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Abstract: The present experiment sought to determine the effect of an eight-week, high antioxidant,
whole-foods dietary supplement on Morris Water Maze performance in early and late middle-aged
female rats. To improve ecological validity over past experimental studies, rats in the current study
received antioxidants by consuming freeze-dried organic strawberries and spinach rather than by
being given food extracts or antioxidant injections. Latency and path length measures both indicated
that late middle-aged rats fed the high antioxidant diet performed on a par with the younger animals
earlier in training than their standard diet counterparts (p < 0.05). Superior performance was not
due to improved fitness in the antioxidant-supplemented rats. Thus, our model showed that a high
antioxidant diet of relatively short duration mitigated the mild cognitive decline that was seen in
control animals during the developmental period of late middle-age. The current results offer support
for the promising role of dietary antioxidants in maintaining cognitive health in normal aging and
extend past findings to females, who have been relatively neglected in experimental investigations.
Moreover, the current model suggests that the period of transition from early to late middle age is
a promising target for dietary intervention in healthy adults.

Keywords: aging; antioxidant; flavonoid; mitochondrial free radical theory of aging; Morris Water
Maze; phytochemicals; vitamin C; vitamin E; spatial learning

1. Introduction

As advances in medicine, along with other factors, continue to increase human longevity [1] (p. 10),
scientists are increasingly concerned with understanding not only disease-related changes in cognitive
and affective functioning that increase with advancing age, but also in changes attributable to normal
aging processes. Although individual differences can be large [2], generally speaking, both human and
nonhuman animals show age-related declines in spatial and nonspatial learning and memory [3–5].
The exact age of onset of decline is debatable. Methodological variables, such as, in the case of human
experiments, whether the design was cross-sectional or longitudinal and whether practice effects were
controlled for [3], as well as contextual factors, such as goals and motivation [6], may account for the
divergent estimates produced by experimental research.

Although numerous physiological processes likely contribute to cognitive decline in aging
mammals, a general theory of aging first proposed by Harman in 1956, and later updated in 1972,
The Mitochondrial Free Radical Theory of Aging (MFRTA), generated much empirical work in
the area [7,8]. MFRTA states that the aging process, and ultimately death, results in part from the
accumulation of mitochondrial damage caused by free radicals, which are cells that have lost a critical
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molecule during the oxidation process, making them unstable. The free radicals replace their lost
molecule by taking one from a neighboring cell, damaging the DNA of that cell and perpetuating the
cycle. Interest in the contribution of oxidative stress in disease processes ranging from depression and
anxiety to cancer and Alzheimer’s disease (AD) soon followed [9]. Although evidence for oxidative
damage as a major determinant of longevity is correlative and no longer universally accepted [10],
oxidative stress is strongly implicated in the early pathogenesis of AD [11–13]. Likewise, there is
abundant evidence that even in the absence of disease processes the aging brain is marked by
increases in oxidative stress damage, especially in the hippocampus, a medial-temporal lobe structure
that is fundamental to the formation of new long-term memories and to spatial recognition and
navigation [5,13–15]. Moreover, there exists a positive correlation between oxidative stress in the
hippocampus and learning impairment in aged rats [16,17], which made the accumulation of oxidative
stress an attractive candidate for the cause of cognitive decline with aging.

Although not a ubiquitous finding, some studies reported a loss of antioxidant defenses with
age [18,19], suggesting, together with the aforementioned findings, that supplementing an organism’s
diet with antioxidants, chemicals that donate electrons to free radicals without themselves becoming
scavengers, might mitigate age-associated, as well as experimentally-induced, cognitive decline.
Indeed, there are numerous reports of experimental rodent models showing positive effects of various
antioxidant supplements [20–25]. For example, irradiation-induced deficits in Morris Water Maze
(MWM) performance in young male rats were ameliorated by dietary supplementation with 2%
strawberry or blueberry extract [26]. The Morris Water Maze is a forced swimming task that requires
rats to use extra-maze visual cues to recall the location of an invisible platform that is submerged
just under the surface of opaque water in order to find and mount the platform and escape from
the water. The spatial nature of the task makes it strongly hippocampal-dependent and therefore
a useful test for assessing cognitive decline in aging. In another study, antioxidant supplements
comprised of strawberry extract, spinach extract, or Vitamin E given to male rats for eight months
beginning at six months of age retarded age-related declines in both neuronal (e.g., signal transduction)
and cognitive (e.g., MWM) function [27]. Moreover, the same antioxidant regimen was effective
in reversing age-related deficits in 19-month-old male rats [28]. Even a short-term (eight weeks)
antioxidant supplementation has been reported to reverse age-induced deficits in a simple straight
alley motor learning task in male rats [29].

While most experimental studies on the effects of antioxidants have utilized male subjects, a small
number have examined females. A 2004 study demonstrated that performance on MWM improved,
antioxidant enzyme activity in the brain increased, and lipid peroxidation in the prefrontal cortex,
striatum, & hippocampus reduced in 24-month-old ovariectomized female rats who were injected daily
for three weeks with either deprenyl (which reduces free radical production and increases antioxidant
enzymes), β-estradiol, or a combination of the two [30]. In 2005, a group reported that pretreatment
for 30 days with injectable vitamins E & C prevented ovariectomy-induced memory deficits on MWM
in young female rats [31]. Xu et al. (2009) reported that a seven-week supplementation of antioxidants
derived from the lotus seed pod extract improved MWM performance in 18 month-old cognitively
impaired female rats [32]. The current study sought to extend existing findings by examining the
effects of a relatively short (eight weeks) real-foods antioxidant-rich dietary supplement consisting
of freeze dried organic strawberries and spinach on cognitive performance in intact aging female
rats. We believe using real foods lends ecological validity to the results and takes into consideration
the finding that large megadoses of antioxidants, as is often found in dietary supplements, can have
toxic (and even lethal) effects [33]. Strawberries and spinach were chosen from among the many
antioxidant-rich foods because of their high flavonoid content, which recent research has suggested
may be of special importance in alleviating cognitive impairments associated with aging [25] and
because of their effectiveness in alleviating deficits in spatial learning in prior studies with male rats
across various stages of the lifespan [26–28]. They are also readily available in freeze-dried form and
highly palatable. Moreover, our use of intact, typically-developing (aging) rats, as opposed to young
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ovariectomized females, allows us to see the effects of antioxidants on general, age-related changes in
learning and memory in females, rather than deficits related specifically to the loss of estrogen in the
absence of other, more global age-related changes. The choice to intervene during early and late middle
age stemmed from the desire to avoid studying organisms when they were either too young to show
signs of cognitive decline (making it impossible to measure any effect of the dietary supplement) or so
old that they were likely to have begun to experience the onset of neurodegenerative disease processes.
Indeed, according to one review, failure to investigate the effects of antioxidants at the appropriate
stage of development may contribute to the mixed success of antioxidant supplementation in human
clinical trials [34]. We hope we have created a model to study the potential benefits of consuming high
levels of dietary antioxidants during middle to late adulthood, when negative cognitive changes are
just beginning to emerge. To that end, 12- and 16-month-old female rats were fed either a standard
diet or a standard diet plus a real-foods dietary supplement of freeze dried organic strawberries and
spinach rich in Vitamins C, E, & K, flavonoids and carotenoids for eight weeks prior to assessing
performance on the MWM.

2. Materials and Methods

2.1. Subjects

Forty-two adult female Long-Evans Hooded rats, bred at Kenyon College (derived from breeders
purchased from Hilltop Laboratories, IN), were housed in pairs in large opaque plastic tubs (46 × 31 cm)
lined with 5 cm of corn cob bedding. Twenty of the rats were 12 months old at the beginning of the
experiment and twenty-two rats were 16 months of age at the beginning of the experiment. The colony
room was maintained between 70 to 73 ◦F with a 12:12 h light:dark cycle (lights on at 7:00 a.m.).
Cage-mates were separated in their home cages by a clear Plexiglas divider for approximately 10 h/day
so that we could ensure that animals on the high antioxidant diet consumed all of their dietary
supplement. Water and standard lab chow were available ad libitum in all conditions. Each rat was
handled for 5 min per day for five consecutive days prior to beginning the behavioral assay portion of
the experiment. All training and testing occurred during the lighted portion of the photocyle and at
approximately the same time each day. All procedures, which followed the standards of the National
Institutes of Health guide for the care and use of Laboratory Animals, were approved by the Kenyon
College Institutional Animal Care and Use Committee on 12/17/2012.

2.2. Diet

Depending on group assignment (described below), animals were fed either a diet of standard
Laboratory Rodent Diet ®5001 rodent feed (manufactured by LabDiet®; purchased from Cincinnati Lab
Supply, Inc., Cincinnati, OH, USA) or Laboratory Rodent Diet ®5001 rodent feed plus a high antioxidant
food supplement consisting of organic freeze-dried strawberries (3.03 g/kg body weight) and organic
freeze-dried spinach (4.93 g/kg body weight; both purchased from Nuts.com). This supplement was
measured to provide 91 mmol Trolox equivalent antioxidant capacity per kg, as well as high flavonoid
and carotenoid levels (see Giampieri, Alvarez-Suarez, & Battino, 2014, [35] for review of strawberries’
nutritional composition; for review of the nutritional composition of spinach, see Ismail, Marjan,
& Foong, 2004, [36]). The supplement was given once per day (at approximately 1:00 p.m. Eastern
Standard Time), and rats were kept separated from their cage mate by a Plexiglas partition in the home
cage until the supplemental food was completely consumed (approximately 10 h per day). Animals
in both dietary conditions had unlimited access to lab chow and water at all times, including when
separated by the partition. “Early middle-age” (EMA) animals (n = 20) in the “high antioxidant diet”
(HAD) condition (Group EMA-HAD; n = 10) began receiving the dietary supplement at 12 months of
age and continued it for eight weeks, at which time testing in the MWM began (at 14 months of age).
“Late middle-age” (LMA) animals (n = 22) in the high antioxidant diet condition (Group LMA-HAD;
n = 11) began the dietary supplement at 16 months of age and continued it for eight weeks, at which
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time testing in the MWM began (at 18 months of age). Age-matched rats receiving the control
diet—groups EMA-Control (n = 10) and LMA-Control (n = 11)—remained on a standard diet with no
supplementation during this period, but were also separated by a partition for 10 h/day to control for
social housing effects.

2.3. Apparatus & Procedure

Morris Water Maze

The Morris Water Maze is a commonly employed measure of spatial hippocampal-dependent
memory. It was chosen because prior research has shown that the hippocampus is sensitive to
oxidative stress and because hippocampal-dependent memory decline is often the first sign of memory
problems in aging organisms. Water maze training was conducted in a round, black, fiberglass
pool (173 cm diameter × 46 cm high; manufactured by Custom Fountains, Inc. Mason, OH, USA).
Water was maintained at a depth of approximately 31 cm and temperature was maintained at 26 ± 3 ◦C.
The water was made opaque by the addition of nontoxic white tempura poster paint (Crayola LLC.,
Easton, PA, USA) and an escape platform was placed approximately 2.5 cm below the water surface
so that it was not visible to the animal but was high enough that the animal could not swim over it
without bumping into it. The pool was located in a small room (2.1 m × 3 m) that had three white
walls and one black wall (created by a black hanging curtain). Experimenters stood behind the black
curtain during trials, making them invisible to the animal. Ninety-one centimeters above the floor on
each of the three white walls hung large (61 cm × 91 cm) highly contrasting geometric shapes that
were clearly visible to the animals from the water maze. A video camera was mounted directly above
the center of the maze and all trials were recorded. The overhead fluorescent house lights were turned
off (to reduce glare on the pool surface). Light was provided by two reflective aluminum clamp lights,
each containing one 60-watt standard white light bulb. The lights were positioned in opposite corners
of the room and pointed upward to produce diffuse light. Behind the black curtain was a counter
holding a computer on which the experimenter could observe the animal’s real-time performance.
Latency to mount the platform was recorded both manually (with a stop watch) and by SMART 3.0
computer software (Panlab, Harvard Apparatus, Barcelona, Spain). The software also collected other
measures, including swimming speed and path length.

Each animal received training on four consecutive days (days 1–4). During each training
session animals received four trials, one beginning from each imaginary compass point on the pool
(N, S, W, & E) in a randomly assigned order with approximately 5 (± 3) min intervals between trials.
A trial involved placing the rat in the maze facing the pool wall and recording its latency (along with
other measures) to mount the submerged platform. If an animal did not mount the platform within
60 s it was picked up and placed on it for 10 s, after which it was removed from the maze and
returned to a holding cage outside of the experimental room. Each holding cage was made of clear
polycarbonate and had a towel covering the bottom to absorb water. To help animals maintain normal
body temperature, the holding cages were placed on top of heating pads and under heat lamps
positioned 1m above the cages. After the final training trial on day 4, each animal received a probe trial,
in which it was returned to the pool with the escape platform removed. Time spent in each quadrant,
as well as swimming speed was recorded. Path length (recorded in inches and converted to centimeters)
and swimming speed were also analyzed to confirm that differences in latency were not attributable to
differences in nonspecific effects of the diet, such as motivation or fitness. The independent variables
were day and condition. For the analyses, which were conducted using IBM SPSS statistics software,
mean latency, path length, or swimming speed represent the average of the four daily trials. Critical
alpha level was 0.05 for all omnibus analyses, although marginally significant differences (<10) are
also reported. Partial eta-squared effect sizes are also reported where appropriate.
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3. Results

3.1. Latency

A 4 × 4 mixed design analysis of variance (ANOVA) examining mean latency to find the platform
by day and condition revealed significant main effects of day, F(3, 114) = 162.67, p = 0.000, ηp2 = 0.81,
and condition, F(3, 38) = 3.21, p = 0.034, ηp2 = 0.20, and a significant interaction, F(9, 114) = 2.50,
p = 0.012, ηp2 = 0.13. Examination of effect sizes indicates that while the largest effect on latency is
attributable to differences across days, both condition and the interaction between condition and day
represent medium-sized effects. Paired t-tests with a Bonferroni correction were used to analyze the
nature of the main effect of day and revealed that mean latency decreased significantly between each
of the days except for between days 3 and 4, p < 0.001 for all significant comparisons, day 1 (M = 40.19,
SD = 10.54); day 2 (M = 20.08, SD = 9.26); day 3 (M = 11.59, SD = 5.48); day 4 (M = 11.01, SD = 7.06).
The nature of the main effect of Condition was examined by Tukey’s Honestly Significant Difference
(HSD) test, which determined that LMA-Controls performed marginally worse than EMA-Controls
(M = 19.25, SD = 1.59, p = 0.078), confirming that older rats on the control diet were beginning to show
signs of cognitive decline. Moreover, LMA rats on the control diet performed significantly worse
(M = 24.72, SD = 1.52) than LMA rats on the HAD diet (M = 18.88, SD = 1.52; p = 0.045), demonstrating
that the HAD diet had a beneficial effect on the older animals’ performance.

The nature of the interaction effect, which was of principal interest, was explored using simple
main effects analyses. Between-condition differences for each day were examined using one-way
ANOVAs and post-hoc Tukey’s tests. As can be seen from Figure 1A, mean latency differed by
Condition on days 1 (F(3, 41) = 3.04, p = 0.041, ηp2 = 0.19) and 2 (F(3, 41) = 5.52, p = 0.003, ηp2 = 0.30),
but not 3 and 4 (p > 0.05). It can be seen from Figure 1B that specifically, LMA-Controls performed
significantly worse (M = 46.23, SD = 9.33) than LMA-HAD animals on Day 1 (M = 34.14, SD = 9.91;
MD = 12.09, p = 0.031), while all other conditions performed similarly. On Day 2, the LMA-Controls
performed more poorly (M = 27.41, SD = 8.5) than the EMA-Controls (M = 15.55, SD = 5.39; MD = 11.86,
p = 0.009) and the EMA-HAD animals (M = 14.39, SD = 3.6; MD = 12.33, p = 0.006). Conversely,
the LMA-HAD animals (M = 21.43, SD = 11.49) performed similarly to both EMA conditions (p > 0.05).
Thus, rats in all conditions learned to successfully find the submerged platform by Day 3, but rats in the
LMA-HAD condition performed on a par with the EMA conditions a day earlier in training than did
the LMA-Controls. Examination of ηp2 values indicates that the effect of condition was largest between
groups on day 2 with 30% of the variability in latency being explained by condition. This represents
a strong effect. It is in some ways not surprising that the largest between-condition effect is seen on
day 2 given that performance in the water maze on day 1 is poor in all groups since they’ve had very
limited exposure and opportunity to learn the spatial layout of the maze. Thus any improvement in
learning and memory functioning conferred by the diet should be more clearly expressed on day 2.
These results demonstrate the ability of an eight-week, whole foods HAD to preserve the learning
curve in aging female rats to match that of younger rats on a hippocampal-dependent learning and
memory task.
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(collapsed across the four daily trials). LMA-HAD rats performed as well on days 1 & 2 as early 
middle age rats, whereas LMA-Controls lagged behind until Day 3. Error bars represent SD. 
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Figure 1. (A) Mean latency in seconds (s) for each condition on each training day (collapsed across the
four daily trials). LMA-HAD (Late middle-age-high antioxidant diet) rats performed as well on days
1 & 2 as EMA rats, whereas LMA-Controls lagged behind until day 3. Error bars represent Standard
Deviation (SD). (B) Mean latency in seconds (s) for each condition on training days 1 & 2 (collapsed
across the four daily trials). LMA-HAD rats performed as well on days 1 & 2 as early middle age rats,
whereas LMA-Controls lagged behind until Day 3. Error bars represent SD.
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Path Length

A 4 × 4 mixed design ANOVA examining mean path length in centimeters (converted from
inches) by day and condition revealed a pattern of results very similar to latency, revealing significant
main effects of day, F(3, 114) = 120.75, p = 0.000, ηp2 = 0.76, and condition, F(3, 38) = 3.25, p = 0.032,
ηp2 = 0.20, and a significant interaction, F(9, 114) = 2.23, p = 0.034, ηp2 = 0.15. Examination of effect
sizes again indicates that while the largest effect on path length is attributable to differences across
days, both condition and the interaction between condition and day represent medium-sized effects.
Paired t-tests with a Bonferroni correction were used to analyze the nature of the main effect of day and
revealed that mean latency decreased significantly between each of the days except for between days 3
and 4, p < 0.001 for all significant comparisons, day 1 (M = 1138.96, SD = 314.40); day 2 (M = 619.43,
SD = 301.71); day 3 (M = 353.36, SD = 171.86); day 4 (M = 305.92, SD = 189.79). The nature of the main
effect of condition was examined by Tukey HSD test, which determined that LMA-Controls performed
significantly worse (M = 716.89, SD = 42.19) than LMA rats on the HAD (M = 555, SD = 42.19, p = 0.047),
confirming that older rats on the HAD outperformed their standard diet counterparts.

Although the main effects were in-line with our hypotheses, it was the nature of the interaction
effect that was of principal interest. The interaction effect was explored using simple main effects
analyses. Between-condition differences for each day were analyzed using one-way ANOVAs and
post-hoc Tukey’s tests. As can be seen in Figure 2A, mean path length was marginally different by
condition on day 1 (F(3, 41) = 2.62, p = 0.065, ηp2 = 0.17) and significantly different on day 2
(F(3, 41) = 4.12, p = 0.013, ηp2 = 0.25). Conditions did not differ on days 3 or 4 (p > 0.05). As was true for
latency, and likely for the same reasons, ηp2 values show that the effect of condition was largest between
groups on day 2 with 25% of the variability in path length being explained by condition. Figure 2B
shows what post-hoc tests revealed, which is that on day 1, LMA-Controls performed marginally
worse (M = 1346.33, SD = 271.91) than EMA-Controls (M = 1040.38, SD = 369.32, MD = 305.92 p = 0.10),
mirroring latency findings which showed that older animals were somewhat retarded in their ability to
navigate to the platform compared to their younger counterparts early in training. Moreover, the HAD
diet had a beneficial effect on the performance of the older rats, as animals in the HAD condition
had a marginally shorter average path length on day 1 (M = 1040.38, SD = 369.32) than rats in the
control diet condition (MD = −312.62, p = 0.082). On day 2, the LMA-Controls performed significantly
more poorly (M = 844.27, SD = 327.53) than either of the younger groups (EMA-Controls, M = 508.51,
SD = 201.45; MD = −335.74, p = 0.036; EMA-HAD, M = 466.60, SD = 121.87; MD = 377.67, p = 0.015).
The LMA-HAD, by contrast performed on a par with the younger groups. By Days 3 and 4, rats in all
conditions had learned to successfully navigate to the hidden platform.

These data very closely align with the latency data by showing superior performance in the
LMA-HAD group early in training, especially on day 2, compared to their standard diet counterparts.
Moreover, the agreement of the path length and latency data suggest that the shorter mean latencies in
the LMA-HAD group early in training were due to better memory for the platform location rather
than a nonspecific effect of the HAD, such as motivation.

Probe trial. There were no between-condition differences in either total time or percent time spent
in the target quadrant (SW) on the probe test (p > 0.05). This is an expected finding given that the
probe trial took place at the very end of training on Day 4 once between-group differences on the other
dependent measures had disappeared and all treatment groups had learned the spatial location of the
hidden platform based upon the extra-maze visual cues.



Antioxidants 2019, 8, 1 8 of 13

Antioxidants 2018, 7, x FOR PEER REVIEW  8 of 14 

Although the main effects were in-line with our hypotheses, it was the nature of the interaction 
effect that was of principal interest. The interaction effect was explored using simple main effects 
analyses. Between-condition differences for each day were analyzed using one-way ANOVAs and 
post-hoc Tukey’s tests. As can be seen in Figure 2A, mean path length was marginally different by 

 
(A) 

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4

M
ea

n 
pa

th
 le

ng
th

 (c
m

)

Day

EMA-HAD EMA-Control LMA-HAD LMA-ControlAntioxidants 2018, 7, x FOR PEER REVIEW  9 of 14 

(B) 

Figure 2. (A) Mean path length in centimeters (cm) for each condition on each training day (collapsed 
across the four daily trials). LMA-HAD rats performed as well on days 1 & 2 as EMA rats, whereas 
LMA-Controls lagged behind until day 3. Error bars represent SD. (B) Mean path length in 
centimeters (cm) for each condition on training days 1 & 2 (collapsed across the four daily trials). 
LMA-HAD rats performed as well on days 1 & 2 as EMA rats, whereas LMA-Controls lagged behind 
until day 3. Error bars represent SD. 

Condition on day 1 (F(3, 41) = 2.62, p = .065, ηp2 = 0.17) and significantly different on day 2 (F(3, 
41) = 4.12, p = 0.013, ηp2 = 0.25). Conditions did not differ on days 3 or 4 (p > 0.05). As was true for 
latency, and likely for the same reasons, ηp2 values show that the effect of condition was largest 
between groups on day 2 with 25% of the variability in path length being explained by condition. 
Figure 2B shows what post-hoc tests revealed, which is that on day 1, LMA-Controls performed 
marginally worse (M = 1346.33, SD = 271.91) than EMA-Controls (M = 1040.38, SD = 369.32, MD = 
305.92 p = 0.10), mirroring latency findings which showed that older animals were somewhat 
retarded in their ability to navigate to the platform compared to their younger counterparts early in 
training. Moreover, the HAD diet had a beneficial effect on the performance of the older rats, as 
animals in the HAD condition had a marginally shorter average path length on day 1 (M = 1040.38, 
SD = 369.32) than rats in the control diet condition (MD = −312.62, p = 0.082). On day 2, the 
LMA-Controls performed significantly more poorly (M = 844.27, SD = 327.53) than either of the 
younger groups (EMA-Controls, M = 508.51, SD = 201.45; MD = −335.74, p = 0.036; EMA-HAD, M = 
466.60, SD = 121.87; MD = 377.67, p = 0.015). The LMA-HAD, by contrast performed on a par with the 
younger groups. By Days 3 and 4, rats in all conditions had learned to successfully navigate to the 
hidden platform.  

These data very closely align with the latency data by showing superior performance in the 
LMA-HAD group early in training, especially on day 2, compared to their standard diet 
counterparts. Moreover, the agreement of the path length and latency data suggest that the shorter 

0

200

400

600

800

1000

1200

1400

1600

1800

1 2

EMA-HAD EMA-Control LMA-HAD LMA-Control

Day

M
ea

n 
pa

th
 le

ng
th

 (c
m

)

Figure 2. (A) Mean path length in centimeters (cm) for each condition on each training day (collapsed
across the four daily trials). LMA-HAD rats performed as well on days 1 & 2 as EMA rats, whereas
LMA-Controls lagged behind until day 3. Error bars represent SD. (B) Mean path length in centimeters
(cm) for each condition on training days 1 & 2 (collapsed across the four daily trials). LMA-HAD
rats performed as well on days 1 & 2 as EMA rats, whereas LMA-Controls lagged behind until day 3.
Error bars represent SD.
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Mean Speed (cm/s). Because of the possibility that HAD could have improved latency scores
in the older rats by mitigating an age-related loss of fitness rather than by improving memory for
the platform location, we compared the mean speed of rats (cm/s) by day and condition using
a 4 × 4 mixed design ANOVA. Mean speeds are reported in Table 1. There was a significant main effect
of Day, F(3, 114) = 4.14, p = 0.012, ηp2 = 0.098, however, paired t-tests with a Bonferroni correction
revealed no significant between-day differences (p > 0.01). There was also a significant main effect of
Condition, F(3, 38) = 4.90, p = 0.006, ηp2 = 0.28, and a significant interaction, F(9, 114) = 2.33, p = 0.028,
ηp2 = 0.15. Examination of ηp2 reveals that although the main effect of day was significant, the effect
size was small by comparison to the effects of both condition and the interaction. A Tukey’s HSD
test showed that Group EMA-Control swam significantly faster, on average (M = 28.83, SE = 1.07),
than either Group LMA-Control (M = 24.41, SEM = 1.02, MD = 4.45, p = 0.02) or LMA-HAD (M = 24.59,
SEM = 1.02, MD = 4.24, p = 0.03).

Table 1. Mean speed 1 (standard deviation in parentheses) across training days by condition.

Group n Day

1 2 3 4

EMA-Control 10 28.02(3.68) 30.26(5.28) 29.52(4.63) 27.53(4.59)
EMA-HAD 10 27.16(3.48) 28.40(4.61) 28.08(3.54) 28.36(4.35)

LMA-Control 11 25.57(2.88) 25.21(3.88) 23.63(3.38) 23.18(2.71)
LMA-HAD 11 26.66(2.79) 25.10(3.76) 23.48(4.06) 23.14(4.47)

1 Speed reported in cm/s; EMA: Early Middle Age; HAD: High Antioxidant Diet; LMA: Late Middle Age.

The interaction effect, which was of principle interest, was analyzed using simple main effects
analyses. Between-condition differences in speed for each day were analyzed using one-way ANOVAs
and post-hoc Tukey’s tests. Table 1 shows mean speed by condition across each of the four training days.
Mean speed differed by condition on days 2, 3, and 4 (F(3, 38) = 3.45, p = 0.026, ηp2 = 0.21; F(3, 38) = 6.48,
p = 0.001, ηp2 = 0.34; and F(3, 38) = 4.86, p = 0.006, ηp2 = 0.28, respectively). Since there were only
differences in latency and path length on days 1 and 2 and since speed was not different by condition
on day 1, we will only report post-hoc results for Day 2. On the second day of training, EMA-Controls
swam marginally faster (M = 30.25, SD = 5.28) than LMA-Controls (M = 25.21, SD = 3.88; MD = 5.05,
p = 0.057) and significantly faster than the LMA-HAD group (M = 25.1, SD = 3.76; MD = 5.16, p = 0.05).
This is an interesting and important finding because it demonstrates that despite swimming more
slowly than the younger groups on day 2, Group LMA-HAD performed on a par with them in regards
to latency and path length. It is also important to note that at no time point did the swimming speed of
the older groups significantly differ from one another. In other words, superior performance in regards
to latency and path length by the HAD group cannot be attributed to superior swimming speed in
that group compared to the old, standard diet group. These findings support the interpretation that
the HAD conferred its beneficial impact via memory and cognitive effects rather than on fitness or
other nonspecific motor or motivational effects. Moreover, as is evident from Table 1, both late middle
age groups swam more slowly (although not necessarily significantly so) than both early middle age
groups each day. That finding makes it very important that our path length data mirror our latency
data, since latencies could have been affected by swimming speed, whereas path length would not.

4. Discussion

The pattern of results from the latency and path length analyses were complimentary and
showed that although rats in all conditions learned to locate the hidden platform across training
days, the HAD conferred an advantage to older animals, allowing them to perform as well as their
younger counterparts by day 2, rather than day 3. Speed data showed that older rats swam slightly,
but significantly slower than younger rats, thus the path length data are of special importance since
they are not confounded by swimming speed. Importantly, swimming speed did not differ between
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the older groups at any time point, so it cannot account for the different performance between older
groups in terms of latency.

Consistent with past research in male rats showing that strawberry or spinach extracts were
able to prevent the decline in MWM performance typically seen in aging organisms [28], our results
showed that a diet supplemented by freeze-dried spinach and strawberries was capable of delaying
the small, but measureable decrement in spatial learning that occurred in intact (non-ovariectomized)
female rats as they entered late middle age. Given that nearly two-thirds of Americans currently living
with AD are women [37] (p. 19), we believe our results offer an important extension of past findings.
Another advantage of our design is that the improvement in cognitive performance was produced
using a real foods dietary supplement of short duration, indicating that megadoses of antioxidants
over long periods of time, which may be costly and have undesirable side effects [33], are not necessary
to realize cognitive benefits at this stage of the lifespan in female rats. Further research will be needed
to determine if these procognitive effects generalize to other foods with different antioxidant profiles.
Strawberries and spinach are high in flavonoids, among other antioxidants, and recent research
suggests that flavonoids are particularly effective in alleviating cognitive deficits associated with
aging due to their ability to reduce oxidative stress and inflammation in the brain while increasing
neuroplasticity [25]. Thus other high flavonoid foods might also be good candidates for dietary
intervention at this stage of the lifespan in females; however, experimental tests are needed to confirm
that hypothesis.

Although our study was behavioral in nature and not designed to determine mechanism,
it is interesting to note that researchers have discovered a number of possible means by which
antioxidants may exert their beneficial effects on cognitive function, including both classical antioxidant
activity, such as via free-radical scavengers that combat oxidative stress [25], as well as by other
mechanisms. In an early study, researchers found that age-related losses in the ability of G proteins to
respond quickly to receptor activation (a process that initiates the cellular cascade of events leading
to long-term memory formation) was reversed by a diet rich in Vitamins E and C [27]. In that
same study, the authors reported that the antioxidant-rich diet also stalled age-related decline in
calcium uptake that is required for normal neurotransmitter regulation [27]. Moreover, it has been
reported that higher levels of α-tocopherol in the hippocampuses of old rats that had been fed a diet
supplemented with strawberry, blueberry, or spinach extracts and higher levels of γ-tocopherol in
rats fed strawberry extracts [28]. These brain changes were accompanied by superior learning curves
compared to rats fed a control diet [28]. In a 2008 review [24], several intriguing mechanisms beyond
classical antioxidant activity were explicated. According to the authors, antioxidants (flavonoids,
in particular) may exert their neuroprotective effects by “(1) the modulation of intracellular signalling
cascades which control neuronal survival, death and differentiation; (2) affecting gene expression
and (3) interactions with mitochondria” [24] (p. 60). Moreover, improved neuroplasticity, increased
cortical blood flow (which may improve learning and memory by facilitating neurogenesis in the
hippocampus), and inhibition of neuroinflammation are also likely mechanisms [25,38].

Large-scale epidemiological, as well as short-duration human experimental studies of the
cognition-sparing effects of dietary antioxidants in aging have produced mixed results [34,38–40].
This is not surprising given the difficulty of isolating the effects of specific nutrients in epidemiological
studies. Moreover, as aptly noted by the authors of a 2013 review, inconsistent outcomes in
experimental studies may be due to “large heterogeneity in study design, differential control of
confounders, insufficient measures of cognitive performance, and difficulties associated with dietary
assessment” [39] (p. 279). While a 2013 review of population-based cohort studies found positive
effects of vitamins C and E, as well as carotenoids and flavonoids in several studies deemed to be
of high or adequate quality [40], a 2013 meta-analysis of 21 studies reported mixed findings [39].
A more recent review [38] presented numerous epidemiological studies showing positive effects of
long-term flavonoid intake on cognitive function in healthy adults. We hope that the strong support
for the beneficial effects of antioxidants that has been generated by experimental work with animals,
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including the current study, combined with the promising results of human research will encourage
the undertaking of human clinical trials.
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