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Degenerative disc disease (DDD) is a pathological condition associated with intervertebral
discs (IVDs) that causes chronic back pain. IVD degeneration has become a significant
issue in contemporary society. To date, numerous biological therapies have been applied
to alleviate the progression of DDD, among which therapeutic protein injection is the most
direct and convenient. However, there are some limitations to applying direct protein
injection therapy, the most significant being that the efficacy of this method has a short
duration, which is a major factor in its effectiveness and the resulting patient satisfaction.
How do we solve this problem? Or how can the effectiveness of the treatment be
enhanced? It has been proved that manganese dioxide (MnO2) microspheres, widely
used in environmental science, not only regulate the expression of cell genes and cytokines
in the microenvironment, but also have the ability to release drugs slowly. We propose that
direct injection of protein encapsulated in hollowMnO2 (h-MnO2) microspheres could solve
the problem of rapid drug release. In addition, the use of aMnO2 and protein injection in the
treatment of DDD may have a synergistic effect, which would be highly significant for the
degradation of pro-inflammatory factors in the DDD microenvironment. Therefore, the
combination of MnO2 and protein may provide a new therapeutic approach to alleviate the
progression of DDD.

Keywords: degenerative disc disease (DDD), intervertebral disc (IVD), manganese dioxide (MnO2) nanoparticles,
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INTRODUCTION

The nucleus pulposus (NP) in the normal intervertebral disc (IVD) is surrounded by the peripheral
anulus fibrosus (AF), which has no blood passing through it, and its mass exchange is determined by
the concentration gradients of different molecules around it—such as glucose, oxygen, and other
branches—through the peripheral cartilage endplate and AF. Owing to the nature of the NP cells
farthest from the blood supply, which determines the hypoxic environment in the IVD, NP cells
prefer anaerobic metabolism. Therefore, the NP microenvironment has a higher lactate
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concentration and a lower PH than other IVD sites, and this
environment can have a negative effect on cell metabolism and
function (Benneker et al., 20042005). When the lumbar disc is
degenerative, the NP can break through the posterior margin of
the AF and contact or enter the epidural space under the action of
external force. The NP itself has antigenicity, coupled with the
inflammatory response caused by structural changes, which can
stimulate the immune system, resulting in discomfort and pain.
The pain can be quite intense, placing significant physical and
mental burdens on the patient. In addition, 70–90% of the
composition of the NP is water, and IVD tissue itself is
hyperosmolar; therefore, the protruding NP absorbs water and
expands after contact with the epidural spinal fluid, resulting in
further enlargement of the protrusion, and causing the signal
strength of images to change from high to low (Manchikanti et al.,
2015). Many studies have shown that abnormal cell apoptosis
plays an important role in degenerative disc disease (DDD);
however, neuropathic pain and inflammatory response may
also have a close relationship with DDD. The presence of
multiple inflammatory cell responses in the herniated IVD
tissue suggests that inflammatory response is involved in the
occurrence of lumbar disc herniation and may be the most
important mechanism (Zhang et al., 2017; Zhao et al., 2017).
Molecular immunology and molecular biology studies have
shown that inflammatory mediators can cause lumbar IVD
degeneration, in other words, the degenerative lumbar IVD
tissue can release interleukin (IL), tumor necrosis factor-α
(TNF-α), and other inflammatory mediators, which stimulate
the accumulation and activation of inflammatory cells and release
numerous inflammatory transmitters, inducing osteoarticular
neuropathic pain and participating in the pathogenesis and
progression of lumbar disc herniation (Lu et al., 2020; Qi
et al., 2020; Jiang et al., 2021). It has been reported that
significantly higher levels of IL-1, IL-6, and TNF were detected
in serological analysis in DDDmodels than in control groups. IL-
1β can regulate the activity of matrix metalloproteinases (MMPs)
and inhibit the synthesis of proteoglycan by the cell matrix, thus
participating in the process of DDD. IL-6, a typical inflammatory
mediator, works by interfering with degrading enzymes, which
can change the level, structure, type, and function of
biomacromolecules such as elastin, proteoglycan, and collagen
in the IVD matrix, resulting in the AF showing weakened
protection and promoting the protrusion of NP from the weak
AF. TNF-α, a strong inflammatory cytokine, can up-regulate the
gene expression and activity of MMPs, and stimulate IL-6, IL-8,
and other related cytokines. Moreover, it can promote cell
migration, affect the permeability of endothelial cells, block
the synthesis of collagen and proteoglycan, and induce
inflammation.

Currently, there are several biological approaches for the
treatment of DDD, such as protein injection therapy, in which
the injected protein solutionmediates cell growth and/or anabolic
reactions in the IVD (Thompson et al., 1991; Moriguchi et al.,
2016); gene therapy, which induces targeted gene expression in
the IVD (Nishida et al., 2008); cell-based therapy, which reverses
the cascade of degeneration using stem cells and other allogeneic
cells (Clarke et al., 2014); and tissue engineering therapy, which

introduces a functional replacement scaffold into damaged IVD
tissue (Xin et al., 2013; Martin et al., 2017). The degeneration of
IVDs can be delayed by appropriate interventions. As the
mechanisms of degeneration are complex and diverse,
intervention methods range from simple to more
sophisticated, with varying effects. With advances in research
into the degeneration of the IVD, new modes of treatment are
emerging and being verified. The current treatment methods
need to be optimized to regulate IVD cells in a more targeted
manner.

Manganese dioxide (MnO2) is a common mineral with many
unique chemical and physical properties. Owing to their low
toxicity, strong adsorption, and good biocompatibility, MnO2

microspheres can carry a variety of drugs and cytokines, then
degrade into manganese ions under weakly acidic conditions to
slowly release the encapsulated cargo and achieve a therapeutic
effect. Many studies have shown that MnO2 has a positive effect
onmicroenvironment regulation. Hydrogen peroxide (H2O2) can
stimulate the body and over activate pro-inflammatory immune
cells. In Rajendrakumar’s study, they prepared a mannosylated-
polymericalbumin-manganese dioxide (mSPAM) nano-
assembly, as a peroxide scavenger to catalyze the
decomposition of H2O2. The results suggested that the
mSPAM nano-assembly inhibited the activation of NF-Kβ
mediated by HIF-1α, while reducing the H2O2 concentration,
thus achieving an anti-inflammatory effect and inhibiting local
and systemic inflammatory manifestations and the development
of neuroinflammation (Rajendrakumar et al., 2018). In addition,
the level of glutathione (GSH) —a factor that can catalyze the
decomposition of MnO2—is always higher in cancer cells than in
normal cells (Gamcsik et al., 2012), in general, since hollowMnO2

(h-MnO2) can be degraded by intracellular GSH to form Mn2+

with excellent Fenton-like activity to generate highly reactive
hydroxide (He et al., 2021; Ou et al., 2021). Under the cancer cell
environment, the released Mn2+ exhibited strong chemodynamic
effect through Fenton-like reaction, further over-expressed GSH
is consumed, the depletion of GSH further improved the
chemodynamic therapy efficiency (Yang et al., 2014; Gao
et al., 2022; Ma et al., 2022). Therefore, therefore, h-MnO2

microspheres may have a faster degradation rate in cancer
cells, allowing more efficient and accurate release of drugs in
target cancer cells. Degradation of h-MnO2 occurs very rapidly,
however, one of the major advantages of the system is that the
degradation rate can be manipulated using the particle geometry
or the wall thickness, thus allowing control of the drug release (Li
et al., 2020; Greene et al., 2021).

HYPOTHESIS

During the process of IVD degeneration, the types of cytokine
and the expression of various genes in the microenvironment
alter. Currently, MnO2 microspheres are predominantly used in
environmental studies; however, it has gradually emerged that
MnO2 has marked effects in biology, particularly in anticancer
applications. Studies have shown that MnO2 microspheres can
regulate the expression of genes and the number of cytokines in
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specific microenvironments. The expression of cells during IVD
degeneration coincides with the regulation of cytokines in the
environment byMnO2microspheres; therefore, it is assumed that
direct injection of protein encapsulated in h-MnO2 microspheres
can alleviate the progression of IVD degeneration.

THE PROCESS OF IVD DEGENERATION

DDD encompasses a series of diseases that primarily manifest as
chronic lower back pain, which is closely related to IVD changes.
There are different mechanisms that lead to DDD, such as vertical
genetic inheritance, mechanical damage to an acquired
development, and unavoidable physical exposure. Although
each stage is different, these pathways lead to a common
outcome that promotes DDD: an imbalance in the synthesis
and catabolism of the extracellular matrix (ECM), in favor of
catabolism. The degeneration of IVDs is not the result of a single
simple factor, but that of the interaction of the genes,
environment, and physics, among other factors, making it a
complex process. DDD typically involves a chronic process of
change, including a progressive decrease in the supply of
nutrition to the IVD and gradual changes in the composition
of the ECM (Figure 1). The former has been shown to have a
negative effect on the maintenance of the ECM, resulting in a
further decrease in oxygen concentration and a lower pH in the
IVD. The change in the latter leads to reduced tissue strength,
which affects the metabolism and function of cells (Nachemson

et al., 1970). At the same time, nutritional deficiency weakens the
response of IVD to stimulation. However, genetic factors may
play a more important role in DDD than mechanical injury and
malnutrition (Kalichman and Hunter, 2008; Livshits et al., 2011).
Genes leading to DDD can be divided into different types
according to their functions (Mayer et al., 2013). For example,
genes which affect the structure of IVD: Aggrecan (ACAN),
COL1, COL9, COL11, FN, HAPLN1, thrombospondin,
cartilage intermediate layer protein (CILP), and asporin
(ASPN); catabolic genes: MMP1, MMP2, MMP3, PARK2, and
PSMB9; and anticatabolic tissue inhibitors of metalloproteinases
(TIMPs). The polymorphism and type of genes affect the delicate
balance between synthesis and catabolism in the IVD, leading to
IVD degeneration. Of course, factors that increase the
inflammatory cascade can also upset the biochemical balance
of the internal environment, thus accelerating the degeneration of
the IVD. Polymorphisms within IL-1, IL-6, and COX-2 have been
confirmed to be associated with DDD.

The dynamic balance between anabolism and catabolism is
fundamental to the normal physiological effects of the IVD. This
balance is regulated by the products of anabolism (TGF, IGF, etc.)
and catabolism (MMPs, ADAMTS, HRTA1, etc.), and inhibitors
of them. Excessive catabolism in the ECM of IVD leads to the
increase of degradation products and triggers the overexpression
of inflammatory mediators, thus aggravating the increase of
degradation products and creating a vicious cycle (Sakai and
Grad, 2015). Catabolic enzymes are expressed differently in
different states of IVD degeneration, and these differences can

FIGURE 1 | Application of MnO2 microspheres in DDD [(A). the pathological progress of IVD; (B). the advantages of MnO2 as a carrier; (C). the general preparation
process of the h-MnO2 protein delivery].

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 8662903

Zhang et al. A New Approach to Alleviate DDD

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


be regulated by immobilization or mechanical overloading. For
example, in normal IVDs, MMP1 and ADAMTS4, which play an
important role in maintaining homeostasis in vivo, show low
expression, while MMP3 and MMP13 are almost unexpressed. In
degenerative IVDs, the expression of MMP1, MMP3, MMP13,
and ADAMTS4 is significantly increased, and the degree of
increase is proportional to the disease.

In addition, there are many factors that can affect the
homeostasis of the IVD internal environment. For example, cell
senescence also disrupts the balance between ECM synthesis and
catabolism (Gruber et al., 2009), and oxidative stress in the IVD
microenvironment can accelerate the degeneration process.
Changes in the reactive oxygen species (ROS) concentration are
closely related to the degree of DDD, while, as the main source of
ROS during IVD degeneration, the proliferation state of NP cells
and activation of the senescent signal pathways to induce cell cycle
arrest of NP cells, can affect the ROS content. The mechanical
pressure of the IVD also increases the concentration of local ROS.
In summary, various factors can lead to IVD degeneration through
different pathways (Martin et al., 2004).

IVD protein injection therapy, where protein solution is
directly injected into the IVD to alter the metabolism and
development of cells to delay or reverse the occurrence of
degeneration, has been widely used in DDD. For example,
direct injection of IGF-1 into the IVD can prevent cell
senescence caused by oxidative damage; direct injection of
growth factors can limit endplate calcification; and intra-IVD
injection of OP-1 can increase proteoglycan secretion and
increase IVD height (Bibby and Urban, 2004; Imai et al., 2007;
Gruber et al., 2008). However, there are some limitations to
applying direct protein injection therapy, the most significant
being that the efficacy of this method has a short duration, which
is a major factor in its effectiveness and the resulting patient
satisfaction. The efficacy of direct protein injection therapy can be
effectively enhanced by some means to prolong the time of drug
action. At present, the microsphere technology is developing
rapidly, and a large number of studies have shown that the
application of microsphere technology to drug encapsulation
can prolong the action time of drugs in vivo.

ANTI-INFLAMMATORY EFFECT OF MNO2

MICROSPHERES IN VIVO

Motivated by the physicochemical properties of MnO2, Shreedevi’s
group developed and characterized ROS-scavenging MnO2

microspheres (Kumar et al., 2019). The microspheres play a
cartilage protection role in cartilage explants by reducing nitric
oxide release and maintaining the glycosaminoglycan content, in
other words, the particles counter oxidative stress by reducing the
expression of genes associated with aggressive cytokines. ROS-
scavenging microspheres made of MnO2 have natural
physicochemical properties in articular cartilage, allowing them to
permeate freely in the cartilage and maximizing their retention time
in the joint. H2O2, a free radical derived fromO2

−, is one of the main
active oxidizing species produced by chondrocytes (Broughton et al.,
1947). MnO2 catalyzes the decomposition of H2O2 into oxygen and

water, which can relieve the oxidative stress reaction and provide an
oxygen equivalent for cells. As we all know, the destruction of
hypoxic microenvironment of NP cells plays a critical role in the
pathogenesis of IVD degeneration. In NP cells, the treatment of high
oxygen tension (HOT) leads to upregulation of integrin alpha 6
(ITG-α6) expression, which can be alleviated by blocking the PI3K/
AKT signaling pathway. ITG-α6 can protect NP cells against HOT-
induced apoptosis and oxidative stress and protect NP cells from
HOT-inhibited ECM protein synthesis. Upregulation of ITG-α6
expression by HOT helps maintain NP tissue homeostasis through
the interaction with HIF-1α (Kim et al., 2021; Zheng et al., 2021). It
was found that the expression levels of ITG-α6 were increased in NP
tissue of IVD degeneration patients and IVD degeneration rat model
with mild degeneration, which could produce the above-mentioned
effects to protect NP cells from hyperoxia (Xu et al., 2021). In
addition, MnO2 particles can protect Langerhans islet cells
(Tootoonchi et al., 2017). Most importantly, MnO2 microspheres
coated with drug can be implanted in the body to achieve a slow-
release effect and thus address the issue of rapid drug release. To
enhance the colloidal stability of MnO2 particles in biological fluids,
MnO2 microspheres can be coupled with polyethylene glycol (PEG)
to formPEG-MnO2 particles, thus enhancing the biocompatibility of
MnO2 particles with the human body.

IL-1β plays a destructive role in osteoarthritis and enhances
catabolism. IL-1β stimulates the production of catabolic enzymes
like MMPs, thereby degrading the ECM and leading to the release
of GAGs (Daheshia and Yao, 2008). In addition, it stimulates the
production of another destructive mediator—nitric oxide
synthase—which inhibits the production of proteoglycans and
collagen components, raises the expression of NO, and induces
chondrocyte cell death (Abramson, 2008). Experiments show that
a certain concentration of PEG-MnO2 microspheres can inhibit
GAGs and NO release in cartilage that is stimulated by IL-1β. The
catabolic enzymes MMP1 and MMP13 are effective matrix
degrading enzymes and major catabolic factors in
osteoarthritis that can lyse COL II in cartilage, leading to
collagen degradation and GAGs loss (Rose and Kooyman,
2016). When chondrocytes were attacked by cytokines, the
expression of MMP1 and MMP13 was upregulated tens or
even hundreds of times. However, their expression was
maintained at a normal baseline after treatment with PEG-
MnO2 microspheres. ADAMTS5 is a key enzyme in
proteoglycan degradation. In cell experiments, IL-1β
stimulated the expression of ADAMTS5 disintegrin and up-
regulated metalloproteinase. However, in the PEG-MnO2

microspheres with IL-1β group, the amounts of all three
substances remained at baseline level without significant
change. The expression of thioredoxin-1 (TXN1) was
upregulated in both osteoarthritis and rheumatoid arthritis
tissues (Abramson, 2008), and TXN1 is widely involved in
redox reactions in cells. The expression of TXN1 was
enhanced in all chondrocytes co-cultured with IL-1β, while in
the group co-cultured with PEG-MnO2 microspheres, the
expression of TXN1 was not notably different from normal. In
addition, PEG-MnO2 microspheres have been shown to down-
regulate secretion of the pro-inflammatory factor TNF-α in a dose-
dependent manner (Kumar et al., 2019). Furthermore, nano-sized
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MnO2 particles not only play a role in tumor therapy (Liang et al.,
2018; Zeng et al., 2019) and regulating cytokine expression in the
microenvironment, but also have newly demonstrated uses in
medical imaging and radiotherapy (Sun et al., 2016). Studies
have shown that Mn2+ ions are generated when MnO2

nanostructures are decomposed in the presence of H+ or GSH,
and the generated Mn2+ ions significantly improve the imaging
contrast of T1-magnetic resonance (MR) (Platas-Iglesias et al.,
2016). In addition, drug-loaded h-PEG-MnO2 was incubated in
different pH buffer solutions for 6 h for MR imaging. It was found
that the signal of microspheres in neutral buffer solution was weak,
while the drug-loaded h-PEG-MnO2 sample had an acid
concentration dependent brightening effect.

Nano-sized MnO2 particles have attracted significant attention
in the field of anticancer on account of their favorable properties.
Treatment with h-MnO2 microspheres led to a reduction in cell
numbers. The number of cancer cells showed a greater decrease
than that of healthy cells; however, it must be noted that MnO2

microspheres also damage normal cells (Figure 2).
In conclusion, MnO2 microspheres can relieve the oxidative

stress reaction in organisms, provide an oxygen equivalent for
cells, improve the low oxygen concentration and low PH state in
microenvironment, and thus restore the tissue strength and the
process of cell metabolism. At the same time, MnO2 particles can
also regulate the production of cytokines from the level of
regulating genes to reduce the degree of inflammation, in this
process, MnO2 is gradually decomposed into Mn2+, which are
excreted with body fluids, so as to restore the internal
environment of the body to the optimal state. MnO2 can
change the living environment of anaerobic nucleus pulposus

cells from the perspective of gene expression, and realize the
repair of IVD. Most importantly, MnO2 microspheres can
achieve the effect of sustained release of encapsulated drugs,
and cooperate with the drug mechanism to resist the negative
effects caused by various pro-inflammatory factors (Figure 1).

CONCLUSION

The release of pro-inflammatory cytokines such as IL-1 in the
IVD leads to the accumulation of ROS, which manifests as
increased production of hydroxylated radicals, peroxides, and
NO. In addition, the increase of ROS down-regulates the
expression of antioxidants such as superoxide dismutase,
catalase, and glutathione peroxidase. This series of changes
leads to enhanced catabolism of IVD tissues, reduced matrix
synthesis and enhanced ECM degradation, local inflammatory
reaction, and gradual senescence or necrosis of cells, and further
aggravates the disease and symptoms. At the same time, a variety
of other cytokines and gene expressions in the microenvironment
change during the process of IVD degeneration. Currently, MnO2

microspheres are primarily used in environmental studies;
however, reports are gradually beginning to show that MnO2

has marked effects in biology, particularly as an anticancer agent.
It has been shown that MnO2 microspheres can regulate the
expression of genes and the production of cytokines in a specific
environment and have the ability to slow drug release. In
summary, the expression of cells during IVD degradation
overlaps with the MnO2 regulation of cytokines in the local
environment. It is now hypothesized that direct injections of

FIGURE 2 | Schematic depiction of the normal and degenerate IVD structure with possible protein injection therapeutic approaches.
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protein encapsulated in h-MnO2 microspheres may be superior
to direct injections of protein for the alleviation of IVD
progression.
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