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Abstract 
Background: Recent advances in single cell sequencing have led to an increased focus on the 
role of cell-type composition in phenotypic presentation and disease progression. Cell-type 
composition research in the heart is challenging due to large, frequently multinucleated 
cardiomyocytes that preclude most single cell approaches from obtaining accurate 
measurements of cell composition. Our in silico studies reveal that ignoring cell type composition 
when calculating differentially expressed genes (DEGs) can have significant consequences. For 
example, a relatively small change in cell abundance of only 10% can result in over 25% of DEGs 
being false positives. 
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Methods: We have implemented an algorithmic approach that uses snRNAseq datasets as a 
reference to accurately calculate cell type compositions from bulk RNAseq datasets through 
robust data cleaning, gene selection, and multi-sample cross-subject and cross-cell-type 
deconvolution. We applied our approach to cardiomyocyte-specific α1A adrenergic receptor (CM-
α1A-AR) knockout mice. 8-12 week-old mice (either WT or CM-α1A-KO) were subjected to 
permanent left coronary artery (LCA) ligation or sham surgery (n=4 per group). Transcriptomes 
from the infarct border zones were collected 3 days later and analyzed using our algorithm to 
determine cell-type abundances, corrected differential expression calculations using DESeq2, 
and validated these findings using RNAscope. 

Results: Uncorrected DEGs for the CM-α1A-KO X LCA interaction term featured many cell-type 
specific genes such as Timp4 (fibroblasts) and Aplnr (cardiomyocytes) and overall GO enrichment 
for terms pertaining to cardiomyocyte differentiation (P=3.1E-4). Using our algorithm, we observe 
a striking loss of cardiomyocytes and gain in fibroblasts in the α1A-KO + LCA mice that was not 
recapitulated in WT + LCA animals, although we did observe a similar increase in macrophage 
abundance in both conditions. This recapitulates prior results that showed a much more severe 
heart failure phenotype in CM-α1A-KO + LCA mice. Following correction for cell-type, our DEGs 
now highlight a novel set of genes enriched for GO terms such as cardiac contraction (P=3.7E-5) 
and actin filament organization (P=6.3E-5). 

Conclusions: Our algorithm identifies and corrects for cell-type abundance in bulk RNAseq 
datasets opening new avenues for research on novel genes and pathways as well as an improved 
understanding of the role of cardiac cell types in cardiovascular disease. 

Introduction 
The endogenous catecholamines epinephrine and norepinephrine activate two classes of 

adrenergic receptors (ARs) in the heart, β-ARs and α1-ARs. Chronic hyperstimulation of 
cardiomyocyte β1-ARs contributes to the pathobiology of heart failure1. In contrast, we and others 
have shown that α1-AR activation protects cardiomyocytes against multiple forms of injury both 
in vitro and in vivo2,3. α1-ARs exist as three molecular subtypes: α1A, α1B and α1D. Each subtype 
is activated by epinephrine and norepinephrine but exhibits distinct tissue localization and cellular 
signaling. Within the rodent and human heart, the α1A and α1B subtypes are expressed on 
cardiomyocytes4,5 whereas the α1D-AR subtype is largely found in coronary artery smooth 
muscle6,7. 

A burgeoning body of evidence indicates that the α1A subtype mediates the 
cardioprotective effects of non-selective α1-AR activation8. To test whether these adaptive effects 
require activation of cardiomyocyte α1As, we recently created a cardiomyocyte-specific α1A-
knockout mouse line (Myh6-CrexAdra1afl/fl or cmAKO). The cmAKO mice have no discernible 
basal phenotype but exhibit early mortality and exaggerated pathological ventricular remodeling 
after myocardial infarction (MI) driven at least in part by unrestrained necroptosis in cmAKO 
hearts9. Unpublished bulk RNAseq suggested intriguing transcriptomic differences between wild-
type (WT) and cmAKO mice. However, definitive interpretation of these data is complicated by 
the fact that MI induces numerous significant changes in the cellular composition of the post-
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infarct heart including contemporaneous attrition of some cell types and proliferation or infiltration 
of others. These dramatic changes yield a cellular landscape that is highly heterogeneous, making 
it difficult to discern whether an observed change in gene expression in bulk tissue is due to 
changes in the proportional abundance of the cell type(s) that express the gene, altered regulation 
of the gene itself, or, most likely, a combination of the two. In this setting, where both cell-specific 
gene expression and cellular abundance are changing, it is a substantial challenge to even 
ascertain which cell type(s) are expressing a differentially expressed gene and/or driving pathway 
activation, significantly limiting potential inferences about underlying mechanisms 10–12.  

Other studies have frequently used single-cell and -nucleus RNA sequencing to evaluate 
heterogeneous tissues, but these approaches have limitations in the heart due to the size and 
variable nuclearity of the cardiomyocyte. Cardiomyocytes are over 100 µm in length13, precluding 
scRNA seq approaches as they will not fit through the narrow nozzles of commonly used 
microfluidics-based approaches such as 10x Genomics14.  At the same time cardiac cells are 
variably multinucleated as a product of genetic and environmental factors15 (e.g. a myocardial 
infarction16), limiting the use of snRNA seq approaches as it is currently impossible to accurately 
link observed nuclei count to cell counts in addition to the complications of comparing nuclear-
level to cellular-level sequencing data. Beyond these cardiomyocyte-specific issues, we are also 
aware of studies which report that single cell- and nucleus-RNA sequencing approaches often do 
not obtain representative samplings of the tissue in question due to variable efficacy in cell 
isolation between different cell types when constructing a single-cell suspension17,18. In contrast, 
bulk RNA sequencing preserves the cellular makeup of whole tissue but masks the specific 
contributions of each cell type to the overall expression profile19. Brought together, however, the 
strengths of each approach (cell-type specific expression in single nucleus RNAseq and intact 
global transcriptomic measures from bulk RNAseq) can be leveraged in reference-based 
deconvolution while to minimize their respective weaknesses20.  

In this article, we describe a novel method of computationally estimating cellular 
proportions from bulk RNA sequencing of cardiac tissue.  Our approach uses cell-type-specific 
expression markers to infer the cellular makeup underlying bulk expression from heterogeneous 
tissue samples, offering a novel means of parsing out the transcriptomic and cellular response of 
remodeled cardiac tissue. We first identify highly specific cell-type gene expression markers from 
a snRNAseq reference panel. Then, we validate our analysis pipeline by applying those markers 
in the deconvolution of pure cell-type ground truth datasets, before estimating cellular 
abundances from bulk RNAseq from the left ventricles of WT and cmAKO mice, after either left 
coronary artery (LCA) ligation or sham surgery. We find more exaggerated changes in 
cardiomyocyte, fibroblast, and immune cell populations in the cmAKO cohort, consistent with a 
broadly cardioprotective effect of cardiomyocyte α1A-ARs. We simulate the effect of including cell 
type proportions in differential gene expression analysis of compositionally distinct bulk RNAseq 
replicates then apply this method of accounting for cellular composition to characterize the 
transcriptomic changes between our genotype and treatment groups. We find that many 
expression changes originally attributed to treatment or genotype are better explained by shifts in 
cellular proportions. Finally, we use RNAscope with IHC to experimentally validate several genes 
whose significance was altered after adjustment, confirming that several of the most significantly 
observed transcriptomic changes are accompanied by cell-type-of-origin proliferation or loss. 
Requiring only pre-existing data types and no additional experimentation, our method offers a 
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convenient, flexible, and affordable approach to simultaneously characterize the cellular state and 
abundance changes between compositionally distinct groups and has broad applications beyond 
cardiac data. 

Materials and Methods 

Mouse husbandry and model generation 
cmAKO mice: C57BL/6J and ROSAmT/mG (stock # 007676) mice were purchased from 

Jackson lab. The cmAKO mouse line was generated by breeding Myh6-Cre (originally from the 
lab of E. Dale Abel at the University of Iowa and provided by Leslie Leinwand at the University of 
Colorado) to Adra1a flox/flox mice with loxP sites flanking the first coding exon (constructed in 
the Paul C. Simpson lab at the University of California, San Francisco/San Francisco VA Medical 
Center)21,22. All mice were backcrossed regularly and maintained on a C57BL/6 genetic 
background. Twelve- to 16-week-old males were used to generate the myocardial infarction and 
sham-operated mouse models. Floxed mice (αMHC-Creneg/α1Afl/fl) were used as wild-type (WT) 
controls for cmAKO mice. 

snRNAseq experiments: C57BL/6J mice (JAX stock 000664) were purchased from 
Jackson Laboratory, Bar Harbor, Maine, and bred to produce pups.  

Pure Cell fractions: For experiments involving pure cell-type fractions, C57BL/6J mice 
were obtained from Jackson Laboratories at 7 weeks of age and allowed to acclimatize for at least 
two weeks.  

Myocardial infarction model 
Mice were subjected to permanent LCA ligation as previously described9. In brief, to 

induce myocardial infarction (MI), a left thoracotomy was performed at the fourth-fifth intercostal 
space, followed by permanent ligation of the left anterior descending (LAD) coronary using a 7/0 
non-absorbable ethylene suture. Occlusion was verified by anemia and akinesis of the apex and 
anterior-lateral wall, after which the thorax was closed in layers.  After extubation, mice were kept 
warm until fully recovered. For LCA ligation, sham surgery, and terminal cardiectomy, mice were 
anesthetized by inhalation of isoflurane (2%). For postoperative analgesia, 5 mg meloxicam/kg 
body weight was applied every 24 hours for the first 72 hours post-surgery. 

Tissue Collection and Preparation 
After sacrifice, the heart was quickly excised and sectioned perpendicular to the long axis 

of the left ventricle. The infarct border zone was visualized under a dissecting microscope and 
dissected out then immediately snap frozen in liquid nitrogen. Tissue was taken from an 
anatomically analogous location in sham-operated hearts using an identical process. RNA was 
extracted and shipped to Novogene (Sacramento, CA) for bulk RNAseq as described below. 

To fix heart tissue for immunohistochemistry, mice were heparinized and the heart was 
perfused with 10 mL of PBS followed by 20 mL of 4% paraformaldehyde (PFA)–PBS through a 
23-gauge butterfly needle, then excised and placed in 4% PFA-PBS for 24 hours before transfer 
to 70% ethanol. Hearts were then embedded in paraffin and 5 µm sections collected.  
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Fluorescent In-Situ Hybridization (FISH) 
 Formalin-fixed paraffin sections were used for localizing the cellular expression of various 
mRNA transcripts by in situ hybridization with the RNAscope® Assay23 as described by the 
manufacturer (Advanced Cell Diagnostics, Inc., Newark, CA). Briefly, slides were baked at 60°C 
for 1 h, deparaffinized with xylene and absolute ethanol, and pretreated with Target Retrieval 
Reagent, H2O2, and Protease Plus according to manufacturer specified conditions and times. This 
was followed by hybridization with RNAscope Probes for 2 h at 40°C in the HybEZ oven for 
detection of mRNA, or a negative control probe (Supp. Info.). RNAscope Multiplex Fluorescent 
Reagent Kit v2 (Advanced Cell Diagnostics, Inc., Newark, CA, Cat No. 323120) was employed 
for signal amplification and detection. This kit uses fluorescent probes for the development of a 
reaction product visible at the Cy5 and Cy7 channels. FITC was not used due to green channel 
autofluorescence common in the heart. 
 
Immunofluorescence Staining and Image Acquisition 
 Immediately following FISH, slides were blocked with 10% normal goat serum for 1 h and 
incubated with primary antibody overnight at 4°C (Supp. Info.) Next, slides were incubated with 
secondary antibody for 2 hr at RT. Slides were then rinsed in PBS and mounting medium with 
DAPI was applied and coverslips were attached and sealed with clear nail polish. FISH and IF 
staining was performed in the University of North Carolina Histology Research Core. 

Stained sections were imaged with an Olympus VS200 slide scanner equipped with a 
motorized stage, an Olympus DP74 digital camera, and OlyVIA software (Olympus America Inc., 
Center Valley, PA, RRID: SCR_016167). These full scans were opened using Qupath (RRID: 
SCR_018257), and single field images were generated24. 40X full scans are available as 
supplementary figures. 

Cardiac Cell Isolation for Pure Cell Type Fractions 
 As previously described, adult B6 mice were treated with heparin (100 USP units) for 20 
minutes to inhibit blood coagulation followed by anesthesia with sodium pentobarbital (100 µL of 
50 mg/ml dilution, intraperitoneal)25. Upon loss of rear foot reflex, hearts were removed and 
immediately submerged in ice-cold PBS to arrest the heart. 
 Cardiomyocytes: Hearts were mounted on a modified Langendorff apparatus and 
perfused for 5 minutes with Tyrode’s solution (10u mM NaCl, 5.4 mM KCl, 1 mM MgCl2, 0.6 mM 
Na2HPO4, 10 mM glucose, 10 mM HEPES (pH 7.37), oxygenated with 95% (v/v) O2 and 5% 
(v/v) CO2) at 37°C, then perfused for 15-30 minutes with 30 mL Tyrode’s containing 20 mg 
collagenase type-II and 3mg protease type-XIV, then washed for an additional ten minutes with 
Krebs buffer (25 mM KCl, 10 mM KH2PO4, 2 mM MgSO4, 20 mM glucose, 20 mM taurine, 5 mM 
creatinine, 100 mM potassium glutamate, 10 mM aspartic acid, 0.5 mM EGTA, 5 mM HEPES (pH 
7.18) oxygenated with 95% O2 and 5 % CO2 (v/v)). Cardiomyocytes were then dissociated in 
Krebs buffer, filtered through a 100 µm strainer, and centrifuged 2 minutes at 1000G before being 
placed in triZoL for RNA isolation. 
 Fibroblasts: Fibroblasts were isolated through enzymatic digestion using Liberase (Roche, 
5401119001). Hearts were minced into small pieces and transferred into 18 mL of 1x Liberase in 
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Hanks (+Ca, +Mg) media. Solution is gently stirred while incubating at 37°C for 3 minutes. Tissue 
is allowed to settle, then the supernatant is sieved through a 70 µm strainer and transferred to a 
tube containing 10 mL of Krebs-Henseleit (KH) buffer (Sigma, K3753). Cell suspension is 
centrifuged at 1000 rpm for 5 minutes in a (Sorvall Legend Micro 17 Centrifuge). Supernatant was 
removed and pellet washed with 10 mL ice-cold KH buffer, followed by another round of 
centrifugation and resuspension in 5 mL of cold KH buffer. The process was repeated using the 
rest of the heart tissue 4 times until no clumps of heart tissue remained in the original tube. All 
cells were centrifuged then plated on untreated plates in DMEM/F12 media supplemented with 
10% FBS, 1% Pen/Strep and 0.1% insulin-transferrin-selenium (ITS; Corning, 354350). After 2 h, 
human basic fibroblast growth factor (1:10,000 concentration from a 200x stock, MilliporeSigma, 
11123149001) was added to the media. Media was removed after 24 h, plates were washed with 
PBS, then triZoL was added for RNA isolation. 
 Endothelial Cells: Hearts were prepared as described for fibroblasts, however before 
plating, precoated CD31 antibody magnetic beads (Miltenyi Biotec, 130-097-418) were introduced 
to the suspension and incubated for 20 minutes before being immobilized by a magnet and the 
other cells washed away. Remaining cells were released from the beads, cultured on treated 
plates with EBM-2 cell media (w/ 10% FBS, 1% pen/strep, 0.1% ITS) for 24 h, followed by wash 
with PBS to remove dead cells and residual beads, followed by addition of triZoL for RNA isolation. 
 RNA Isolation: All RNA isolations were performed using the Zymogenetics Direct-zol RNA 
miniprep kit (R2052) according to manufacturer instructions. RNA quantity was measured using 
Qubit RNA High Sensitivity Assay (ThermoFisher, Q32855) and integrity determined using an 
Agilent Bioanalyzer. Only samples with RIN > 7.0 were used for library preparation, detailed 
below. 

Cardiac Cell Isolation for snRNAseq 
On two occasions, hearts were excised from 3 littermates collected at P21. If 2 females 

and 1 male were used for the first collection, then the reverse was done on the second collection, 
such that the final sequencing represents 6 hearts, 3 males and 3 females. Excised hearts, with 
atria removed, were Langendorff perfused with 25 mLs of 1 mg/mL collagenase as described 
below. 

Hearts were extracted from euthanized mice by cutting the aorta just below the arch 
arteries, along with the other major vessels. Isolated hearts were washed in ice cold Kruftbruhe 
(KB) solution and secured by their aortas to a cannula of varying sizes (see Table 2) then tied off 
with a 3-0 silk suture. Atria were removed with Vannas micro spring scissors. Cannulated 
ventricles were then hung from a Langendorff apparatus and perfused with calcium-free Tyrode's 
buffer, followed by 1 mg/mL collagenase type II (Thermo Fisher, 17101015) dissolved in calcium-
free Tyrode's buffer. Both solutions were warmed to 37°C. Volume of collagenase solution, along 
with size of cannula, varied by age of mouse (see Table 2). Following perfusion, ventricular tissue 
was diced with dissection scissors, triturated in ice cold Kruftbrühe (KB) solution using a wide 
bore 1 mL pipette 

Digested hearts were resuspended in ice cold KB and allowed to settle for 10 minutes on 
ice. The supernatant was removed and the loose pellet was resuspended in 5 mL of Lysis buffer 
prepared as previously described26, with only one adjustment – 50 µl of 10% Triton-X-100 was 
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added (final concentration 0.1%). Cells were incubated in Lysis buffer + Triton for 5 minutes on 
ice, after which they were homogenized with a Tissue Tearor electric tissue homogenizer (Model 
# 985370) at the second lowest setting for 20-30 seconds and left to sit again for another 5 
minutes on ice. They were then transferred through a 15 mL glass Dounce homogenizer and 
further homogenized with 20 strokes of the A pestle and 20 strokes of the B pestle. Homogenized 
cell suspensions were sequentially filtered through a 70 µM, 40 µm, and 20 µm cell strainer to 
remove debris and undigested materials. Samples were then spun at 1000G for 5 minutes and 
resuspended in 1 mL of 2% BSA dissolved in D-PBS with RNaseOut (Invitrogen, 200U/mL). A 
small aliquot was set aside to serve as an unstained control for fluorescent activated cell sorting 
(FACS). The remainder of the suspension was stained with DAPI at 10 µg/ml for 5 minutes on 
ice. Samples were spun at 1000G for 5 minutes and resuspended in fresh 2% BSA-RNaseOut 
solution. 
      Following staining, nuclei were sorted on a BD FACSMelody at 4°C. Following standard 
protocols, forward and side scatters were used to remove doublets. Unstained controls were used 
to set the V450 gate. 432,000 nuclei were collected into a 2 mL centrifuge tube preloaded with 
500 µL of 2% BSA-RNaseOut solution. Sorted nuclei were spun down at 1000G for 5 minutes, 
supernatant was removed, and samples were resuspended in 100 µL of 2% BSA-RNaseOut 
solution (Invitrogen) before proceeding to 10x library preparation. 

Bulk and Single Nucleus RNAseq Library Preparation 
snRNAseq:  Nuclei were quantified with a Luna Fl cell counter (Logos Biosystems) and 

the volume was adjusted to obtain the ideal concentration of nuclei recommended by 10x 
Genomics (1000 nuclei/µL). Individual nuclei were paired with Chromium v3.1 gel beads and 
cDNA synthesis, barcoding, and dual index library preparation was performed using Chromium 
Next GEM V3.1 chemistry according to the manufacturer’s recommendation (10x Genomics). 
10,000 nuclei were targeted for each sample with 13 cycles for cDNA amplification and 13 cycles 
for sample index PCR. The fragment size of cDNA and libraries was assessed using Agilent’s 
5200 Fragment Analyzer System to verify product quality prior to sequencing with RIN >7.0 used 
as a cutoff for sequencing. 

Bulk RNAseq of purified fractions: Sequencing libraries were prepared using 3 μg total 
RNA from isolated RNA using the Stranded mRNA-Seq Kit (KAPA Biosystems). 

Bulk RNAseq of whole tissue: mRNA-Seq libraries were constructed using 4 μg total RNA 
with the Stranded mRNA-Seq Kit (KAPA Biosystems) at Novogene (Sacramento, CA). 

 

RNA sequencing  
snRNAseq: 2 libraries (3 mice per library) were sequenced at the Roy J. Carver 

Biotechnology Center at the University of Illinois, Urbana Champaign on a NovaSeq 6000 using 
one S4 lane with 2X150nt reads. Samples were demultiplexed and mapped to the mm10 genome 
using Cell Ranger v6.1.1 (10X Genomics).  

Bulk RNAseq of purified fractions: Bulk RNA fractions were sequenced 2x50 (paired end) 
on a Novaseq 6000 S2 chip at the Technology Center for Genomics and Bioinformatics (TCGB) 
at UCLA. 
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 Bulk RNAseq of whole tissue: Samples were multiplexed with Illumina TruSeq adapters 
and run on a single 75-cycle paired end sequencing run with an Illumina NextSeq-500. 

All bulk RNAseq samples were demultiplexed, then decoy-aware pseudo-aligned to the 
GRCm39 transcriptome with Salmon v1.10.227 and read quality was checked with FastQC 
v0.12.1.28 and summarized with MultiQC29. Then, samples were joined into a counts matrix with 
the txmeta30 and tximport31 packages in R version 4.3.1. Bulk RNAseq and snRNAseq data are 
publicly available as NCBI BioProjects under accessions PRJNA1122769 and PRJNA880279 or 
in SRA SUB14505282 and SRP398524. The full Snakemake32 analysis pipeline is publicly 
available on Github (https://github.com/guralbrian/bulk_decon). 

Single Nucleus RNAseq Data Analysis 
Raw counts, barcode, and feature matrices were joined into a single Seurat object33 for each 
replicate. Ambient droplet RNA and doublets were identified and removed in-silico with 
DropletUtils::emptyDrops34 and scDblFinder::computeDoubletDensity35, respectively. Sample 
replicates were merged into a single Seurat object, then filtered by feature count, transcript count, 
mitochondrial transcript percentage, and doublet score. Raw counts were normalized, scaled, 
applied to principal component analysis, and integrated by harmony::RunHarmony36. For 
clustering, the number of principal components included was determined by finding the first PC 
which exhibits cumulative percent variability greater than 90% or that which explains less than 
5% of the total variability. Samples were then clustered by the standard Seurat methods, using 
the harmony reduction. See Supplementary Data for detailed transcriptional marker list. 

Deconvolution analysis 
We converted Ensembl IDs to gene symbols to match the bulk and snRNA-seq formats; 

among duplicate gene symbols, we kept the one with the highest average gene expression. 
Before performing deconvolution, the 35,334 unique transcripts from the bulk RNAseq data and 
19,883 from the snRNAseq data were subset to the 15,376 genes present in both datasets. Then, 
scran::findMarkers37 was used to find markers for each Seurat cluster. Markers were ordered by 
adjusted p-value and the top 15 markers per cluster were retained. After, marker genes were 
manually queried in ToppGene38 for associations with known cell types. High confidence cell type 
associations were annotated to the relevant cluster and small clusters or those with low 
confidence annotated were excluded from further analysis. After, five cell-type clusters were 
retained: endothelial cells, cardiomyocytes, fibroblasts, a joint vascular smooth muscle cell and 
pericyte cluster, a joint monocyte and macrophage cluster, and smooth muscle cells. 

Deconvolution of all bulk RNAseq datasets was performed with MuSiC39, an R package 
for deconvolution of bulk RNA sequencing data which uses single cell or single nucleus RNA 
sequencing data as a reference. Only genes present in the 15 markers per cell type identified with 
scran (Supplemental Data 1) were included in deconvolution analysis. Raw expression counts 
were applied to MuSiC::music_prop and proportion estimates from the weighted deconvolution 
were used in all further analysis. 
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Dirichlet Model 
To model the relationship between treatment or genotype with estimated cell type 

proportions, we used a Dirichlet regression model. The DirichReg function from the DirichletReg40 
package was run with a genotype-treatment interaction term with common parameterization. 

Differential Expression 
Differential expression analysis was performed with DESeq241. Two iterations were performed: 
without covariates, and with covariates including centered log-ratio (clr) transformations of 
cardiomyocyte and fibroblast proportions. The DESeq2 workflow included creating 
DESeqDataSet objects, filtering genes with more than 10 reads in at least four samples. Both 
iterations modeled gene expression as the product of the additive effects of genotype, 
treatment, and their interaction, with the second analysis iteration also including additive effects 
of each cell type proportion. Multiple testing correction was performed using a false discovery 
rate (FDR) threshold of 0.05. See Supplemental Data 2 for full DESeq2 outputs. 

Simulated Differential Expression  
Bulk RNAseq sample groups were generated with predefined cell type contributions to 

total expression by referencing our snRNAseq dataset. Specifically, a transcriptomic profile was 
generated for each cell type cluster by summing the expression of all nuclei within the cluster and 
dividing by the summed transcript counts in that cluster. This yielded probability for each gene 
being selected if a single transcript was drawn at random from a given cell type cluster. Transcripts 
were then sampled from these profiles to a total of 25 million reads to mimic typical bulk RNAseq 
data42. 81 groups of four replicates were modeled, with the cardiomyocyte proportion ranging from 
30 - 70% cardiomyocytes and the remaining expression evenly sourced from fibroblasts, 
endothelial cells, macrophages, and pericytes/smooth muscle cells. 

To test the effect of including composition, DESeq2 was run with two models: 
 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  ~ 0 +  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ~ 0 +  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
 

For each model, sample groups were contrasted against the 50% cardiomyocytes group and the 
number of significantly differentially expressed genes was recorded. The analysis was repeated 
with a total of three different representations of cell type proportions in the model: untransformed 
proportions, centered-log-ratios of proportions, and principal components from principal 
component analysis of cell type proportions. All differential expression analysis were conducted 
in batches of 500 genes. 

GO Analysis 
Expression changes of individual genes were summarized into biological pathways by gene 
ontology (GO) enrichment using clusterProfiler v4.10.043. Gene names were converted to 
ENSEMBL IDs using the org.Mm.eg.db reference package v3.18.044. For each model and 
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variable, all genes with an adjusted P-value less than 0.1 and an absolute log-fold-change greater 
than 0.583 were supplied to clusterProfiler::enrichGO using biological pathway ontology and 
Benjamini-Hochberg p-value adjustment. See Supplementary Data for entire GO term dataset. 

Figure Generation 
Schematics and diagrams (Figures 1A, 2A, 3A, 3B, 4A, and 4B) were produced with 
Biorender. All other plots were generated using the following R packages: dot and bar plots 
were produced with ggplot245, upset plots with ComplexUpset46,47, UMAP plot with ggplot2 and 
tidyseurat48, ternary plot with ggtern49, and tables with gt50 and gtExtras51. 

Results 

Unadjusted transcriptional changes in ischemic border zone of cmAKO 
mice 

To examine the role of cardiomyocyte α1A-ARs after heart injury, we created a 
cardiomyocyte-specific α1A-AR knockout mouse line (Myh6-CrexAdra1afl/fl or cmAKO)9. We 
induced a myocardial infarction (MI) in this model by permanent LCA ligation at 8-12 weeks of 
age. Three days post-ligation, we collected tissue from the border zone of the infarcted left 
ventricle, or a matched location in the sham surgery group, and measured bulk gene expression 
by RNAseq (Figure 1A). To identify outliers and unexpected sources of variation that might bias 
our results, we performed principal component analysis. Samples were well stratified by treatment 
across PC1, which accounted for 90% of the variation in gene expression. Although a replicate 
from the WT sham surgery group deviated on PC2, that axis only represented 4.3% of variation 
in our data and was included for further analysis (Figure 1B). We proceeded with differential 
expression analysis using DESeq241, modeling gene expression as the sum of the effects of 
genotype, treatment, and their interaction. LCA ligation produced the greatest number of 
differentially expressed genes (DEGs), followed by the interaction of cmAKO and LCA ligation, 
whereas cmAKO alone yielded the fewest DEGs (Figure 1C). These findings recapitulate our 
prior studies, where we found that α1A-knockout magnified the adverse effects of LCA ligation 
but elicited minimal phenotypic differences from WT mice in the absence of cardiac insult9.  

When examining the genes that are differentially expressed in the cmAKO x myocardial 
infarction interaction term (the unique response of cmAKO to LCA ligation), we observe a large 
number of genes that are enriched in specific cell types, such as Timp4 (fibroblasts)52, Zbtb16 
(cardiomyocytes)53, and Aplnr (cardiomyocytes)54 (Figure 1D). Furthermore, analysis of all DEG 
with p< 0.1 and FC > 1.5 by gene ontology (GO) enrichment using clusterProfiler43 revealed strong 
enrichments of cardiomyocyte-specific pathways. Likewise, LCA ligation alone showed strong 
enrichments for cardiac fibrosis and CM energy metabolism (Figure 1E). Taken together, these 
suggest that cell-type compositional changes may contribute to bulk expression changes in the 
heart. Considering the abundance of expression changes related to cell-type-specific pathways 
and mechanisms, we next sought to estimate sample-specific changes in cellular composition. 
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Cell type-specific markers in snRNAseq 
To guide the interpretation of our cmAKO model, we developed a cell-type-specific gene 

expression reference panel. To this end, we performed single nucleus RNAseq from the left 
ventricles of WT mice (n = 6). We applied a strict preprocessing and quality control pipeline, which 
began with in silico removal of ambient RNA and low-quality nuclei before proceeding with 
dimensional reduction, and clustering, retaining 20,968 nuclei assigned to 11 clusters (Figure 2A, 
Supp. Fig. 1). Next, we sought to connect our nuclei clusters to known cell types by comparing 
cluster-specific expression markers to known cell-type markers. Cluster markers were identified 
as genes whose within-cluster expression was significantly higher than out-of-cluster expression 
in one-versus-all testing using findMarkers from scran35. The top 15 most significant marker genes 
per cluster were supplied to ToppGene to look for enrichment of existing cell type markers. After 
excluding clusters with less than 500 nuclei or those which presented unclear cell-type 
associations, the final dataset contained 20,061 nuclei assigned to five cell-type clusters. In order 
of most-to-least abundant, we retained clusters of endothelial cells, cardiomyocytes, fibroblasts, 
macrophages, and a joint cluster of pericytes and smooth muscle cells (Figure 2B). Further, we 
found that our marker list recapitulates canonical proteomic and transcriptomic cardiac cell-type 
markers, including Myh655 and Tnnt256 for cardiomyocytes, Egfl757 and Fabp458 for endothelial 
cells, and Dcn and Col1a159 for fibroblasts (Figure 2C, Supplemental Data 1) 

Cell-type composition of mouse left ventricular tissue 
Cell-type deconvolution is a method to infer how much RNA comes from each cell type 

present in bulk RNA sequencing data produced from heterogeneous tissue.  For our pipeline, we 
chose to utilize MuSiC, one of several existing deconvolution methods, which iteratively tests for 
the combination of cell type proportions whose summed expression profiles best explains the 
overall tissue expression profile. (Figure 3A). To inform development of our analysis pipeline and 
to test its performance, we first applied it to several bulk RNAseq datasets derived from purified 
fractions of major cardiac cell types (Figure 3B). We found that our MuSiC-based method was 
able to accurately predict the makeup of every cardiomyocyte, endothelial cell, and fibroblast 
sample (Figure 3C). Confident in our ability to identify major cell types of the heart, we then 
applied our pipeline to the bulk RNAseq data from our experimental groups. In the untreated WT 
mice, we estimated that the major cell type by transcript abundance was cardiomyocytes (79%), 
followed by fibroblasts (8.4%) and macrophages (5.8%). For both genotypes, cardiomyocyte 
abundance decreased in the treatment group, while fibroblasts and macrophages rose in relative 
abundance. For each of these changes, these compositional shifts were more pronounced in 
cmAKOs when compared to the WT group (Figure 3D).  

Traditional models and association tests, such as the Pearson correlation60, are prone to 
identifying spurious correlations when applied to contexts where measures are interrelated, as 
with cellular composition data61. To understand this, imagine a scenario where a treatment causes 
cardiac fibroblasts to proliferate while having minimal effect on adjacent cell types. If researchers 
were to quantify the number of each cell type in a treated heart they would find that the absolute 
number of non-fibroblasts remains constant. However, since the total number of cells in the heart 
increased, the relative proportion of non-fibroblasts would seem to decrease compared to an 
untreated heart. As such, standard statistical tests applied to these compositional measures 
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would report that the drug is associated with both an increase in fibroblasts and a decrease in 
non-fibroblasts, despite there being no absolute increase in the number of non-fibroblasts.   

To address this and correctly quantify the effect of each treatment and genotype on the 
compositional changes, we used a Dirichlet regression model, which can accommodate the sum-
to-one constraint and covariance structure of compositional data40,62. Our model considered the 
effects of each genotype and treatment additively, as well as the interaction of the two terms. We 
found that MI and the cmAKO X MI interaction are the only terms to have significant effects on 
major cell type proportions. Specifically, MI and cmAKO X MI were both significantly associated 
with the abundance of cardiomyocytes (p = 0.0051 for MI; p = 0.0024 for cmAKO X MI), 
endothelial cells (p = 0.00053 for MI; p = 0.00888 for cmAKO X MI), and pericytes/SMC (p = 0.036 
for MI; p = 0.01 for cmAKO X MI). Additionally, only cmAKO X MI was found to be significantly 
associated with the proportion of macrophages (p = 0.026) (Figure 3E). 

Cell-type-adjusted Differential Gene Expression 
Variation in either cell state or abundance63 can be responsible for differences in the 

overall transcriptional profiles of cellularly heterogeneous tissue (Figure 4A). Given the 
differences in cellular abundance in our samples, we became interested in discerning the 
contribution of these compositional differences to the transcriptional changes we observed in 
response to LCA ligation and CM-α1A KO.  

To model the inclusion of compositional estimates in gene expression analysis, we 
simulated bulk RNAseq sample groups composed of a range of underlying cellular proportions 
(Figure 4B). In silico mixtures were generated by sampling expression of individual genes from 
each cell-type cluster according to pre-specified cell-type ratios. We began with 50% 
cardiomyocytes and equal proportions of each remaining cell type from our snRNAseq panel. We 
then introduced stepwise changes in cardiomyocyte proportion from a range of 30 - 70% 
cardiomyocytes, adjusting the other minor cell types as appropriate while adding small amounts 
of noise to their proportions to avoid full rank modeling errors. We then tested for differential gene 
expression between the 50% cardiomyocyte group and each other group. In these comparisons, 
we found a considerable effect of compositional changes on differential expression. Strikingly, a 
10% reduction in the major cell type, a change smaller than that seen in cardiomyocyte 
abundance during MI in our data, caused 25% of transcripts to be identified as differentially 
expressed genes (DEGs) (Figure 4C). We repeated the analysis with different representations of 
proportions of the major cell type included as a term in the model, including unchanged percents, 
and both principal components and centered-log-ratio (CLR) transformations of cardiomyocyte 
proportions. In this updated model, nearly all gene expression changes are now associated with 
the terms representing cardiomyocyte abundance, rather than sample groups (which were blind 
to the underlying compositions of samples). These results demonstrate how comparisons of bulk 
gene expression can be skewed when sample groups have confounding variation in cell 
composition and how including compositional terms in DEG analysis enables more accurate 
attribution of expression changes. 

Having validated a method of adjusting for compositional differences, we applied this 
analysis to our existing bulk RNAseq data. While each transformation of the compositional 
variable returned similarly low false positive rates in our simulation (Supp. Fig. 2A), we opted to 
include CLR-transformed proportions of cardiomyocytes and fibroblasts in the final DESeq2 
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model because CLRs conserve proper covariance structure of compositional data64, which could 
otherwise inflate associations when included as covariates in RNAseq analysis65,66. In this 
updated model we found that the cardiomyocyte abundance was associated with altered 
expression of hundreds of genes, although LCA ligation remained the lead variable. As before, 
LCA ligation was associated with the greatest number of DEGs (Figure 4D). Furthermore, 
inclusion of cell types in the model led to a broad reduction in overall significances of many of the 
genes previously attributed to the effect of LCA ligation or cmAKO during LCA ligation (compare 
Figure 1D to Figure 4E).  

To better define how accounting for cellular abundance informs the interpretation of gene 
expression changes, we repeated the GO analyses using the results of the composition-adjusted 
DESeq2.  By adjusting for these major cell types, some GO terms weakened or outright lost their 
associations with their original genotype or treatment variables (Figure 4F, Supp. Figs. 2B-D). 
For example, there was a reduction in the association found between MI and hallmark 
cardiomyocyte homeostatic processes, like cellular respiration (p = 2.30e-12 became p = 1.31e-
03) and purine nucleotide metabolic process (p = 1.84e-4 became p = 0.0213) (Figure 4G, Supp. 
Fig. 2C).  Other GO terms saw more modest shifts, such as an increase in association of cmAKO 
X MI with biological processes indicative of cardiomyocyte state changes, including cardiac cell 
development (p = 1.83e-04 became p = 3.68e-05) and muscle cell differentiation (p = 1.83e-04 
became p = 4.13e-05) (Figure 4G, Supp. Fig. 2C).  Still other GO terms showed more 
considerable increases in the strength of their association with cmAKO x MI, such as processes 
related to coordinated heart function, such as heart contraction (p = 0.0897 to p = 3.68e-5), actin 
filament organization (p = 0.0658 to p = 6.32e-5), regulation of striated muscle contraction (p = 
0.309 to p = 2.55e-4), potentially reflecting a reprogramming of CMs to a fetal-like state67. 
Together, these observations suggest that the cmAKO-specific response to MI involves a greater 
transcriptomic change in cardiomyocyte state when compared to WT mice.  

Cell type abundances were significantly associated with many of the GO terms which 
decreased in their association with MI after correction for cell type. Specifically, alterations in 
fibroblast abundance were related to extracellular matrix-related processes like collagen fibril 
organization (p = 5.34e-03). Meanwhile, cardiomyocyte abundance was strongly associated with 
several processes related to energy metabolism, like cellular respiration (p = 2.13e-19) (Figure 
4H). Additionally, we noticed an enrichment for cardiomyocyte association with terms indicative 
of inflammation, such as myeloid leukocyte migration (p = 4.81e-08) and adaptive immune 
response (p = 5.13e-07) (Supplemental Data 3). Reflecting the importance of cardiomyocytes 
as the major contributor to overall transcriptomic profile, the most significant GO terms were 
related to cardiomyocyte abundance (compare Figure 4G to Figure 4H, Figure 4F-H). These 
results indicate that the transcriptomic changes initially attributed to either LCA ligation alone or 
the unique response of cmAKO mice during LCA ligation may both be mediated by changes in 
cellular composition.  

Taken together, our results suggest that our method was able to attribute transcriptomic 
changes due to deviation in cell type abundances from our compositional estimates but was not 
sufficiently powered to detect associations with cellular sub-states. We hypothesize that this may 
be due to the use of broad cell type annotations in our snRNAseq reference panel that lacks the 
resolution to correctly identify these more finely differentiated cellular populations. 
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Spatial expression of cell type and cell state markers 
 To validate the ability of our model to predict regulation of transcripts within distinct cell 
types, we used RNAscope paired with immunohistochemistry. We designed probes for Zbtb16 
and Pik3r1, two highly regulated transcripts in the bulk RNAseq data that experienced large 
reductions in significance in their association with the cmAKO interaction with MI upon adjusting 
for shifts in cellular composition (Figures 1D, 4E, 5A). We then localized those probes within 
cardiomyocytes using immunofluorescent staining for sarcomeric alpha-actinin as an additional 
control for our methods. 
 Our predictive model indicated that Zbtb16 (a zinc finger transcription factor), and Pik3r1 
(PI 3-kinase regulatory subunit 1) were regulated in a genotype-specific manner within 
cardiomyocytes after MI. Both transcripts are known to be expressed in cardiomyocytes53,68, but 
no previous studies have identified them as downstream targets of α1-ARs. We found that both 
Zbtb16 and Pik3r1 were expressed in cardiomyocytes under all conditions. Control hearts 
(Figure 5B) displayed uniform transcript expression across tissue regions. Consistent with our 
predictions, transcript abundance of cardiomyocyte Zbtp16 was relatively low in ligated WT 
mouse hearts compared to the robust upregulation in hearts from ligated cmAKO mice. The 
pattern of Pik3r1 expression was identical, although the magnitude of differential expression 
was qualitatively lower, also consistent with our predictions. 
 To quantify these effects, we evaluated five representative subregions within the border 
zone, infarct region, and remote region (or matched locations) of each slide. For each subregion, 
we tallied the number of expression spots of each gene, as well as the area occupied by actinin, 
which was used as a proxy for total cardiomyocyte cross-sectional area. To account for 
differences in cardiomyocyte abundance (Supp. Fig. 3), we then normalized expression spot 
counts to the area occupied by actinin in each subregion. Due to the technical variation present 
between each image, we further normalized these values to those from the remote region of each 
sample. We then observed that accounting for cardiomyocyte abundance reduced the differences 
in spatial expression both Zbtb16 and Pik3r1 between cmAKO and WT mice during myocardial 
infarction (Figure 5C). This finding is consistent with the predictions made in the composition-
aware differential expression analysis, which suggested cell type proportion shifts were driving 
the altered expression of Zbtb16 and Pik3r1.  
 

Discussion 
Changes in cardiac cell composition that occur during cardiac remodeling are a hallmark 

of cardiac dysfunction.  Notably, loss of cardiomyocytes and proliferation of fibroblasts has been 
previously reported in myocardial infarction, trans-aortic constriction and beta-adrenergic 
overdrive models of heart disease69,70,71. Quantitative analyses of the degree of remodeling in the 
heart remains complicated due to a variety of technical and biological factors.  In this study, we 
have developed a computational method that accounts for transcriptomic changes in bulk RNA 
sequencing data by delineating cell-type specific changes. We explore the efficacy of this 
approach in bulk RNAseq datasets drawn from wild type and cardiomyocyte-specific α1A-AR 
knockout mice (CM-α1A-KO) subjected to myocardial infarction or sham surgery.  
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A growing body of literature demonstrates that α1A-ARs play adaptive and protective roles 
in cell culture and animal models2,72. We recently found that selective antagonists of α1A-ARs 
such as tamsulosin (Flomax), used commonly to treat lower urinary tract symptoms related to 
benign prostatic hypertrophy, are associated with a small but statistically significant increase in 
one-year mortality in a subset of the Medicare database73. To understand the primacy of 
cardiomyocyte α1A-ARs in these findings, we created a mouse line (cmAKO) with cardiomyocyte-
specific deletion of the α1A-AR and found that cmAKO mice had markedly increased mortality 
and exacerbated pathological ventricular remodeling following myocardial infarction (MI)9. 

Applying our computational deconvolution algorithm to this model enabled us to pinpoint 
how shifts in cell populations — like increases in fibroblasts and decreases in cardiomyocytes — 
directly influence gene expression changes during cardiac injury. Our results produce novel 
insights into the specific cellular mechanisms affected by α1-AR and provide an invaluable toolkit 
for similar transcriptomic studies, offering a robust, scalable strategy to interpret complex 
biological data when there are shifts in cell type heterogeneity. 

Our method introduces a significant improvement in the analysis of bulk RNA sequencing 
data by accurately estimating the contributions of distinct cell types within heterogeneous cardiac 
samples. This approach addresses a common limitation in traditional bulk RNAseq analysis, 
where gene expression differences due to changes in cell state are difficult to distinguish from 
those due to changes in cellular abundance10. As cellular remodeling is an expected feature of 
many cardiac diseases, transcriptomic studies in the heart often identify cell-type specific markers 
as significantly differentially expressed. These changes in expression are frequently attributed to 
changes in biological activity rather than relative cellular abundance74,75. When cellular makeup 
has been addressed in cardiac bulk RNAseq studies, changes in cellular abundance have often 
been post-hoc inferred through alterations in cell-type-specific transcripts72,75. By contrast, our 
approach aims to precisely model the entire cellular state of the heart before comparisons of gene 
expression are performed. In our approach, distinguishing these contributions represents an 
advancement to the field that offers a straightforward means of interpreting complex 
transcriptomic data obtained from bulk tissue, allowing researchers to quantify the contributions 
of individual cell types to total gene expression. 

Researchers have produced a tremendous amount of bulk RNAseq data in the last decade 
and it remains a first-line tool for profiling transcriptomes. More than 11,000 bulk RNA-seq 
datasets have been deposited in NCBI’s Gene Expression Omnibus (GEO) and 79% of NGS data 
deposited in 2022 was from bulk RNA datasets, rather than single-cell studies 76. As such, this 
approach opens new avenues for both retrospective and prospective research projects. Existing 
cohorts may be reanalyzed, potentially uncovering novel insights that were previously obscured 
due to changes in cellular abundance. Furthermore, by correcting for cell-type abundances, our 
method helps to refine models of disease mechanisms by delineating effects to their cell-type of 
origin, thereby improving the predictive accuracy of transcriptomic markers of disease. 

While our computational method significantly enhances the analysis of bulk RNA 
sequencing data from heterogeneous samples, it is not without limitations. One key challenge is 
the reliance on accurate cell-type-specific markers. Incorrect or suboptimal marker selection can 
lead to inaccurate deconvolution results, which may obscure true cellular contributions to gene 
expression changes. Ensuring the precision of these markers requires extensive validation, which 
can be time-intensive and is limited by the availability of high-quality reference datasets. Indeed, 
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this method is beholden to both the cell types and states present in the supplied reference, which 
may require researchers to generate their own references if applied in more niche biological 
contexts. If cell types with expected proportion changes are excluded from the study, it is likely 
that their effects will be misattributed to other, highly correlated cell types, as seen in the case of 
immune-cell-specific mechanisms that are inappropriately associated with cardiomyocytes in our 
analysis. Moreover, while our method improves the resolution of cellular contributions, the broader 
field of cell type deconvolution struggles to maintain accuracy as the number of included cell types 
and/or their similarity to one another increases74.  

In this study, we defined the transcriptomic signatures that result from the absence of 
cardiomyocyte α1A-ARs in the uninjured and post-infarct state. Leveraging a novel computational 
approach, we accurately estimated cell type-specific contributions within bulk RNA sequencing 
data. Further, we validated the method by visualizing the spatial expression of two representative 
transcripts, recapitulating the findings from our computational model. This method enabled us to 
precisely dissect how shifts in cellular composition, such as increases in fibroblasts and 
decreases in cardiomyocytes, directly impact gene expression during cardiac stress. The resulting 
composition-aware dataset identified novel associations with pathways and individual transcripts 
that will informfuture mechanistic studies to expand our understanding of the cardioprotective 
effects of 1A-ARs. Additionally, these results pose implications for how clinicians may consider 
the tissue-level effects of therapeutics mediated by adrenergic receptors. Future efforts to define 
cellular composition in cardiac tissue may benefit from benchmarking the accuracy of 
deconvolution algorithms when applied to a broader range of cellular states and types, as prior 
studies have found current methods to vary in their performance across different tissue 
contexts77,78.  This study not only contributes to our understanding of the molecular dynamics 
within the heart but also offers a robust, scalable strategy to uncover hidden insights in pre-
existing and future transcriptomic data. 
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Figure 1. Transcriptomic profiling and analysis in cardiomyocyte-specific α1A-AR 
knockout mice following myocardial infarction (MI). A, Schematic of the experimental 
design for inducing MI in cmAKO or WT mice and subsequent bulk RNAseq analysis from 
tissue collected at the infarct border zone and matched sham locations. B, Principal 
Component Analysis (PCA) of RNA counts showing stratification of samples by treatment 
along PC1, accounting for 90% of the variance. C, Differential expression analysis indicating 
MI as the condition with the highest number of differentially expressed genes (DEGs), 
followed by the cmAKO and MI interaction; upregulated genes are shown in blue and 
downregulated genes in red. D, Volcano plot of DEGs specific to the cmAKO response to LCA 
ligation, highlighting genes like Timp4 (fibroblasts) and Aplnr (cardiomyocytes) with p < 0.05 
and fold change > 1.5. E, Gene Ontology (GO) enrichment analysis showing biological 
processes significantly influenced by MI, cmAKO, and their interaction, such as extracellular 
matrix organization and cardiac muscle cell development. Terms with identical p-values have 
been consolidated.
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Figure 2. Development and characterization of a cell-type-specific gene expression reference panel from 
single-nucleus RNA sequencing (snRNAseq). A, Generation of the reference panel involved identifying five major 
cell types in snRNAseq data from pooled nuclei of left ventricles of untreated C57BL/6J mice. After preprocessing, 15 
marker genes per cell type were selected based on significance using the findMarkers function from scran. B, 
Annotation and clustering within the snRNAseq reference identified five clusters, each labeled with broad cell type 
names based on known markers. Post-processing included dimensional reduction and exclusion of clusters with 
fewer than 400 nuclei or unclear cardiac cell type annotations, resulting in 20,061 nuclei across the five clusters. C, 
Specificity of cell cluster gene expression markers demonstrated by the top three markers for each cell type, selected 
by log-fold-change in one-versus-all testing between clusters. Marker visualization includes point size proportional to 
the nuclei expression and color coding by average expression within each cluster.
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Figure 3. Deconvolution of cell type proportions from bulk RNAseq data and their dynamics during 
myocardial infarction in cardiomyocyte-specific α1A-AR knockout mice. A, Overview of the reference-based 
deconvolution approach which utilizes gene expression markers to estimate the proportions of cell types 
contributing to bulk gene expression. B, Generation of cell-type enriched bulk RNAseq data involved isolating 
cardiomyocytes, fibroblasts, and endothelial cells from left ventricles of untreated WT mice using Langendorff 
perfusion, gravity sedimentation, and CD31-bead binding. C, Validation of the deconvolution pipeline using bulk 
RNAseq from pure cell type fractions as ground-truth samples, depicted in a ternary plot where each dot 
represents a replicate, color-coded by intended enriched cell type, indicating high accuracy of the composition 
estimates. D, Estimation of cardiac cell type composition changes post-myocardial infarction (MI) and in α1A-AR 
knockout (cmAKO) mice, showing increased proportions of macrophages and fibroblasts and decreased 
proportions of cardiomyocytes, with more pronounced changes in cmAKO mice. E, Results from a Dirichlet 
regression modeling cell type proportions as influenced by cmAKO, MI, and their interaction, revealing significant 
effects on several cardiac cell types. CMs = Cardiomyocytes; ECs = Endothelial Cells; FBs = Fibroblasts; WT = 
Wild-Type; MI = Myocardial Infarction
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Figure 4. Impact of cell type composition on differential gene expression during myocardial 
infarction in α1A-AR  knockout mice. A, Differences in either cell type abundances or novel states 
can lead to gene expression differences in bulk tissue. B, Schematics of one simulation of 
compositional changes in differential expression; bulk RNAseq samples were generated with varying 
cardiomyocyte proportions (30-70%). All samples were compared against the 50% CM group with 
and without cell-types in the model. C, DESeq2 simulations show increases in differentially expressed 
genes with compositional differences; including cardiomyocyte proportions in the analysis ablates this 
effect. Each dot is one simulation of 500 genes. D, Upset plot showing DEGs related to each variable 
after adjusting for cell-type composition. Cardiomyocyte proportion is the second strongest 
asssocaited variable. E, Volcano plot showing differential expression of genes associated with 
cmAKO X MI interaction after adjusting for cell type proportions. F,  Changes in GO term associations 
and their significance before and after cell type adjustment, depicted through a scatter plot of 
Q-scores. Many myocardial infarction-associated GO terms are attributed to changes in cell type 
abundance. G and H, Listing of top GO terms post-adjustment showing significant associations with 
myocardial infarction and cmAKOxMI (G), and with changes in cardiomyocytes and fibroblasts (H)
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Figure 5: Fluorescent in-situ hybridization experimentally validates composition-aware differential gene 
expression results. A) Volcano plot showing expression changes associated with the unique response of 
cmAKO mice to myocardial infarction before (yellow) and after (blue) including terms for cardiomyocyte and 
fibroblast abundance in the DESeq2 model. Two highly significant genes, Zbtb16 and Pik3r1, are representative 
of a pattern of reduced significance in the updated model. B) RNAscope of Pik3r1 (cyan) and Zbtb16 (purple) 
overlayed with IHC showing DAPI (blue) and Actinin (red) in mouse left ventricular tissue. Representative 
images of the border zone, infract region, and a remote region from sham surgery control wild-type mice, 
wild-type mice after LCA ligation and cmAKO mice after LCA ligation. C) Adjusting for cardiomyocyte 
abundance minimizes differences in spatial expression of Pik3r1 and Zbtb16 in the infarct region, indicated by 
the post-adjustment expression increases in cmAKO MI and reductions in WT MI. Five representative regions 
were evaluated in each zone from panel B and the the number of expression spots were tallied for each gene. 
Actinin was used as a proxy for cardiomyocyte abundance and spot counts were normalized to actinin 
abundance (blue) or not (yellow). To control for inter-slide technical variation, spot counts were normalized to 
slide-matched measures in a remote region (shown on the y-axis).
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