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Abstract: There is an increasing interest towards the development of new antimicrobial coatings,
especially in light of the emergence of antimicrobial resistance (AMR) towards common antibiotics.
Cyclodipeptides (CDPs) or diketopiperazines (DKPs) are attractive candidates for their ability to self-
assemble into supramolecular polymers and yield gel coatings that do not persist in the environment.
In this work, we compare the antimicrobial cyclo(Leu-Phe) with its heterochiral analogs cyclo(D-
Leu-L-Phe) and cyclo(L-Leu-D-Phe), as well as cyclo(L-Phe-D-Phe), for their ability to gel. The
compounds were synthesized, purified by HPLC, and characterized by 1H-NMR, 13C-NMR, and ESI-
MS. Single-crystal X-ray diffraction (XRD) revealed details of the intermolecular interactions within
the supramolecular polymers. The DKPs were then tested for their cytocompatibility on fibroblast
cells and for their antimicrobial activity on S. aureus. Overall, DKPs displayed good cytocompatibility
and very mild antimicrobial activity, which requires improvement towards applications.

Keywords: cyclo(Leu-Phe); cyclo(Phe-Phe); diketopiperazines; cyclodipeptides; chirality; D-amino
acids; gels; antimicrobial; self-assembly; peptides

1. Introduction

Supramolecular polymers have attracted researchers’ attention in recent years due
to the simple and low-cost preparation of their building blocks, which are typically small
molecules with the capability to self-organize through the establishment of non-covalent
interactions [1]. Amino acids and peptides are popular candidates for various applications,
such as the mimicry of natural tissues and the extracellular matrix [2], the development of
new contrast agents for bioimaging [3], of antimicrobial hydrogels [4,5], and of carriers for
the delivery of drugs [6–9]. Peptides are versatile, and can be used on their own or combined
with other components, such as polymers [10–12], proteins [13,14], nanoparticles [15]
and carbon nanomaterials [16], cages [17], and so on. However, their physicochemical
properties need to be fine-tuned for correct self-assembly into supramolecular polymers,
and popular derivatizations to confer strategic structural rigidity include the use of aromatic
N-caps [18], dehydropeptides [19], and cyclization [20]. In particular, cyclodipeptides are
diketopiperazines (DKPs) that are gaining widespread use for their simple preparation,
and their self-assembly has been recently reviewed [21,22].

The simplest DKPs are obtained from the cyclization of linear dipeptides [23,24]. Their
ability to form supramolecular polymers that yield gels has been the focus of several
studies (Table 1). Hydrogels were obtained from cyclodipeptides containing Phe and a
hydrophilic amino acid [25]. Aliphatic amino acids proved to be useful building blocks to
obtain organogels [26]. The use of aromatic amino acids, such as Trp and Tyr, afforded both
hydrogels and organogels [27–29], as did cyclo(Phe-Phe) and cyclo(Leu-Phe) [26,30–33].
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Furthermore, the latter was also reported for hydrogelation in physiological solutions, in-
cluding phosphate-buffered saline (PBS) and cell-culture medium [30,32], thus opening the
way to biological uses. This dipeptide showed the ability to fibrillate into a supramolecular
polymer based on H-bonding and aromatic interactions that involved β-type conforma-
tions [34,35].

Table 1. Gelling DKPs obtained from unprotected dipeptides. Reproduced from [21].

DKP Sequence Gel Type Reference

Cyclo(Ala-Gly) Organogel [26]
Cyclo(Val-Gly) Organogel [26]
Cyclo(Leu-Gly) Organogel [26]
Cyclo(Leu-Val) Organogel [26]
Cyclo(Leu-Ala) Organogel [26]
Cyclo(Leu-Leu) Organogel [26]
Cyclo(Phe-Gly) Organogel [26]
Cyclo(Phe-Gly) Hydrogel [36]
Cyclo(Phe-Val) Hydrogel [31]
Cyclo(Phe-Leu) Hydrogel [30,32]
Cyclo(Phe-Leu) Organogel [26,33]
Cyclo(Phe-Phe) Hydrogel [31]
Cyclo(Phe-Phe) Organogel [26]
Cyclo(Phe-Cys) Hydrogel [25]
Cyclo(Phe-Ser) Hydrogel [25]
Cyclo(Phe-Glu) Hydrogel [25]
Cyclo(Phe-His) Hydrogel [25]
Cyclo(Phe-Lys) Hydrogel [25]
Cyclo(Trp-Trp) Organogel [28]
Cyclo(Trp-Tyr) Hydrogel [29]
Cyclo(Tyr-Tyr) Hydrogel [28]
Cyclo(Tyr-Tyr) Organogel [28]
Cyclo(Tyr-Lys) Hydrogel [37]
Cyclo(Tyr-Lys) Organogel [37]
Cyclo(Lys-Glu) Organogel [38]

These latter two DKPs are also attractive to yield hydrogels with antimicrobial proper-
ties, which could potentially find use in the treatment of skin wounds or topical infections.
In particular, cyclo(Phe-Phe) demonstrated anti-helminthic [39] and anti-malarial activ-
ity [40]. Cyclo(Leu-Phe) is active against important Gram-positive bacteria, fungi, and
yeasts: Bacillus subtilis, Staphylococcus aureus, Streptomyces viridochromogenes, Mucor miehei,
and Candida albicans [41]. Cyclo(Leu-Phe) is oxidized into the antimicrobial dehydro-
derivative albonoursin by Streptomyces cell-free extracts [42], and the biosynthetic pathway
has been elucidated [43]. Besides classical antimicrobial mechanisms, DKPs were found to
affect bacterial quorum-sensing systems and cell-cell signaling, thus offering an alternative
approach against biofilms, thanks to their interference with microbial communication [44].
Finally, homo- and hetero-chiral cyclodipeptides with aromatic sidechains were reported
for their anti-biofilm activities against oral pathogens [45].

However, heterochiral cyclodipeptides are seldom studied for their self-assembling
ability into gels [27], with none reported thus far as successful examples of gelators. In
this study, we thus selected heterochiral cyclo(Leu-Phe) enantiomers and heterochiral
cyclo(Phe-Phe) to fill the knowledge gap, and tested their ability to gel, as well as their
cytocompatibility in vitro, and their antimicrobial activity on S. aureus as compared against
the bioactive homochiral cyclo(Leu-Phe) [41].
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2. Materials and Methods
2.1. Materials

Linear dipeptides L-Leu-L-Phe, D-Leu-L-Phe, L-Leu-D-Phe, and D-Phe-L-Phe were
synthesized by solid phase and purified by reversed-phase HPLC, following published
procedures [46,47]. All inorganic salts were purchased from Carlo Erba (Milan, Italy).
Staphylococcus aureus was obtained from ATCC (25923). Mueller–Hinton broth was bought
from Millipore (Milan, Italy). All the other solvents and reagents were acquired from Merck
(Milan, Italy) and they were used as received, without further purification. High-purity
Milli-Q water (MQ water) was employed to prepare all solutions and buffers, as it was
produced from a Milli-Q Academic System (Millipore RiOs/Origin purification system; St.
Louis, MS, USA) with a minimum resistivity of 18.2 MΩcm. Mouse embryonic fibroblasts
(NIH-3T3) were kindly provided by the Department of Life Sciences at the University of
Trieste, and they were grown in complete Dulbecco’s Modified Eagle Medium (DMEM)
supplied with 10% fetal bovine serum (100 U/mL penicillin, 100 mg/mL streptomycin
(GIBCO®) and 2% antimycotic and antibiotic (GIBCO®). The 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl-tetrazolium bromide (MTT) was acquired from Merck (Milan, Italy). The
microwave (MW)-assisted synthesis was carried out in a Microwave reactor Discover
SP–CEM Corporation. The sonicator used was the Branson Ultrasonic 3800 cleaning bath.
NMR spectra were acquired on a Varian 400 MHz spectrometer. ESI-MS spectra were
acquired on an Agilent 6120 system.

2.2. Synthesis of DKPs 1–4

Each linear dipeptide precursor (i.e., L-Leu-L-Phe, D-Leu-L-Phe, L-Leu-D-Phe, or
D-Phe-L-Phe) was dispersed inside a MW glass vial at 30 mM with 1.0 mL of Milli-Q water,
by ultrasonication in a water bath at 50 ◦C for a few minutes [23]. The vial was placed
in the MW reactor and heated at 180 ◦C, 250 W, for 30 min. The reaction mixture was
then water-filtered to afford DKP1 (73% yield), DKP2 (66%), DKP3 (66%), and DKP4 (60%
yield). Spectroscopic characterization data and spectra can be found in the Supplementary
Materials file (Figures S1–S17).

2.3. Single-Crystal X-ray Diffraction

Single crystals of DKP1 and DKP2 were collected with a loop, cryoprotected by dipping
the crystals in glycerol, and stored frozen in liquid nitrogen. The crystals were mounted
on the diffractometer at the Synchrotron Elettra (Trieste, Italy), beamline XRD1, using the
robot available at the facility. The temperature was kept at 100 K by a stream of nitrogen
on the crystals. Diffraction data were collected by rotating the crystal using a synchrotron
radiation wavelength of 0.70 Å, rotation interval 0.5◦/image, crystal-to-detector distance of
85 mm. Further details can be found in the Supplementary Materials, Figures S18 and S19
and Table S1.

2.4. Gelation Tests

In a glass vial, DKPs 1–4 were dissolved in soybean oil to reach a final concentration
of 30 mM or above by vortexing, and then heating to 115 ◦C in an oil bath for 5 min.
The DKPs 2–3 gelled immediately at 115 ◦C. DKP4 led to a dispersion. DKP1 formed
a gel only upon cooling to room temperature after several hours (i.e., the sample was
prepared in the evening, and the gel was formed the following morning). Photographs
were taken at room temperature after 18 h from sample preparation and are shown in
Section 3.3. In phosphate-buffered saline (PBS) buffer, DKPs 1–4 were dissolved in DMSO
(20% of final volume), and then diluted with 80% PBS. Only DKP1 gelled (minimum gelling
concentration, mgc = 5 mM).

2.5. Oscillatory Rheology

The soybean gels (0.5 mL) were prepared as described above in Section 2.4 at 30 mM
(or 50 mM for DKP1), then the samples were vortexed to a dispersion, then they were
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transferred onto the rheometer plate (20 mm diameter, flat) and the top plate was lowered
(gap = 0.7 mm). A heating/cooling ramp cycle from 25 ◦C to 115 ◦C and back (7 ◦C/min)
was then employed. Then, a time sweep analysis was performed for 30 min (1 Hz, 1 Pa),
followed by a frequency sweep (1 Pa) and a stress sweep (1 Hz).

2.6. MTT Cytotoxicity Assay

NIH-3T3 fibroblasts were seeded (10 k cells/well) on 96-well microplates (Euroclone,
tissue-culture grade treated, clear, flat bottom, sterile) in 100 µL of medium (DMEM + 10%
fetal serum albumin, 2% antimycotic and antibiotic from GIBCO) and cultured at 37 ◦C and
5% CO2 for 24 h. Next, the medium was removed and exchanged with 100 µL of medium
with serial dilutions of each DKP concentration (1.0 µM–0.5 mM) prepared in medium.
A total of 1% SDS served as negative control (death). Cells were cultured for 24 h, then
10 µL of the MTT labelling reagent (Sigma, final concentration of 0.5 mL/mL) was added to
each well, and the microplate was incubated for 4 h in a humidified chamber (37 ◦C and 5%
CO2). Afterwards, 100 µL of the solubilization solution for formazan crystals (lysis buffer,
4 mM HCl + 0.1% IGEPAL in isopropanol) was added to each well, and the microplate
was kept at room temperature while shaking (Rocker-shaker MR-12 Biosan, Vetrotecnica,
Padova, Italy) for 30 min. The absorbance was read at 570 nm, with a reference wavelength
at 690 nm (light scattering), using a multiwell plate reader (TECAN Infinite M1000 Pro).
Data are represented as mean ± standard deviation (n = 4).

2.7. MIC Assay

S. aureus was grown overnight in a 3 mL culture in Mueller–Hinton Broth. The day
after, a fresh culture was prepared by inoculating 300 µL of O/N culture in 10 mL of 2.1 g/L
Mueller–Hinton broth and the culture was grown for 2.0–2.5 h. At this point, the OD600
was measured, and the bacterial culture was diluted in 4.2 g/L Mueller–Hinton broth to
reach approximately 1 × 106 CFU/mL. DKPs 1–4 were dissolved at 200 µg/mL in sterile
water to prepare the serial dilutions in the range 100–12.5 µg/mL that were deposited
(50 µL/well) in a sterile 96-well polystyrene microplate U-shaped bottom well (Sarstedt,
Numbrecht, Germany). Sterile water was the control sample. Right after, 50 µL of bacterial
solution were added per well, to obtain a seeding density of 5 × 105 CFU/mL in a final
volume of 100 µL. The plate was incubated overnight at 37 ◦C and then the absorbance
was measured at 600 nm in a plate reader (Synergy H1, BioTek, Santa Clara, CA, USA).
Three independent experiments were conducted with at least 3 replicas each. Average
values ± standard deviation (n = 9) were calculated and plotted in Excel.

3. Results
3.1. DKP Synthesis and Molecular Characterization

Each DKP (Figure 1) was obtained through a green protocol that involved the cycliza-
tion of the linear dipeptide precursor in water [23]. ESI-MS, 1H-, and 13C-NMR spectra
confirmed the product purity and identity (see Supplementary Materials Figures S1–S17).

1H-NMR analysis revealed significant upfield shifts (∆ = 0.5–0.6 ppm) for the αCH
protons of the heterochiral DKPs, and even greater shifts (∆ = 0.7–1.2 ppm) for the βCH
protons of the homochiral DKP1 (Table 2), suggesting the existence of CH-π interactions.
This phenomenon has been previously reported for DKPs containing Phe, whereby the
aromatic ring was bent on top of the DKP ring [31,48]. This data suggested that, also in
this series, DKPs establish intramolecular CH-π interactions with different CH protons
depending on the amino acid chirality, i.e., the αCH protons of the heterochiral DKPs 2–4,
and the βCH protons of the homochiral DKP1.
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Table 2. NMR shifts in deuterated DMSO of αCH and βCH protons of DKPs 1–4. Values in bold
indicate upfield shifts due to intramolecular CH-π interactions.

DKP Sequence αCH Phe αCH Leu βCH2 Phe βCH2 Leu

DKP1 Cyclo(L-Leu-
L-Phe) 4.16 3.47 3.13, 2.83 0.76, 0.12

DKP2 Cyclo(D-Leu-
L-Phe) 4.15 2.88 3.13, 2.88 1.45, 1.35

DKP3 Cyclo(L-Leu-
D-Phe) 4.15 2.88 3.13, 2.88 1.45, 1.35

DKP4 Cyclo(D-Phe-
L-Phe) 3.38 - 3.00, 2.72 -

-
Cyclo(L-Phe-

L-Phe)
1

3.95 - 2.55, 2.20 -

1 Data from ref. [31].

3.2. Single-Crystal XRD and Supramolecular Polymers’ Structures

These interactions were confirmed by single-crystal X-ray diffraction (XRD) data for
heterochiral DKP2 and DKP4 (Figure 2). Figure 2a shows the βCH-π interaction from the
single-crystal XRD data for reference compounds homochiral cyclo(Tyr-Leu) [49] and cyclo
(Phe-Phe) [31], while Figure 2b shows the αCH-π interaction for DKP2 (CCDC 2209459)
and DKP4 (CCDC 2209458).
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Furthermore, XRD analysis revealed the intermolecular interactions that were holding
together the supramolecular polymers, and consisted of H-bonds between the amide groups
of the stacked DKP rings, and of hydrophobic interactions between adjacent sidechains
(Figure 3). In particular, DKP2 crystallizes in a triclinic unit cell (space group P1) with four
independent molecules in the asymmetric unit (Figure 4a). The DKP molecules related
by symmetry operation interact by means of NH···OC H-bonds (Figure 3) defining the
typical DKP NH···OC H-bonded ribbons. The independent molecules interact mainly
through H-bonds and other weak interactions such as CH-π interactions. DKP4 crystallizes
in a monoclinic system (space group P21/c) with two chemically equivalent, but crystallo-
graphically independent, molecules in the asymmetric unit (Figure 4b). Additionally, in
this case, the crystal packing features the typical solid-state arrangement of DKPs charac-
terized by NH···OC H-bonded ribbons. The two independent molecules mainly interact
through a H-bond involving the carbonyl oxygen atom O2B (C1AH1AA···O2B = 2.51 Å,
C1AH···O2B = 3.254(1) Å, C1AH1AA···O2B = 130.8◦), CH-π, and π-π interactions. In sum-
mary, both crystal structures feature a supramolecular polymer of DKPs aligned along the
shortest unit cell axis sustained by NH···OC H-bonds.

Previous studies revealed that homochiral cyclo(Leu-Phe) or DKP1 and homochiral
cyclo(Phe-Phe) formed precipitates in a variety of solvents, spanning from aqueous condi-
tions, to alcohols, and organic solvents [26,33]. Two exceptions were phosphate-buffered saline
(PBS) solutions and oil, which allowed to obtain hydrogels [30–32] and organogels [26,33],
respectively, for both DKPs. We chose DKP1 as reference for self-assembly and gelation in
these two solvent systems (Table 3). Heterochiral DKPs 2–4 inevitably led to the formation of
precipitates in aqueous conditions, as reported for heterochiral cyclo(Tyr-Tyr) [27]. However,
DKPs 2–3 gelled soybean oil with a minimum gelling concentration (mgc) of 30 mM (Figure 5).

Table 3. Gelation tests for DKPs 1–4. P = precipitate. G = gel.

Solvent DKP1 DKP2 DKP3 DKP4

PBS G P P P
Soybean oil G G G P
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Oscillatory rheological analyses were thus performed to compare the viscoelastic
properties of the two supramolecular polymers composed of DKP1 and DKP2 stereoisomers.
Time sweeps for DKPs 2–3 gelation revealed that the viscoelastic moduli G’ and G” reached
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a plateau after 15 min, with a G’ of 1.5 kPa (Figure 6a). Stress sweeps revealed a gel-to-
sol transition occurring at 5 Pa (Figure 6b). Frequency sweeps confirmed the gel nature
and its stability, with both G’ and G” being independent from the applied frequency (see
Supplementary Materials Figure S20). Unfortunately, all attempts to perform rheological
analyses of the homochiral DKP1 gel failed, even at higher concentrations (i.e., 50 mM). It
is possible that the material is not very stable, and even minimal stresses due to sample
handling lead to the gel-to-sol transition.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 13 
 

 

Figure 5. Photographs of inverted-tube tests to probe for the gelation ability of DKPs 1–4 in soy-
bean oil. (a) DKP1; (b) DKP2 (or DKP3); (c) DKP4. 

Oscillatory rheological analyses were thus performed to compare the viscoelastic 
properties of the two supramolecular polymers composed of DKP1 and DKP2 stereoi-
somers. Time sweeps for DKPs 2–3 gelation revealed that the viscoelastic moduli G’ and 
G” reached a plateau after 15 min, with a G’ of 1.5 kPa (Figure 6a). Stress sweeps revealed 
a gel-to-sol transition occurring at 5 Pa (Figure 6b). Frequency sweeps confirmed the gel 
nature and its stability, with both G’ and G” being independent from the applied fre-
quency (see Supplementary Materials Figure S20). Unfortunately, all attempts to perform 
rheological analyses of the homochiral DKP1 gel failed, even at higher concentrations 
(i.e., 50 mM). It is possible that the material is not very stable, and even minimal stresses 
due to sample handling lead to the gel-to-sol transition. 

 
Figure 6. Oscillatory rheological analyses for DKP2 soybean gels. (a) Time sweep. (b) Frequency 
sweep. G′ is the elastic or storage modulus. G″ is the viscous or loss modulus. 

Overall, the gelation tests revealed opposite behavior for the DKPs in the aqueous 
conditions versus oil. This observation could be ascribed to the homochiral DKP being 
the only one adopting an amphipathic structure with both hydrophobic sidechains 
pointing on the same side of the DKP ring (Figure 2a), thus exposing the hydrophilic 
amide groups on the opposite side. This net segregation between hydrophilic and hy-
drophobic components was found also for the homochiral analog of DKP4 that indeed 
proved able to form hydrogels [31]. Conversely, heterochiral DKPs 2–3 display the hy-
drophobic sidechains pointing in opposite directions relative to the DKP ring (Figure 2b), 
without a net segregation between them and the hydrophilic groups for hydrogelation. 
In oil, we can expect a substantially different behavior, and indeed while both homochi-
ral and heterochiral DKPs 1–3 gelled, the heterochiral DKPs 2–3 did so more rapidly than 
DKP1. Therefore, we can conclude that for biological applications that require aqueous 
environments, DKP1 is the best candidate of this series as it forms hydrogels. 

3.4. DKP Cytocompatibility 
Each DKP was tested for cytocompatibility using the metabolic MTT assay on fi-

broblast cells [23]. DKPs are natural biomolecules that occur also in foodstuff, with ho-
mochiral DKP1 being present in roasted coffee [50] and cocoa nibs [51]. Therefore, they 
are generally expected to display good cytocompatibility, especially those composed of 
naturally occurring L-amino acids. Surprisingly, DKP1 significantly increased the meta-
bolic activity of fibroblasts in the concentration range 10–500 μM (Figure 7), and it is 
possible to ascribe this effect to the enzymatic hydrolysis of the DKP into the corre-
sponding linear dipeptides, which are in fact cell nutrients. Conversely, heterochiral 

Figure 6. Oscillatory rheological analyses for DKP2 soybean gels. (a) Time sweep. (b) Frequency
sweep. G’ is the elastic or storage modulus. G” is the viscous or loss modulus.

Overall, the gelation tests revealed opposite behavior for the DKPs in the aqueous
conditions versus oil. This observation could be ascribed to the homochiral DKP being the
only one adopting an amphipathic structure with both hydrophobic sidechains pointing on
the same side of the DKP ring (Figure 2a), thus exposing the hydrophilic amide groups on
the opposite side. This net segregation between hydrophilic and hydrophobic components
was found also for the homochiral analog of DKP4 that indeed proved able to form hydro-
gels [31]. Conversely, heterochiral DKPs 2–3 display the hydrophobic sidechains pointing in
opposite directions relative to the DKP ring (Figure 2b), without a net segregation between
them and the hydrophilic groups for hydrogelation. In oil, we can expect a substantially
different behavior, and indeed while both homochiral and heterochiral DKPs 1–3 gelled,
the heterochiral DKPs 2–3 did so more rapidly than DKP1. Therefore, we can conclude that
for biological applications that require aqueous environments, DKP1 is the best candidate
of this series as it forms hydrogels.

3.4. DKP Cytocompatibility

Each DKP was tested for cytocompatibility using the metabolic MTT assay on fibrob-
last cells [23]. DKPs are natural biomolecules that occur also in foodstuff, with homochiral
DKP1 being present in roasted coffee [50] and cocoa nibs [51]. Therefore, they are gener-
ally expected to display good cytocompatibility, especially those composed of naturally
occurring L-amino acids. Surprisingly, DKP1 significantly increased the metabolic activ-
ity of fibroblasts in the concentration range 10–500 µM (Figure 7), and it is possible to
ascribe this effect to the enzymatic hydrolysis of the DKP into the corresponding linear
dipeptides, which are in fact cell nutrients. Conversely, heterochiral DKPs 2–4 generally
yielded absorbance values that were not statistically significantly different relative to the
control. DKPs 2–4 demonstrated good cytocompatibility at all tested concentrations, with
the worst performance being ascribed to DKP3 at the highest concentration of 0.5 mM,
which led to the only statistically significantly lower value (78%) relative to the control.
Higher concentrations could not be tested due to insolubility of the DKPs.
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3.5. DKP Antimicrobial Activity

DKP1 was reported to exert antimicrobial activity on Gram-positive bacteria, fungi,
and yeasts at the concentration of 0.1 mg/mL [41]. In particular, the activity against
S. aureus is of relevance worldwide, being one of the most frequent pathogenic causes of
morbidity and mortality [41]. Although S. aureus normally colonizes the human anterior
nares, it is an opportunistic pathogen that can also lead to life-threatening bloodstream
infections, such as endocarditis and sepsis [52]. Therefore, in this work we chose this
bacterium as a model system to identify the minimum inhibitory concentration (MIC) of
DKP1 and compare it against the heterochiral DKPs 2–4 (Figure 8).
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Considering the DKPs poor solubility, the reportedly effective antimicrobial concen-
tration of 0.1 mg/mL [41] was used as the highest value of reference. Two-fold series
dilutions revealed that at 12.5 µg/mL, DKP1 was ineffective, as it led to data that were not
statistically significantly different to the control. Analogous results were obtained for DKP3



Polymers 2022, 14, 4554 10 of 13

and DKP4. DKP2 displayed a slightly better performance, as also at 12.5 µg/mL it yielded
absorbance values that were statistically significantly different from the control. However,
a further two-fold dilution to 6.25 µg/mL was accompanied with a total loss of activity
(not shown). Overall, while the reported antimicrobial activity for DKP1 was confirmed,
and similar results were obtained for DKPs 2–4, clearly, further derivation studies to obtain
more effective inhibition of bacterial growth are needed to enable any practical application.
Alternatively, they could be used as vehicles for more potent antimicrobials and tested for
any synergistic effects.

4. Conclusions

In conclusion, four DKPs were obtained using a green protocol that involves the
microwave-assisted cyclization of linear dipeptide precursors in water. All the desired
products were characterized by ESI-MS, 1H-, and 13C-NMR, which confirmed their identity
and purity. Single crystals of suitable quality for XRD analysis were obtained for DKP2
and DKP4 and revealed a conformation with the two hydrophobic side chains pointing in
opposite directions relative to the DKP ring, as expected for heterochiral cyclodipeptides.

The DKPs’ ability to self-assemble into gelling supramolecular polymers was tested in
PBS and soybean oil, as these two solvent systems were reported to yield gels for DKP1,
which precipitated in a variety of other conditions. Indeed, one limitation of all the tested
DKPs is their limited solubility in both aqueous and organic solvents, thus rendering their
handling somewhat challenging. Nevertheless, gels were obtained in soybean oil for DKPs
2–3, thus opening the way to their potential use in topical formulations. However, for
biological uses that require aqueous environments, DKP1 is the best candidate of this series
as it is the only one that also yielded hydrogels.

The bioactivity of the four DKPs was also tested in fibroblast cells and S. aureus. All
DKPs displayed overall good cytocompatibility using a metabolic assay on fibroblast cells,
as expected for this kind of biomolecules that occur in nature and foodstuffs. The reported
antimicrobial activity of DKP1 was confirmed to be very mild on S. aureus, and the MIC
was determined to correspond to 25 µg/mL. Similar results were obtained for the other
DKPs, with only DKP2 displaying a slightly lower MIC of 12.5 µg/mL. Clearly, a significant
enhancement of the antimicrobial activity will be needed for any practical application of
these compounds as antimicrobials, as well as of their solubility properties, which, thus far,
limited the potential use of their supramolecular polymers as gelators. Considering that the
dehydro-derivative of DKP1 is also antimicrobial [53], and that dehydro-cyclodipeptides
were reported to form supramolecular gelling polymers [19], this class of analogues may
offer a potential avenue to further develop these systems towards antimicrobial gels and
coatings with better performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14214554/s1, spectroscopic (Figures S1–S17), crystallo-
graphic (Figures S18 and S19 and Table S1), and rheological data (Figure S20). References [54–59] are
cited in the supplementary materials.
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