio
(95% CI) p Value Risk Ratio

(95% CI) p Value

Age
Above ≥55 years

(vs. <55 years)

2.54
(2.03–3.16) <0.0001 * 2.13

(1.59–2.87) <0.0001 * 2.97
(2.31–3.80) <0.0001 * 2.65

(1.90–3.70) <0.0001 *

Sex
Male (vs. Female)

0.59
(0.48–0.73) <0.0001 * 0.67

(0.52–0.86) 0.0016 * 0.56
(0.44–0.71) <0.0001 * 0.71

(0.53–0.95) 0.0224 *

Histology
Tall Cell Variant

(vs. Other Variants)

1.94
(1.41–2.61) <0.0001 * 1.48

(1.04–2.05) 0.0236 * 1.27
(0.84–1.83) 0.2528 0.93

(0.59–1.40) 0.7422

Extrathyroidal Extension
Present (vs. Absent)

2.27
(1.82–2.86) <0.0001 * 1.40

(1.07–1.82) 0.0149 * 2.92
(2.24–3.85) <0.0001 * 1.72

(1.25–2.36) 0.0008 *

Lymph Node Metastasis
N1 (vs. N0)

2.33
(1.84–2.96) <0.0001 * 1.72

(1.30–2.26) 0.0001 * 2.74
(2.09–3.63) <0.0001 * 2.31

(1.65–3.23) <0.0001 *

Distant Metastasis Present
(vs. Absent)

3.99
(2.83–5.62) <0.0001 * 2.29

(1.43–3.69) 0.0006 * 6.14
(4.25–8.62) <0.0001 * 2.78

(1.68–4.60) <0.0001 *

Stage
IV (vs. I-III)

3.62
(2.39–5.27) <0.0001 * 0.83

(0.46–1.49) 0.5305 6.25
(4.12–9.10) <0.0001 * 0.81

(0.44–1.52) 0.5164

PD-L1
High (vs. Low)

2.04
(1.66–2.52) <0.0001 * 2.08

(1.65–2.62) <0.0001 * 1.51
(1.19–1.92) 0.0008 * 1.54

(1.18–2.00) 0.0013 *

* Significant p value.

Interestingly, we found an association between PD-L1 over-expression and BRAF
mutation (p = 0.0183) (Table 1). Since BRAFV600E mutation is known to play a role in
the pathogenesis and prognosis of PTC, we sought to determine whether the prognos-
tic associations were independently driven by PDL1 expression rather than co-existing
BRAFV600E mutation. Using Kaplan–Meier analysis, we found that cases with co-existing
PD-L1 over-expression and BRAF mutation had a significantly worse DFS compared to
cases with BRAF mutation alone (p < 0.0001) (Figure 2C).
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Figure 2. Survival analysis of PD-L1 protein expression. (A) Kaplan–Meier survival plot show-
ing statistically significant poor disease-free survival in PD-L1 high-expression cases compared to
PD-L1 low expression (p < 0.0001). (B) Kaplan–Meier survival plot showing statistically significant
poor recurrence-free survival in PD-L1 high-expression cases compared to PD-L1 low expression
(p = 0.0006). (C) Kaplan–Meier survival plot showing statistically significant poor disease-free sur-
vival in cases with co-existing PD-L1 expression and BRAF mutation compared to cases with BRAF
mutation alone (p < 0.0001). (D) Kaplan–Meier survival plot shows no statistically significant dif-
ference in disease-free survival in cases with co-existing PD-L1 expression and wildtype BRAF
compared to cases with wildtype BRAF alone (p = 0.2714). (E) Kaplan–Meier survival plot showing
statistically significant poor disease-free survival in cases with co-existing PD-L1 expression and
BRAF mutation compared to cases with PD-L1 expression alone (p = 0.0156).

2.2. BRAF Mutation and Its Association with PD-L1 in PTC In Vitro

Our clinical data showed a significant association between PD-L1 over-expression
and BRAF mutation. To test this association in vitro, we analyzed the basal expression
of PD-L1 in PTC cell lines by immuno-blotting. We found high expression of PD-L1 in
BRAF-mutated PTC cell lines (BCPAP and K1) compared to a wildtype BRAF PTC cell line
(TPC-1) (Figure 3A,B). We also found increased expression of pMEK1/2 and pERK1/2 in
BRAF-mutated cell lines compared to a wildtype cell line (Figure 3A,B). Next, we inhibited
BRAF using vemurafenib and analyzed the expression of PD-L1, pMEK1/2 and pERK1/2
in BRAF-mutated cell lines. As shown in Figure 3C,D, inhibition of BRAF induced PD-L1,
pMEK1/2 and pERK1/2 expressions in BRAF-mutated cell lines. However, vemurafenib
treatment did not affect the colony-forming ability of PTC cells, as shown by clonogenicity
assay (Figure 3E,F).



Cancers 2021, 13, 555 6 of 15

Cancers 2021, 13, x  6 of 15 
 

 

treatment did not affect the colony-forming ability of PTC cells, as shown by clonogenicity 

assay (Figure 3E,F). 

 

Figure 3. BRAF mutation and its association with PD-L1 in PTC in vitro. (A,B) Basal expression of PD-L1 in PTC cell lines. 

Proteins were isolated from three PTC cell lines and immuno-blotted with antibodies against PD-L1, pMEK1/2, MEK1/2, 

pERK1/2, ERK1/2 and GAPDH. Western blots were quantified and data are presented as mean ± SD of three independent 

experiments (n = 3). (C,D) BRAF inhibition increases PD-L1 expression. BRAF-mutated PTC cell lines were treated with 

indicated doses of vemurafenib for 48 h. After cell lysis, equal amounts of proteins were separated by SDS-PAGE, trans-

ferred to immobilon membrane, and immuno-blotted with antibodies against PD-L1, pMEK1/2, MEK1/2, pERK1/2, 

ERK1/2 and GAPDH as indicated. Western blots were quantified and data are presented as mean ± SD of three independ-

ent experiments (n = 3). * Indicates a statistically significant difference compared to control with p < 0.05. (E,F) BRAF 

inhibition on cell growth. BRAF-mutated PTC cell lines were treated with indicated doses of vemurafenib for 48 h. Cells 

(5 × 102) were then re-seeded into a 6-well plate, and grown for an additional 6–8 days, then stained with crystal violet and 

colonies were counted. Data presented in the bar graphs are the mean ± SD of three independent experiments (n = 3) which 

were repeated at least two times with the same results. * Indicates a statistically significant difference compared to control 

with p < 0.05. 

2.3. Mitogen-activated protein kinase kinase (MEK) Inhibition Decreases PD-L1 Expression 

To test the effect of MEK inhibition on PD-L1 expression, BRAF-mutated cell lines 

were treated with a pharmacologic inhibitor for MEK, selumetinib, for 48 h and the ex-

pressions of PD-L1, pMEK1/2 and pERK1/2 were analyzed by immuno-blotting. As 

shown in Figure 4A,B, inhibition of MEK by selumetinib prominently downregulated the 

expressions of PD-L1, pMEK1/2 and pERK1/2 in BRAF-mutated cell lines in a dose-de-

pendent manner. Furthermore, clonogenic ability was significantly reduced post-selu-

metinib treatment as compared to untreated control (Figure 4C,D). 

Figure 3. BRAF mutation and its association with PD-L1 in PTC in vitro. (A,B) Basal expression of PD-L1 in PTC cell lines.
Proteins were isolated from three PTC cell lines and immuno-blotted with antibodies against PD-L1, pMEK1/2, MEK1/2,
pERK1/2, ERK1/2 and GAPDH. Western blots were quantified and data are presented as mean ± SD of three independent
experiments (n = 3). (C,D) BRAF inhibition increases PD-L1 expression. BRAF-mutated PTC cell lines were treated with
indicated doses of vemurafenib for 48 h. After cell lysis, equal amounts of proteins were separated by SDS-PAGE, transferred
to immobilon membrane, and immuno-blotted with antibodies against PD-L1, pMEK1/2, MEK1/2, pERK1/2, ERK1/2
and GAPDH as indicated. Western blots were quantified and data are presented as mean ± SD of three independent
experiments (n = 3). * Indicates a statistically significant difference compared to control with p < 0.05. (E,F) BRAF inhibition
on cell growth. BRAF-mutated PTC cell lines were treated with indicated doses of vemurafenib for 48 h. Cells (5 × 102)
were then re-seeded into a 6-well plate, and grown for an additional 6–8 days, then stained with crystal violet and colonies
were counted. Data presented in the bar graphs are the mean ± SD of three independent experiments (n = 3) which were
repeated at least two times with the same results. * Indicates a statistically significant difference compared to control with
p < 0.05.

2.3. Mitogen-Activated Protein Kinase Kinase (MEK) Inhibition Decreases PD-L1 Expression

To test the effect of MEK inhibition on PD-L1 expression, BRAF-mutated cell lines were
treated with a pharmacologic inhibitor for MEK, selumetinib, for 48 h and the expressions
of PD-L1, pMEK1/2 and pERK1/2 were analyzed by immuno-blotting. As shown in
Figure 4A,B, inhibition of MEK by selumetinib prominently downregulated the expressions
of PD-L1, pMEK1/2 and pERK1/2 in BRAF-mutated cell lines in a dose-dependent manner.
Furthermore, clonogenic ability was significantly reduced post-selumetinib treatment as
compared to untreated control (Figure 4C,D).
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Figure 4. MEK inhibition downregulates PD-L1 expression and decreases cell growth. (A,B) MEK inhibition downregulates
PD-L1 expression. BRAF-mutated cells were treated with indicated doses of selumetinib for 48 h. After cell lysis, equal
amounts of proteins were separated by SDS-PAGE, transferred to immobilon membrane, and immuno-blotted with
antibodies against PD-L1, pMEK1/2, MEK1/2, pERK1/2, ERK1/2 and GAPDH as indicated. Western blots were quantified
and data are presented as mean ± SD of three independent experiments (n = 3). * Indicates a statistically significant
difference compared to control with p < 0.05. (C,D) MEK inhibition decreases cell growth. BRAF-mutated PTC cell lines
were treated with indicated doses of selumetinib for 48 h. Cells (5 × 102) were then re-seeded into a 6-well plate, and grown
for an additional 6–8 days, then stained with crystal violet and colonies were counted. Data presented in the bar graphs are
the mean ± SD of three independent experiments (n = 3) which were repeated at least two times with the same results.
* Indicates a statistically significant difference compared to control with p < 0.05.

2.4. Downregulation of PD-L1 Decreases Cell Growth of BRAF-Mutated Cell Lines

We showed that PD-L1 over-expression was significantly associated with BRAF muta-
tion and poor survival in PTC patient samples. Therefore, we sought to determine whether
targeting PD-L1 expression would be a viable therapeutic strategy to inhibit growth of
BRAF-mutated cells. We knocked down PD-L1 in BRAF-mutated cells using specific siRNA
and analyzed the cell growth by a clonogenicity assay. Knockdown of PDL1 using two
different siRNA sequences significantly decreased the clonogenic ability of PTC cells after
48 h of transfection (Figure 5A,B). In addition, silencing of PD-L1 decreased AKT-Ser (473)
phosphorylation, and downregulated anti-apoptotic proteins bcl2 and bcl-xL, as well as in-
duced cleavage of caspase-3 and PARP, in BRAF-mutated cell lines (Figure 5C,D). However,
knockdown of PD-L1 did not change the expressions of pMEK1/2 and pERK1/2, showing
that PD-L1 functions downstream of the MEK/ERK signaling cascade (Figure 5E,F).
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Figure 5. Silencing of PD-L1 decreases cell growth of BRAF-mutated cell lines. (A,B) Knockdown of PD-L1 decreases
clonogenicity. BRAF-mutated PTC cells were transfected with scrambled siRNA and two different PD-L1 siRNAs (50 nM).
Forty-eight hours post-transfection, cells (5 × 102) were re-seeded into a 6-well plate, and grown for an additional 6–8 days,
then stained with crystal violet and colonies were counted. Data presented in the bar graphs are the mean ± SD of three
independent experiments (n = 3), which were repeated at least two times with the same results. * Indicates a statistically
significant difference compared to siRNA control with p < 0.05. (C,D) Knockdown of PD-L1 decreases AKT phosphorylation
and downregulates the expression of anti-apoptotic proteins and induces the cleavage of caspase-3 and PARP. BRAF-
mutated PTC cells were transfected with scrambled siRNA and two different PD-L1 siRNAs (50 nM). Forty-eight hours
post-transfection, cells were lysed and equal amounts of proteins were separated and immuno-blotted with antibodies
against PD-L1, pAKT, AKT, Bcl-2, Bcl-xL, caspase-3, cleaved caspase-3, PARP and GAPDH as indicated. Western blots
were quantified and data are presented as mean ± SD of three independent experiments (n = 3). * Indicates a statistically
significant difference compared to siControl with p < 0.05. (E,F) Knockdown of PD-L1 caused no effect on MEK/ERK
activation. BRAF-mutated PTC cells were transfected with scrambled siRNA and two different PD-L1 siRNAs (50 nM).
Forty-eight hours post-transfection, cells were lysed and equal amounts of proteins were separated and immuno-blotted
with antibodies against PD-L1, pMEK1/2, MEK1/2, pERK1/2, ERK1/2 and GAPDH. Western blots were quantified and
data are presented as mean ± SD of three independent experiments (n = 3). * Indicates a statistically significant difference
compared to siControl with p < 0.05.
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3. Discussion

PTC accounts for more than 80% of all thyroid cancers and is typically associated with
a favorable prognosis [34–36]. Aside from radioactive therapy, which is the standard care,
there are limited therapeutic options available for the small percentage of patients who have
aggressive PTC and eventually develop resistance to radioactive iodine treatment [37,38]. Re-
cently, treatment with PD-1/PD-L1 inhibitors has demonstrated a therapeutic effect in
several aggressive tumors [11–13]. PD-L1 expression has been used to identify patients
who are likely to respond to anti-PD-L1 therapies [39,40]. Furthermore, PD-L1 expression
has emerged as a potential prognostic marker in several solid tumors including thyroid can-
cer [31,41–44]. In this study, we evaluated the association between PD-L1 over-expression
and clinico-pathological markers as well as survival in patients with PTC. Analyzing more
than 1400 Middle Eastern PTC patients from a single institute demonstrated the prognostic
value of PD-L1 expression in these patients.

We found a statically significant correlation between higher levels of PD-L1 expression
and lymph node metastasis, extrathyroidal extension, tall cell variant, DFS and RFS. Several
previous studies evaluated the diagnostic and prognostic value of PD-L1 expressions in
thyroid cancer without reaching consensus [31–33,45]. These conflicting data could be
attributed to several factors, including sample size, antibody used, cut-off values applied
and ethnicity of the patients. Analogous to our findings, a study of 185 PTCs from Canada
showed a significantly shorter median DFS in PD-L1-positive tumors compared to PD-L1-
negative tumors [33]. Similarly, another study on 260 PTC cases showed a significantly
worse RFS in PD-L1-positive tumors in multivariate Cox regression analysis [31].

Interestingly, we found a significant positive association between PD-L1 expression
and the presence of BRAFV600E mutations, which is known to play a major role in PTC
pathogenesis and aggressiveness. This led us to question whether the prognostic associa-
tions were independently driven by PD-L1 expression rather than co-existing BRAFV600E
mutation because >50% of PD-L1-positive PTC samples had co-existing BRAFV600E muta-
tions. Specifically, we compared the DFS in cases with coexisting PD-L1 expression and
BRAFV600E mutation to those with BRAFV600E mutation alone and found the former
to be associated with significantly poorer DFS (p < 0.0001). This finding could support a
previous report highlighting the ability of BRAFV600E signaling to modulate the immune
response [29]. Interestingly, a recent study in colorectal cancer (CRC) has shown that
BRAFV600E can transcriptionally upregulate PD-L1 expression and enhance apoptosis
which might indicate an intrinsic non-immune function of PD-L1 [30].

Thus, we determined whether BRAFV600E can regulate PD-L1 expression in human
PTC cell lines. Our in vitro studies confirmed the association of high PD-L1 expression in
the PTC-BRAF-mutated cell lines. Vemurafenib treatment of the BRAF-mutated cell lines
induces PD-L1 expression, as shown by western blotting, without affecting cell viability.
The mitogen activated protein kinase (MAPK) pathway has been shown to regulate PD-L1
expression in various cancers [46–48]. In PTC cell lines, we showed that MEK inhibition
downregulated PD-L1 expression and decreased the cell growth. In addition, our in vitro
data support the ability of PD-L1 to regulate apoptosis in PTC. This insight into the role of
PD-L1 in regulating apoptosis has been reported previously in a limited number of solid
tumor cell lines [30,49–51].

4. Materials and Methods
4.1. Sample Selection

One thousand four-hundred and fifty-eight PTC patients diagnosed between 1989
and 2018 at King Faisal Specialist Hospital and Research Center (Riyadh, Saudi Arabia)
with available archival tissue samples were included in the study. Clinico-pathological
data were collected from case records, the details of which are summarized in Table 3. The
Institutional Review Board of the hospital provided approval for the collection of archival
samples. For this study, since only archival paraffin tissue blocks were used, a waiver of
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consent was obtained from the Research Advisory Council (RAC) on 06 February 2012
(RAC# 2110 031).

Table 3. Clinico-pathological variables for the patient cohort (n = 1458).

Clinico-Pathological Variables n (%)

Age
Median 38.0

Range (IQR) ˆ 29.0–50.0
<55 years 1189 (81.5)
≥55 years 269 (18.5)

Gender
Female 1102 (75.6)
Male 356 (24.4)

Histopathology
Classical Variant 955 (65.5)
Follicular Variant 258 (17.7)
Tall Cell Variant 135 (9.3)

Others 110 (7.5)

Extrathyroidal Extension
Absent 834 (57.2)
Present 624 (42.8)

pT
T1 400 (27.4)
T2 298 (20.4)
T3 595 (40.9)
T4 110 (7.5)

Unknown 55 (3.8)

pN
N0 582 (39.9)
N1 728 (49.9)
Nx 148 (10.2)

pM
M0 1401 (96.1)
M1 57 (3.9)

Stage
I 1188 (81.5)
II 152 (10.4)
III 19 (1.3)

IVA 19 (1.3)
IVB 30 (2.1)

Unknown 50 (3.4)

BRAF Mutation
Present 707 (48.5)
Absent 550 (37.7)

Unknown 201 (13.8)

RAI Therapy
Yes 1113 (76.3%)
No 345 (23.7)

ˆ IQR—Interquartile range; RAI—Radioactive iodine.

4.2. DNA Isolation

DNA was extracted from PTC formalin-fixed and paraffin-embedded (FFPE) tumor
tissues utilizing a Gentra DNA isolation kit (Gentra, Minneapolis, MN, USA) according to
manufacturer’s protocols, as elaborated in a previous study [52].
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4.3. Sanger Sequencing Analysis

Sequencing of entire coding and splicing regions of exon 15 in the BRAF gene from 1257
PTC samples was carried out using Sanger sequencing technology. Primer 3 online software
was utilized to design the primers (BRAF-EX15F1: AAACTCTTCATAATGCTTGCTCTG,
BRAF-EX15R1: TTTCTAGTAACTCAGCAGCATCTCA). PCR and Sanger sequencing anal-
yses were carried out as described previously [53]. A reference sequence was downloaded
from NCBI GenBank. Sequencing results were compared with the reference sequence by
Mutation Surveyor V4.04 (Soft Genetics, LLC, State College, PA, USA).

4.4. Tissue Microarray (TMA) Construction and Immunohistochemistry (IHC)

A tissue microarray (TMA) format was utilized for immunohistochemical analysis of
the PTC samples. TMA was constructed as previously described [54]. Briefly, a modified
semiautomatic robotic precision instrument (Beecher Instruments, Woodland, WI, USA)
was used to punch tissue cylinders with a diameter of 0.6 mm from a representative tumor
area of the donor tissue block and brought into the recipient paraffin block. Two 0.6 mm
cores of PTC were arrayed from each case.

Tissue microarray slides were processed and stained manually as described previ-
ously [55]. Primary antibody against PD-L1 (E1L3N, 1:50 dilution, pH 9.0, Cell Signaling
Technology, Danvers, MA, USA) was used. A membranous and/or cytoplasmic staining
was observed. Only the membrane staining was considered for scoring. PD-L1 was scored
as described previously [56]. Briefly, the proportion of positively stained cells was calcu-
lated as a percentage for each core and the scores were averaged across two tissue cores
from the same tumor to yield a single percent staining score representing each cancer pa-
tient. For the purpose of statistical analysis, the scores were dichotomized. Cases showing
an expression level of ≥ 5% were classified as over-expression and those with less than
5% as low expression. Only staining of tumor cells (not lymphocytes) was considered for
percentage calculation.

4.5. Cell Culture

The PTC cell line BCPAP was obtained from Deutsche Sammlung von Mikroorganis-
men und Zellkulturen (DSMZ, Braunschweig, Germany), and TPC-1 was kindly provided
by Dr. Bryan McIver (Department of Endocrinology, Mayo Clinic, Rochester, MN, USA).
The K1 cell line was purchased from the American Type Culture Collection (ATCC, Manas-
sas, VA, USA). Cell lines were cultured in RPMI 1640 media supplemented with 10% fetal
bovine serum (FBS), 100 units/mL penicillin/streptomycin and 100 units/mL glutamine.
These cell lines were authenticated in-house using short tandem repeat PCR and the results
were in concordance with published data [57,58]. All experiments were performed using
5% FBS in RPMI 1640 media.

4.6. Reagents and Antibodies

BRAF inhibitor vemurafenib (PLX4032) and MEK inhibitor selumetinib (AZD6244)
were purchased from Selleck Chemicals (Houston, TX, USA). PD-L1 antibody (ab205921)
was obtained from Abcam (Cambridge, MA, USA). Antibodies against pMEK1/2 (9121),
MEK1/2 (4694), pERK1/2 (4370), ERK1/2 (4695), AKT (9272), Bcl2 (2876), Bcl-XL (2764),
cleaved caspase-3 (9661) and PARP (9542) were purchased from Cell Signaling Technology
(Danvers, MA, USA). Antibodies against pAKT (sc-7985), caspase-3 (sc-56053) and GAPDH
(sc-47724) were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA).

4.7. Clonogenic Assay

The PTC cell lines were seeded at a density of 500 cells per well in a 6-well plate. After
attachment, fresh growth medium was added and cells were allowed to grow for 6–8 days.
Cell colonies were fixed with formaldehyde (4%) and stained with crystal violet (2% in 10%
methanol). The number of colonies in each well was counted and photographed.
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4.8. Gene Silencing Using siRNA

PD-L1 siRNA and scrambled control siRNA were purchased from Ambion (Austin,
TX, USA). Cells were transfected using Lipofectamine 2000 (Invitrogen, Carlsbad, CA,
USA) for 6 h following which the lipid and siRNA complex was removed and fresh growth
medium was added. After 48 h of transfection, cells were used for immuno-blotting.

4.9. Cell Lysis and Immuno-Blotting

Following treatment, PTC cells were lysed in phosphorylation lysis buffer containing
50 mM HEPES (pH 7.3), 150 mM NaCl, 1.5 mM MgCl2, 1.0 mM EDTA (pH 8.0), 100 mM NaF,
10 mM Na2H2P2O7, 200 µM Na3VO4 and 1X proteasome inhibitors (Roche pharmaceuticals,
Basel, Switzerland). Lysed cells were spun at 14,000 rpm for 15 min at 4 ◦C and protein
amounts were measured using a Bradford protein assay kit (Bio-Rad, Hercules, CA, USA).
For immuno-blotting, equal amounts of protein (10 µg) were subjected to 10% SDS-PAGE
gels, transferred to nitrocellulose membranes, blocked with 5% (w/v) non-fat dry milk in
1X TBST (25 mM Tris-HCl, pH 7.4, 137 mM NaCl, and 0.1% Tween 20) for 1 h and incubated
with primary antibodies in 2% (w/v) non-fat dry milk in TBST for 1–2 h. The membranes
were washed at least three times with TBST at 10 min intervals followed by a 1 h incubation
with mouse or rabbit horseradish peroxidase-conjugated secondary antibody (1:5000).
The membranes were developed with an enhanced chemiluminescence detection system
according to the manufacturer’s instructions (ECL, Amersham, IL, USA). All uncropped
western blot images are presented in Supplementary Materials Figure S1.

4.10. Statistical Analysis

The associations between clinico-pathological variables and protein expression were
found using contingency table analysis and chi-square tests. A Mantel–Cox log-rank test
was used to evaluate disease-free survival and recurrence-free survival. Survival curves
were generated using the Kaplan–Meier method. A Cox proportional hazards regression
model was used for multivariate analysis. Two-sided tests were used for statistical analyses
with a limit of significance defined as p value < 0.05. Data analyses were performed using
the JMP11.0 (SAS Institute, Inc., Cary, NC, USA) software package.

For all functional studies, data presented are means ± SD of three independent
experiments, which were repeated at least two times with the same results. A Student’s
t-test (two-tailed) was performed for statistical significance with p < 0.05 used as the cut-off.

5. Conclusions

This study suggests that PD-L1 could represent a useful prognostic marker for risk
stratification in Middle Eastern PTC and that a PD-1/PD-L1 inhibitor could be a potential
therapeutic option for aggressive PTC cancers, such as tall cell variant and BRAF mutation-
positive patients that are unresponsive to standard PTC treatment. Furthermore, these
data indicate that PTC tumor cells expressing PD-L1 may mediate intrinsic signaling and
can affect survival beyond immune regulatory functions, which suggest a broader role for
PD-L1 as a potential predictive marker for therapy response.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/3/555/s1, Figure S1: Uncropped Western Blot Images.
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