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Purpose: Occupational and environmental Pb-exposure is associated with protein aggregation diseases which typically
present in elderly populations (Parkinsons and cataract). Post-translational processing of crystallins, the major structural
proteins of the lens, is altered with short-term Pb-exposure in Fisher 344 rats. In addition, lenses from aged rats become
opaque upon long-term exposure to Pb in organ culture. To explore the route to lens opacification in the presence of Pb,
cultured lenses from young rats which exhibit higher metabolic activity in lens culture and are more susceptible to
experimental cataract in vivo and in vitro were exposed to Pb and evaluated for morphological and biochemical alterations.
Methods: Following culture  in Pb (as lead nitrate) for four days (in the presence/absence of oxidative challenge), lenses
were examined for clarity, integrity of epithelial layer, and molecular stability including crystallin post-translational
modification and choline transport. Clarity of lenses cultured with/without Pb for up to 8 days was assessed to determine
if Pb exposure would accelerate opacification.
Results: Lenses cultured in Pb for four days exhibited epithelial abnormalities including epithelial cell multilayering and
nuclei abnormalities with extension of the nucleated epithelial cells past the bow region. Alterations in crystallin post-
translational modifications and decreased membrane transport of choline were noted without corresponding lens
opacification or altered α-crystallin chaperone activity. Lenses treated with Pb according to the same exposure protocol
with subsequent challenge by hydrogen peroxide became opaque while the contralateral control lenses did not. Lenses
which were cultured in the presence of Pb for longer periods with no subsequent oxidative insult exhibited lens failure at
earlier time points than did the controls.
Conclusions: These data indicate that Pb-exposure can accelerate the degradation of the cultured lens through induction
of epithelial cell abnormalities, induce structural protein modifications before opacity, and predispose the lens to
opacification with subsequent oxidant challenge.

The banning of Pb, a potent environmental toxin, as a
pigment, pesticide, and fuel additive has led to decreases in
the Pb burden of the general population and of children
specifically [1-3]. However, approximately 800,000 children
in the United States have blood Pb levels exceeding the Center
for Disease Control recommended level of 10 µg/dl or less
[4]. Long-term deficits in neurologic, reproductive, and visual
function have been associated with in utero, childhood and
occupational exposure to Pb [5-11]. Lenticular opacities are
associated with decades-prior adult Pb-exposure which
supports the hypothesis of Pb as a predisposing effector
leading to subsequent lens opacity [12].

The mechanisms related to lenticular opacity associated
with Pb-exposure have been explored. Pb accumulation in
normal healthy lenses during organ culture or in vivo after oral
dosing may be directly related to Pb binding to the lens capsule
[13,14]. Pb has a potent effect on glutathione metabolism,
metabolic activity, and metal homeostasis in lenses from adult
rats exposed for longer periods to low levels of Pb [15,16].
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Antioxidant or chelator administration to rats following Pb-
exposure can partially alleviate the loss of glutathione and the
resultant increases in protein bound thiols [17,18]. Our
research has previously established that short-term oral Pb-
exposure in 3 month old rats following 5 weeks of Pb-
exposure results in altered post-translational modification of
the major lens structural proteins, crystallins, without
opacification. Additionally, lenses from older rats (4.5
months) became opaque when cultured for three weeks with
Pb [17] even though metabolic activity in aged lenses is a
fraction of younger lenses. Thus, in vivo and in vitro rodent
models of Pb-exposure have implicated oxidative stress and
membrane binding as possible mechanisms for lenticular
opacification.

With the association of Pb exposure and decades later
cataract formation, it seems likely that Pb exposure acts in
conjunction with later systemic stressors to induce
opacification. The current study examines whether Pb acts as
a predisposing effector for lens opacity in conjunction with a
secondary oxidative challenge in cultured lenses from young
rats (approximately 4–6 weeks of age). Additionally, this
study explores the effect of Pb exposure on epithelial
transport/cellular structure and crystallin protein homeostasis
as possible mechanisms through which Pb may induce
opacity.
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METHODS
Materials: Pb nitrate, sodium nitrate, urea, dithiothreitol
(DTT), depleted α-lactalbumin, 3-[(3-
Cholamidopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS), trichloroacetic acid, trifluoroacetic acid, α-
cyano-4-hydroxycinnamic acid and sequencing grade trypsin
were purchased from Sigma Chemical Company (St. Louis,
MO). Immobilized pH gradient (IPG) strips were purchased
from BioRad (Hercules, CA). Bis-Tris gels, MOPS running
buffer, SilverQuest and Colloidal Blue staining kits were
purchased from Invitrogen (Carlsbad, CA).
Lens culture: Eyes were obtained from Sprague-Dawley
(Charles River, Germantown, MD) rats (4–6 weeks of age)
immediately after euthanasia following the NIH Animal
Research Advisory Committee guidelines. The competent
lenses were cultured in modified TC-199 media as previously
reported [19,20]. The osmolarity of culture media for all
groups was adjusted to 298±2 mOsm. Briefly, lenses were
placed in 2.0 ml of modified TC-199 medium in 24 well plates
and allowed to equilibrate in an incubator (37 °C, 5% CO2)
for 2 h; lenses that were damaged during dissection were
identified and discarded during this period by measuring
protein leakage into the medium. After the equilibration
period, surviving “competent” lenses were cultured with 1 µM
Pb(NO3)2 (~20 μg/dl) or unmodified media. The media was
changed every other day for a period of 3–9 days. An
additional group, 2 µM NaNO3 (n=3), was initially included
as a counter ion control exposure grouping to assess the impact
of nitrate concentration on lens competence. As TC-199
media contains ferric nitrate, the additional nitrate added
through addition of the Pb salt doubled the media nitrate
content. The lenses that were cultured in NaNO3 did not vary
from the lenses cultured in unmodified media in hydrogen
peroxide clearance, choline uptake, protein disulfide
formation or in morphology. The data from the NaNO3 (n=3)
and unmodified media (n=6) for these assays were combined
and represented as the Control group. Subsequent analyses,
including the 2D gels and α-crystallin chaperoning assay, used
lenses cultured in unmodified media as controls and without
the inclusion of a NaNO3 group since the added nitrate salts
did not affect lens competence.
Measurement of hydrogen peroxide concentration: For the
hydrogen peroxide challenge of lenses cultured in Pb(NO3)2

(4 lenses per group; Control, 1 µM Pb), the Pb containing
media was replaced after 3 days with modified TC-199
supplemented with 250 µM hydrogen peroxide and changed
daily. One hundred microliter aliquots of the medium were
removed to assay for hydrogen peroxide clearance. H2O2

concentration was measured after 2 h using a Model 2700
Biochemistry Analyzer (Yellow Springs Instrument Co.,
Yellow Springs, OH). After 2 days of hydrogen peroxide
exposure the lenses were collected and photographed to
document alterations in lens clarity. The experiment was
repeated 3 times for a total of 12 lenses per group.

Tritiated choline uptake assay: Tracer levels (0.2 µCi per
well) of [3H]choline were added to cultures after 4 days in the
presence or absence of Pb nitrate (1 µM Pb, 5 lenses per
group). After 4 h, the lenses were removed from culture, rinsed
with PBS, blotted, and weighed. The lenses were
homogenized in 1 ml of cold 10% trichloroacetic acid and the
soluble fraction was collected. One hundred microliters of the
lens supernatant and 100 ul of the media were counted on a
scintillation counter. The lens water (L) to medium (M)
concentration ratios (L/M) were calculated as previously
published [20]. In brief, the lens weight was multiplied by 0.65
to give the lens water volume. The total counts were adjusted
for lens water volume and divided by the total counts per
media volume to give the L/M ratio. The experiment was
repeated once for a total of 10 lenses per group.
Protein bound thiols: Following 4 days of culture in the
presence or absence of various concentrations of Pb nitrate,
lenses were collected and homogenized in 500 µl cold 10%
TCA. The protein pellets were washed three times with 10%
TCA and then resuspended in 10 mM Tris pH 7.4. One
hundred microliters of resuspended pellet was mixed with
10 µl of 2.5% sodium borohydride in 0.01 N NaOH. The
mixture was incubated for 1 h at 37 °C. Ten percent TCA was
added to a final concentration of 1% to stop the liberation of
thiols. The freed thiol levels (nmol/mg) were measured by the
Ellman’s assay as previously described [19]. A total of 6
lenses per group were processed and assayed.
Lens epithelial histology: Three lenses per group were
cultured for 3 days in the presence or absence of Pb nitrate as
above, fixed in 2.5% glutaraldehyde in cacodylate buffer for
4 h, and transferred to 10% buffered formalin. The fixed
samples were embedded in methylmethacrylate, sectioned
and stained with hematoxylin and eosin (H&E). The
experiment was repeated twice for a total of 9 lenses per group.
Three sections per lens were examined for histological
alterations.
Purification of α-crystallin: Three to four lenses per group
(control and 1 µM Pb nitrate) were homogenized in 0.5 M Tris
buffer (pH 7.4) with 0.1 M KCl, 1 mM EDTA, 10 mM 2-
mercaptoethanol, and 0.2% NaN3. Following centrifugation
at 10,000× g for 30 min at 4 °C, the sample was loaded on a
Superose-12 column and eluted with the same buffer with 1 ml
fractions collected. The α-crystallin peaks were identified by
SDS–PAGE and pooled for reinjection on the same HPLC
system [21]. The final α-crystallin fractions were pooled,
desalted, lyophilized and stored at −70 °C until use. A total of
24 lenses per group were processed for a resulting yield of 6–
8 samples per group (Control and 1 µM PbNO3).
2D gel electrophoresis: The first dimension isoelectric
focusing was performed using a BioRad Protean IEF Cell with
7 cm 3–10NL immobilized pH gradient strips. Aliquots of the
purified α-crystallin or whole lens samples (cytoskeletal
analysis) were homogenized on ice with 8 M urea containing
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4% CHAPS and 100 mM DTT (rehydration buffer). No
insoluble material was visible. Four micrograms of lens
protein was loaded onto the IPG strips with rehydration buffer
containing 2% ampholytes and bromophenol blue for a total
volume of 125 μl. IEF strips were rehydrated for 12 h and then
a three step program was used including Step 1: initial removal
of salts (500 V for 500 V-h); Step2: an intermediate step (1000
V for 2000 V-h); and Step 3: the final protein separation
according to pI (8000 V for 16,000 V-h). Following protein
IEF focusing, the IPG strips were equilibrated with 100 mg/
10 ml DTT and 400 mg/ml iodoacetamide and the second
dimension SDS–PAGE was performed using 12% pre-cast
Bis-Tris gels and MOPS as the running buffer. The gels were
fixed and stained with either silver or colloidal Coomassie
blue G-250. The gels were scanned with a Molecular
Dynamics Personal Densitometer and analyzed using
Phoretix image analysis software (Nonlinear Dynamics,
Newcastle upon Tyne, UK). Six samples from the 1 µM Pb
and 6 samples from the control group were analyzed in
duplicate.
Mass spectrometry: Protein spots of interest were cut from the
gel, destained in 50% methanol in 20 mM ammonium
bicarbonate buffer, and digested overnight with 10 ng/ul
trypsin [22]. Peptides were extracted in successive washes of
aqueous acetonitrile (50% acetonitrile) and acetonitrile
containing 0.1% trifluoroacetic acid (TFA) and plated on a
steel target (α-cyano-4-hydroxycinnamic acid as the matrix).
Data acquisition was performed on a Voyager DE-STR
MALDI-TOF-MS (Applied Biosystems, Carlsbad, CA) in the
reflectron mode with 150 ms delay time and an average of 100
spectra collected. Protein identification was based on 4 or
more dominant masses corresponding to unmodified peptides
from a protein with a peptide mass deviation of less than
0.03% which gave the highest MOWSE score [23] upon
searching of the NCBInr.2005.06.01 database by Protein
Prospector algorithm.
Measurement of α-crystallin chaperone activity: α-Crystallin
and apo-α-lactalbumin (1:3 weight ratio) were dissolved in
50 mM phosphate buffer (pH 6.82) containing 0.1 M NaCl
and 2 mM EDTA. DTT at a final concentration of 50 mM was
added to initiate denaturation of the lactalbumin. Aggregation
was monitored as a function of lactalbumin aggregation as
previously described [21].
Statistical analysis: Student’s t-tests were calculated
(GraphPad Prism 4.0; GraphPad Software Inc., La Jolla, CA)
to determine statistical significance of the mean ±standard
deviation of the Pb groups versus the control groups for all
assays.

RESULTS
Lenses cultured in Pb fail at an accelerated rate compared
with control lenses: To examine whether longer term culture
of young lenses in the presence of Pb would lead to lens

opacity formation (as does long-term culture of older lenses)
without subsequent oxidative challenge, lenses were cultured
up to 9 days in the presence or absence of Pb nitrate. The lens
clarity was monitored and graded daily according to the chart
shown in Figure 1A. Lenses cultured for 3 days in the presence
or absence of Pb were transparent (Figure 1B). The clear
lenses were weighed and the degree of radiolabeled sulfur-
containing amino acid incorporation was measured with no
differences observed between the control and Pb (data not
shown). This indicates that short-term Pb-exposure does not
induce osmotic swelling or lens shrinkage in lens organ
culture and the lenses remain competent to synthesize new
protein. This was expected due to the previously reported
prolonged culture times necessary for opacification of older
lenses in the presence of Pb [17] and the lack of cataract
formation following oral Pb dosing in young rodent models.

For control lenses, at culture day 5, roughly 80% of the
lenses were at Stage 1, 10% at Stage 2, and 5% at Stages 3
and 4. By culture day 8, 50% of the lenses had progressed to
Stage 2, with approximately 7% at Stages 3 and 4. This

Figure 1. Pb accelerates opacification of cultured lenses. A: Lens
opacity grading standards. B: Lenses cultured in Pb containing media
develop opacities at a faster rate than control cultured lenses.
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indicates that 8 days in culture is approaching the outer limits
of lens viability under the conditions employed. In contrast,
by day 5 in culture with Pb only 30% of the lenses remained
at Stage 1. At culture day 8, the Pb exposed lenses have all
advanced to Stage 3 and 4 indicating that lenses cultured in
the presence of Pb (without subsequent secondary oxidative
challenge) fail at an accelerated rate as compared to the control
lenses.
Hydrogen peroxide challenge induces lenticular opacities in
lenses cultured with Pb: To examine whether lenses cultured
in the presence of Pb are predisposed to failure, lenses were
cultured for 3 days in the presence or absence of Pb nitrate
and then challenged for 2 days with 250 µM hydrogen
peroxide. Lenses cultured with Pb exhibit a higher clearance
of hydrogen peroxide from the media than the control lenses
(Figure 2A) at 2 h after initiation of oxidative challenge. This
may be due to an increase in catalase activity similar to that
which has previously been reported for red blood cells
collected from Pb exposed animals. Control lenses challenged
with 250 µM hydrogen peroxide for 2 days remain clear (5
days total culture) but the Pb cultured lenses could not
withstand this oxidative challenge and developed slight to
moderate opacities located in the subcapsular space extending
from the capsule boundary to cortical region in most instances
(Figure 2B) with rare involvement of the nuclear regions.
Complete lens opacification was noted by the beginning of
day 7 for all of the Pb-exposed lenses with ~80% of control
lenses remaining clear (stages 1 and 2 of grading scale in
Figure 1A).

Lens membrane transport decreased and protein oxidation
increased following culture with Pb: The degree of protein
mixed disulfides present, a measure of protein oxidation and
oxidative stress, was increased in Pb-exposed lenses (4 days;
Figure 2A). In Figure 2A, the effect of Pb on the active
transport of tritiated choline, a sensitive indicator of lens
damage [24], from the culture medium is also shown.
Statistically significant decreases in the level of tritiated
choline accumulated by the Pb exposed lenses are evident as
compared to the controls. Together, the alterations in
epithelial nutrient transport and markers of increased
oxidative stress may predispose the lens to failure with a
subsequent challenge.
Epithelial histology is altered after Pb culture: Alterations in
the lens epithelium following culture in 1 μM Pb for 3 days
as compared to the control cultured lenses (Figure 2C) include
smaller and irregularly shaped nuclei anterior to the bow
region and multilayering of cell layer. The controls exhibit a
single cuboidal epithelial layer with regularly spaced cells
with ovoid nuclei. No differences were evident in the posterior
fiber cell region of the lenses (data not shown). These data
imply that culture in Pb containing media induces
abnormalities in epithelial cells including defects in
membrane transport and proliferation.

α-crystallin 2D gel patterns are altered following lens culture
with Pb nitrate: α-Crystallin, a molecular chaperone and
major lens structural protein, is believed to maintain lens
transparency through prevention of protein aggregation. Post-
translational modification of α-crystallin may negatively
affect maintenance of lens clarity through decreased

Figure 2. Pb predisposes lenses to opacification in culture. A:
Increased clearance of H2O2 (250 µM) from the culture media,
increased protein bound thiols (Pr-bound thiols), and decreased
choline uptake for lenses cultured with Pb (3 days) as compared to
the control lenses. B: Lenses cultured with 250 µM H2O2 following
culture in the presence of Pb (3 days; 1 uM Pb(NO3)2) induced lens
opacities in the Pb exposed lenses but not the control lenses. C:
Histology of the bow region of Pb-cultured lenses (3 days without
peroxide challenge; 1 uM Pb(NO3)2), magnification 20× for H&E
sections. Epithelial cell doubling, irregular nuclei, and nuclei loss
were evident in the Pb exposed samples (as shown by arrowheads).
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chaperone function. To examine the degree of post-
translational modification of α-crystallin in Pb exposed
lenses, α-crystallin was purified from lenses cultured for 4
days in the presence or absence of Pb and separated by two
dimensional gel electrophoresis with the individual protein
spot intensities quantified by densitometry. A comparison of
the 2D gel spot patterns obtained from 10µg of protein from
control and Pb exposed lenses is shown in Figure 3A. The
dominant αA-crystallin form is denoted as αA1-crystallin
with an apparent molecular weight of 22 kDa and pI of 6.3 in
both the control and Pb exposed lenses. Several αA-crystallin
spots which are related to αA1-crystallin are present in the
control and Pb exposed lenses representing both modified
(αA2- and αA3-crystallin) and cleaved (αA4-crystallin) forms
of this same αA-crystallin isoform. The apparent molecular
weight of both αA2- and αA3-crystallin is 22 kDa while αA4-
crystallin is 17 kDa. These αA-crystallin spots are more acidic
than the dominant αA1-crystallin spot, ranging from a pI of
5.7 to 6.0. Spot αA5-crystallin is barely visible on the gel from
control cultured lenses but is clearly visible on the gels from
lenses cultured in the presence of Pb. Spot αA5-crystallin has
an apparent molecular weight of 19 kDa and a pI of 6.45. Three
additional spots (αA7–9-crystallin) were identified as an
alternatively spliced form of αA-crystallin, the αAins-crystallin
form, which is present in rodents but not humans or other
primates [25].

Six forms of αB-crystallin are visible on the gels shown
in Figure 3A. Spots αB1-, αB4-, αB5-, and αB6-crystallin are
present on gels from both the control and Pb exposed lenses.
Spots αB2- and αB3-crystallin, present only in the Pb-exposed
lenses, are more basic but the same molecular weight as the
dominant αB-crystallin spot, αB1-crystallin. The spot
boundary of the αB2- and αB3-crystallin spots varies from gel
to gel which may be indicative of poor separation in the basic
region of the first dimension IEF focusing. Spots αB1- through
αB5-crystallin have the same apparent molecular weight of
24 kDa and range in pI from 6.8 to 7.4. Spot αB6-crystallin
has a molecular weight of 23 kDa and pI of 6.7.

Quantitation of the relative spot densities of the different
forms of α-crystallin is shown in Figure 3B (only protein spots
sufficiently resolved for quantitation and whose abundances
are altered are reported). For the αA-crystallin spots, a relative
decrease in more acidic forms of αA-crystallin, both cleaved
and modified forms (Spots αA2- and αA4-crystallin), was
observed in the lenses cultured in the presence of Pb as
compared to the control lenses. The relative abundance of the
more basic cleaved form, αA5-crystallin, is increased in the
Pb exposed lenses. For the αAins-crystallin isoform, spots
αA8- and αA9-crystallin are increased in abundance in the Pb
cultured lenses when normalized against the dominant αA1-
crystallin spot. The spot αA7-crystallin does not change
significantly in the Pb cultured lenses as compared to the
control cultured lenses. This indicates alterations in the

Figure 3. Pb alters α-crystallin processing in cultured lenses. A: Two
dimensional gels of HPLC purified α-crystallin from cultured lenses
(3 days; 1 uM Pb(NO3)2). B: Quantification of the relative amounts
of various post-translationally modified forms of α-crystallin in
cultured lenses (3 days; 1 uM Pb(NO3)2). Spot densities (normalized
to either dominant αA- or αB-crystallin protein spot) of different
isoforms of α-crystallin are altered with Pb-exposure (3 days; 1 uM
Pb(NO3)2). Only protein spots sufficiently resolved from
neighboring protein spots were quantified. C: α-Crystallin purified
from lenses exposed in vitro to Pb (3 days; 1 uM Pb(NO3)2) does not
exhibit alterations in chaperone function. Dash/dot line (- - -) shows
aggregation of denatured lactalbumin without α-crystallin. Solid line
(—) shows aggregation of denatured lactalbumin in the presence of
α-crystallin purified from lenses cultured in control media.
Unconnected circles (o o o) show aggregation of denatured
lactalbumin in the presence of α-crystallin purified from lenses
cultured in the presence of Pb.
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transparent lenses which have been cultured in the presence
of Pb nitrate. It is also interesting that the total amount of
αAins-crystallin appears to increase in lenses cultured with Pb
nitrate since there is approximately 5%–10% more of two of
the three spots identified as αAins-crystallin for a total change
in the amount of αAins-crystallin by 10%–20%. This result was
not statistically significant but the trend was evident in nine
out of twelve individual lenses examined in the Pb exposed
group.

Three forms of αB-crystallin which are present in both
the control and Pb cultured lenses, representing more acidic
(αB4- and αB5-crystallin) and cleaved forms (αB6-crystallin),
have significant increases in relative abundance in the Pb
cultured lenses when normalized against the dominant spot
form of αB-crystallin (αB1-crystallin; Figure 3B). Spots αB2-
and αB3-crystallin are only found on gels from the Pb exposed
lenses and represent basic modifications of αB1-crystallin
which could not be sufficiently resolved to quantitate αB1-
crystallin on a small format gel.
α-Crystallin chaperone activity unaltered by lens culture in
the presence of Pb for 4 days: The degree of aggregation of
chemically denatured lactalbumin is decreased in the presence
of α-crystallin (Figure 3C). The lactalbumin without α-
crystallin trace (dotted/dashed line), shows an absorbance
intensity of 0.55 at 4,500 s. When lactalbumin is denatured in
the presence of α-crystallin purified from lenses cultured with
or without Pb nitrate, no differences in the absorbance spectra
from 0 to 4,500 s are observed which demonstrates an
equivalent α-crystallin chaperone activity. Short-term lens
culture in the presence of Pb, which alters the post-
translational modification profile of α-crystallin, does not
alter chaperoning activity.

DISCUSSION
Pb is an ocular toxin which negatively affects the lens
antioxidant balance and accumulates in opaque human lenses
[15,26]. Epidemiological evidence identifying elevated tibial
Pb levels as a risk factor for cataract decades after the initial
Pb-exposure supports the hypothesis that Pb-exposure may be
associated with impaired lens competence [12]. Whether Pb
acts as direct lenticular toxin or is an associative marker for
causal agents that may include poor diet, increased risk of
diabetes, or other environmental exposures remains
controversial [27]. The current in vitro study examined the
ability of Pb to predispose the lenses of young rats (4–6 weeks
old) to opacification or to directly induce lenticular
abnormalities. The present study employed a Pb level which
is physiologically relevant (1 µM, 20 µg/dl) although the
levels of Pb in ocular fluids after chronic or acute in vivo Pb-
exposure at this dosage are unknown. This Pb level was
sufficient to induce lens opacification, though at the outer time
limit of which rodent lenses can be organ cultured. This may
support the hypothesis that Pb is a slow-acting ocular toxin

with long-term exposure increasing the risk of ocular
pathology.

The mammalian lens is composed of a single layer of
nucleated cuboidal epithelial cells which differentiate at the
bow region into elongated lens fiber cells which at maturity
lack nuclei and organelles [28]. Rat lenses cultured in the
presence of Pb exhibited abnormalities in the lens epithelial
cell layer after four days. Of particular interest are the cell
layer multilayering and abnormal morphology of nuclei,
which coupled with the decrease in choline uptake, indicate
significant alterations in membrane integrity and function and
possibly in cell proliferation. Carrier assisted choline transport
into healthy lenses primarily supports phosphocholine
synthesis, membrane generation, and cell synthesis with
deficits in choline uptake preceding cataractogenesis. The
region where epithelial cells differentiate into mature fiber
cells also exhibited abnormalities including the extension of
nucleated cells past the bow region and the presence of
vacuoles in a few of the lenses exposed to Pb (data not shown).
These studies demonstrate that Pb can negatively impact lens
epithelial cell proliferation. Examination of the impact of Pb-
exposure on the retina, following either developmental or
adult exposure, identified decreases in the number of rods and
bipolar cells and in rhodopsin levels which persisted after the
initial Pb insult [29]. Together, these studies demonstrate that
physiologically relevant dosages of Pb can negatively impact
ocular tissue structure. The effect of Pb exposure on the vitreo-
retinal interface and the vitreous humor physico-chemical
homeostasis including the oxygen diffusion pattern as well as
the transport of Pb into aqueous and vitreous humor is of
considerable interest for future studies.

Crystallins, the dominant structural proteins of the lens
which account for over 90% of the total protein complement,
are responsible for lens transparency and refractivity. Post-
translational modifications of α-, β-, and γ-crystallins occur
during normal lens development, however alterations in
protein processing have also been associated with cataract
formation [22,30-35]. The two isoforms of α-crystallin (αA-
and αB-crystallin) share approximately 60% sequence
homology. αB-crystallin is found in non-ocular tissues and
can be upregulated in response to various tissue stresses
[36-40].

The current study examined whether alterations in the
post-translational modification of the two α-crystallin
isoforms occurred in the whole lens in conjunction with the
epithelial abnormalities induced by Pb-exposure. The
observed increase in protein mixed disulfides with increased
abundance of acidic and cleaved forms of αA- and αB-
crystallin before lens failure indicates alterations in oxidative
post-translational modification of lens proteins does occur
before lens opacification. Similar trends in alterations of αA-
crystallin post-translational modifications were observed in
vivo following short-term oral Pb-exposure where the lenses
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remained transparent [17]. However, the relative abundance
of modified αB-crystallin isoforms was not increased in the
in vivo model. This may be due to the inability to differentiate
these modified αB-crystallin isoforms from other crystallins
such as β- and/or γ-crystallin in the prior study of whole lens
crystallin proteins. Conversely, the data presented in this
study may point to a general hierarchy of modification of the
two α-crystallin isoforms (αA- and αB-crystallin) which is
weighted toward early response to chronic toxicant challenge
by αA-crystallin followed later by αB-crystallin modification.
Due to the variance in effective dosage and time course
between the in vitro and in vivo model, this question is not
answered by comparison between the two studies. The present
study supports the hypothesis that Pb-exposure induces
alterations in crystallin processing before opacification–
indicating that not only is membrane transport and
morphology aberrant following short-term culture with Pb,
but compromised protein processing resulting in altered
thiolation, cleavage, and non-specified modifications which
result in isoelectric point shifts for the soluble dominant
lenticular proteins occurs.

The question of whether protein functional alterations
were evident before opacification was also addressed. Alpha-
crystallin has been identified as a molecular chaperone of the
sHsp family which prevents protein aggregation due to
cellular stresses including oxidative damage [41]. α-Crystallin
purified from lenses exposed to Pb for 4 days did not exhibit
decreased chaperone function as compared to α-crystallin
purified from the control lenses, even though the post-
translational processing of α-crystallin was altered at this time
point. We did not assess the impact of longer term culture in
the presence of Pb on chaperone function as significantly
greater proportions of lenses were progressing toward
complete lens failure by day 5 of culture in this group with
insoluble protein aggregates visible. Though the data are not
presented here, stage 3 and 4 lenses (~50% of lenses on day 5
in the Pb-group) exhibited dramatic cleavage of all crystallins
present on 2D gels and swelling of the lenses was evident.

This indicates that the observed opacification following
the addition of a 250 μM hydrogen peroxide challenge for the
Pb-exposed lenses, but not controls (much higher
concentrations of peroxide are needed to induce opacities in
normal cultured lenses [42]), is most likely due to the observed
membrane degradation coupled to oxidation-induced protein
aggregation. This could be due to increased hydrogen
peroxide penetration of the membrane or decreased
antioxidant reservoirs in the Pb-exposed lenses. Our prior
study of the effects of oral Pb-exposure on rodent lenses found
that the lenticular reduced glutathione pool is compromised
[18,43]. Though we have demonstrated that Pb-exposure
alone (4 days culture) does not affect α-crystallin chaperoning
ability—it is highly likely that thiolation of α-crystallin has
occurred with Pb-exposure since increased protein thiolation
was observed. For future studies, it may be interesting to

examine whether thiolation alters α-crystallin chaperoning
capacity following a subsequent oxidative challenge. If so, the
opacification of the Pb-exposed lenses observed following
hydrogen peroxide exposure could be partially related to
inadequate chaperone availability due to a specific post-
translational modification. The data presented in the current
paper does not address this point but does support Pb as a toxin
which predisposes the lens to failure with clear alterations in
the epithelial cell layer before secondary oxidant challenge
and opacification.

The current study also examined whether lenses from
young rats (4–6 weeks) cultured in the presence of Pb for
longer periods of time would develop opacities. The
significantly increased rate of failure of Pb cultured lenses was
associated with development of lenticular opacities, severe
abnormalities of the epithelial layer, increased weights, and
pronounced acidification and degradation of crystallins (data
not shown). Lenses cultured in unmodified media exhibited
the same types of abnormalities upon failure, though failure
was at a later time point. Thus Pb may accelerate the decline
in lens membrane function ultimately leading to cataract
formation in both young lenses and in the older, less
metabolically active lenses (from 4.5 month old rats) from our
prior study [17]. We propose that Pb induces oxidative
imbalances in clear lenses which lead to the epithelial
abnormalities and later to opacification with/without
additional oxidative challenge. Further, we propose that these
oxidative imbalances precede the epithelial membrane
degradation since no evidence of such damage was found in
our in vivo studies though oxidative stress was evident
(unpublished data).

This study has demonstrated the ability of Pb to
compromise lens integrity following short-term in vitro
challenge and to predispose the lenses from 4 to 6 week old
rats to opacities induced by subsequent oxidative challenge.
Pb-exposure also negatively impacted lens clarity at longer
exposure times which may point to a direct cataractogenic
effect of Pb. Coupled with our previous in vivo data
demonstrating alterations in lens homeostasis following short-
term oral Pb-exposure in young rats, these data support the
hypothesis that Pb-exposure is causally related to lens
opacification. While there is a lack of knowledge of the type
of cataract associated with Pb-exposure in humans, the current
study raises the question of whether cortical opacities and lens
epithelial cell biochemical abnormalities may be linked to in
vivo Pb-exposure in humans.
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