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Challenges posed by complex diseases such as cancer, chronic viral infections, neurodegenerative disorders and
many others have forced researchers to think beyond classic small molecule drugs, exploring new therapeutic
strategies such as therapy with RNAi, CRISPR/Cas9 or antibody therapies as single or as combination therapies
with existing drugs.While classic antibody therapies based on parenteral application can only reach extracellular
targets, intracellular application of antibodies could provide specific advantages but is so far little recognized in
translational research. Intrabodies allow high specificity and targeting of splice variants or post translational
modifications. At the same time off target effects can be minimized by thorough biochemical characterization.
Knockdown of cellular proteins by intrabodies has been reported for a significant number of disease-relevant tar-
gets, including ErbB-2, EGFR, VEGFR-2, Metalloproteinase MMP2 and MMP9, β-amyloid protein, α-synuclein,
HIV gp120, HCV core and many others. This review outlines the recent advances in ER intrabody technology
and their potential use in therapy.
© 2016 Marschall, Dübel. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Contents
1. Utilizing the specificity of antibodies inside of living cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
2. Different types of intrabodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
3. Intrabodies for therapy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
4. Therapeutic intrabodies need gene therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
1. Utilizing the specificity of antibodies inside of living cells

Intrabodies are antibodies expressed intracellularly to block cellular
functions. In contrast to the naturally expressed antibodies which are
secreted and directed towards extracellular targets, intracellularly
expressed antibodies, are directed towards targets inside the cell. This
allows utilizing the very high specificity of antibody/antigen binding
for the functional analysis of proteins in living cells or even living
organisms.
r B.V. on behalf of the Research Netw
0/).
The use of antibodies in living cells started in the 1980s when they
were found to be sufficiently stable after microinjection into the cyto-
plasm, and they were shown to be able to interfere with the function
of their intracellular antigen. For instance, intermediate filaments
were found to collapse after blocking their assemblywithmicroinjected
antibodies [8]. However, microinjection is laborious and allows only
small cell numbers to be manipulated, which limited a widespread
application of the technique. Hence, a number of approaches using
reagents or peptides for protein delivery have been tried to introduce
antibodies into living cells [33]. While the so called “cell penetrating
peptides” (CPPs) gained considerable attention at early times after
their discovery, their initially proposed mechanism of uptake and the
general efficacy as transduction modules for macromolecules has
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meanwhile been questioned [33,35,39]. In contrast to initial assump-
tions, CPPs are now believed to be internalized by endocytosis if linked
tomacromolecules and themajority remains in endosomes, whichmay
result in very low efficiency of cytosolic delivery [18,33,39]. Because
inhibition of antigen function by the binding of antibodies to their
antigen usually requires an at least 1:1 M ratio of the latter, this low
efficiency of cytosolic delivery can substantially limit its applications
for functional interference. Protein transfection (profection), which is
based on reagents that are believed to possess properties which can en-
hance or trigger endosomal release [5], therefore has been suggested as
a promising alternative [52]. However, similar to the initial difficulties to
detect the true cytosolic release of cargo-molecules in research on CPPs,
the efficiency of profection has recently been found to be largely
overestimated too, due to the commonusage of artifact-prone detection
methods [35].

Despite the numerous attempts to deliver antibodies to the cytosol
by using peptides or by means of profection, delivery into larger cell
populations of amounts of antibodies comparable to the early microin-
jection experiments of the 1980swas only recently achieved by electro-
poration [15,20,35] and demonstrated that scFv-Fc antibodies (which
are similar to the microinjected whole IgG but rely on the structural
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membrane proteins or secreted factors in the ER prevents these proteins
from carrying out their normal function because they cannot reach their
site of action anymore [32].

2. Different types of intrabodies

According to the different intracellular compartment for expression,
intrabodies can be classified into two basic categories based on the re-
quirements for their molecular structure: those that have to fold
under reducing conditions and those that can form disulfide bonds in
the environment in which they are expressed. While antibodies that
are translated in the cytosol have to fold under reducing conditions,
antibodies can form disulfide bonds in the ER and also in mitochondria
[6]. Cytosolic intrabodies can be employed to target the cytosolic
proteome as well as the nuclear proteome if a nuclear localization se-
quence is fused to the intrabody. ER intrabodies, in contrast, can only
target secreted proteins. However, because many cellular processes
are controlled by signaling via membrane receptors or secreted factors,
being able to target the whole membranome and secretome provides
the key to many crucial cellular processes.

The generation of the different types of intrabodies also requires very
different amounts of effort. Although aggregating intrabodies have also
been reported to cause a phenotype [12], cytosolic intrabodies, ideally i.
need to fold correctly in the cytosol in order to be functional and ii.
need to bind to a selected epitope in a way allowing neutralization of
the target function. Because the majority of antibodies do not fold
correctly in the cytosol, several strategies have been proposed to select
for the rare antibodies that are stable and functional in the cytosol (for
review see [32]). These strategies include the use of scaffolds that are
known to be particularly suitable for folding correctly in the cytosol and
onto which the antigen binding features of other antibodies are grafted
[16]. Single domain antibodies like camelid nanobodies have also been
employed particularly in the cytosol [25]. Fusion of intrabodies to other
proteins with the aim to increase their solubility has also been suggested
as a potential means for enhancing the cytosolic solubility of intrabodies
[41]. However, because solubility alone is no guarantee for functionality
and may even lower functionality in spite of higher solubility (such as
lower fluorescence of a soluble GFP fusion to maltose binding protein
(MBP) compared to unfused GFP in E. coli [22]), it is not clear whether
this approach allows converting every non-functional intrabody into a
functional one. In order to particularly screen for antibodies with proper-
ties that allow correct folding in the cytosol, e.g. antibodies that are stable
even in the absence of disulfide bonds, various approaches relying on two
hybrid-like and other in-cell interaction analysis techniques or quality
control screenings have been developed (for review see [32]). Some of
these screening technologies allow selection of intrabodies that are stable
in the cytosol in an antigen-specific way [28,48,50,51,54], while other
screening technologies allow to more generally screen for antibodies
that are able to fold correctly in the cytosol independently of their
antigen-specificity [3,19].

Particularly strategies that aim at selecting for desired properties,
such as selection for target binding in the cytosol or for correct folding
are promising but quite laborious, besides reduced library complexities
due to lower transfection efficiencies in yeast or mammalian cells as
well as the generally reduced variety of cytosolically stable antibodies.
An additional effort is necessary to select for antibodies with neutraliz-
ing properties, which are required for blocking functions. In contrast,
the process for the generation of ER intrabodies is much more simple
and straightforward. Because ER intrabodies are expressed in their
natural compartment, there are no special requirements in respect of
folding. Additionally, there is no need for ER intrabodies to be neutraliz-
ing, because binding to the target protein is sufficient to trap the target
protein in the ER and thereby cause a functional knockdown by keeping
it from reaching its site of action.While larger antibody formats such as
full IgGs have been used in approaches to deliver antibodies as proteins
to the cytosol, the smaller single chain Fragment variable (scFv), in
which the antigen binding domains of heavy and light chain are
connected by a peptide linker, has beenmore commonly applied for in-
tracellular antibodies [32,33]. Further, even single domain antibody
fragments, such as camelid nanobodies, have been successfully
employed as cytosolic intrabodies already (for review see [25]).

3. Intrabodies for therapy?

While obtaining the genes of monoclonal antibodies previously
relied on the much more time consuming and labor intensive hybrid-
oma technology, phage display now allows a much faster generation
of antibodies [14,36]. Especially the huge and still growing resource of
well characterized antibodies from consortia such as “Affinomics”
(http://cordis.europa.eu/result/rcn/90758_en.html), for which genes
are already available, are ready to use for the knockdown of target pro-
teins. Further, the easy availability of human antibodies [27] allows to
mitigate potential immunogenicity issues of therapeutic intrabodies
right from the start. And the potential benefits of intrabodies are quite
attractive. While classic small molecule drugs are not available for all
target proteins, antibodies have the potential for a much wider thera-
peutic application range because they can in principle be generated
against all proteins of the proteome [14,36]. Due to their large binding
site, they can typically be much more specific than small molecules.
Further, because they act at the protein level, they can target splice
variants of target proteins, or single posttranslational modifications [7]
which may allow therapeutic approaches not yet possible with other
approaches. In contrast to classic antibody therapies based on the par-
enteral application of antibodies, therapy with intrabodies might
allow further reduction of off target effects when put under control of
tissue specific promotors. Furthermore, cytosolic intrabodies can reach
intracellular proteins, which are not accessible to parenterally applied
antibodies. By targeting one particular epitope of a protein that has sev-
eral functions, it may also be possible to inhibit just one selected func-
tion of that target protein. In the case of cytosolic intrabodies, epitopes
with different functions might be targeted, while in the case of ER
intrabodies different epitopes can be targeted in order to knock down
all splice variants of a protein or to knock down specifically one individ-
ual splice variant of a protein. This may allow therapy evenwhere ubiq-
uitous inhibition or knockout is not possible. Inhibition of one of the
several functions of a target protein can furthermore be achieved by
the ability of intrabodies fused to a signal sequence to relocate proteins,
as has been demonstrated by the knockdown of Sec61, which was
relocated intracellularly by an ER-intrabody to inhibit its function in
the endosomes without disrupting its vital function for protein
biosynthesis in the ER [53]. Another study reported the re-localization
of a target protein to prevent its function in the nucleus [12]. A similar
approach allowed to block the pathogenic polymerization of Z
α1-antitrypsin while maintaining its antiproteinase activity without
which patients would develop a lung disease [37].

Therapeutic approaches with cell type specificity or therapies that
allow selective control of one of several functions of a target protein
could be highly beneficial for making therapy more specific. Because
intrabodies have the potential to provide such highly specific therapeu-
tic approaches, e.g. by relocating a target protein or by targeting splice
variants with intrabodies, they may increase safety by eliminating
unwanted side effects that cannot be avoided by other methods. As
antibodies are naturally produced in high amounts during an infection,
the expression of ER intrabodies has so far been found to cause no
significant ER stress in spite of substantial overexpression [37,55]. This
suggests that side effects originating from the expression of the foreign
protein in a patient may also be negligible.

4. Therapeutic intrabodies need gene therapy

A critical factor for the therapeutic application of intrabodies, similar
to the use of RNAi or CRISPR/Cas9 (for a review of the CRISPR/Cas9
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system see [17], is the successful and safe introduction of DNA into cells
in vivo [30]. Although clinical trials have been attempted for both
intrabodies and RNAi, the majority of attempts has clearly been made
to therapeutically harness RNAi [4]. This is most likely due to the so
far much more laborious process (hybridoma technology) required to
generate monoclonal antibodies, when compared to the relatively fast
generation of RNAi sequences. However, with the many antibody se-
quences that are now available for instant use [14,36], the challenges
for therapeutic use of RNAi, CRISPR/Cas9 or intrabodies have become
similar and mainly consist of the challenges generally associated with
gene therapy (for a review on gene therapy see e.g. [26]). Because
intrabodies act at the protein level, however, their therapeutic use al-
lows novel therapeutic paradigms that cannot be achieved by RNA- or
DNA- based approaches. And with approved gene therapy drugs on
the market, there are robust and clinically proven delivery systems
readily available which could be easily adapted to introduce intrabody
genes into patient's cells.

In vitro, there are already many examples for successful intrabody
mediated knockdowns, both achieved with cytosolic intrabodies and
ER intrabodies. Targets that have been knocked down by intrabodies in-
clude oncogenic targets, proteins related to immune function, neuronal
targets including those involved in neurodegenerative disorders and
targets involved in chronic viral infections, showing the broad range of
potential application of future therapeutic intrabodies [31]. A
comprehensive overview is given in Ref. [32]. In vivo, successful
intrabody mediated knockdowns have been demonstrated in a trans-
genic mouse in which the function of VCAM-1 was knocked down by
ubiquitous expression of an ER intrabody as a transgene [34]. Further
intrabody mediated knockdowns in vivo have been demonstrated via
the therapeutically relevant delivery of genes by viral delivery vectors
[1,2,24,38,45,47].

Therapeutic strategies against chronic viral infections include
intrabodies targeted directly against viral proteins or intrabodies that
target host proteins [31]. An intrabody targeting the host protein CCR5
that is involved in viral entry of HIV into host cells, has for instance
been found to protect cells from infection [43,47]. An intrabody against
the viral protein HIV Tat led to increased survival of CD4(+) T cells in
rhesus macaques and in one animal even to a reduced viral load [9].
Furthermore, a very recent study reported on the reduction of infectious
hepatitis C (HCV) viral titers in cell culture upon expression of an
intrabody that probably interferes with viral assembly [46].

Neurodegenerative diseases have also been successfully targeted by
intrabodies in vitro and in vivo [11]. For example an ER intrabody
allowed interference with the maturation and glycosylation of prion
protein [13], an intrabody inhibited the formation of high molecular
weight species of alpha-Synuclein associated with Parkinson's disease
[56] and an intrabody allowed interference with the aggregation and
toxicity of a target associated with the killing of motorneurons in
Amyotrophic Lateral Sclerosis, as demonstrated in vitro [21]. In a
mouse model for Huntington's disease, viral delivery of an intrabody
delayed the formation of aggregates and reduced pathology [42]. In a
mouse model for Alzheimer's disease (AD), delivery of an intrabody
gene by an adeno-associated vector reduced AD pathology on the
molecular level as well as in the form of improved cognitive function
[40].

In another recent study, retroviral delivery of an intrabody genewas
reported to result in 60% of tumor-free mice compared to controls in a
mouse model for tumors that are caused by human papilloma virus
(HPV), demonstrating the potential of intrabodies for cancer therapy
[2]. In conclusion, intrabodieswill allow exploring completely new ther-
apeutic strategies based on highly specific interactions at the protein
level. These therapies will require somatic gene therapy, which is a
well-established clinical practice now since the first approval of AAV
based gene therapy in 2012 [23], not anymore representing a major ob-
stacle. The AAV vectors have even been engineered already for tissue
specific targeting [10], offering exciting opportunities to combine two
independent disease related specificities from the outside and the inside
to minimize off-target effects and increase safety.
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