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Abstract

Normal aging is associated with a degradation of perceptual abilities and a decline in higher-level cognitive functions,
notably working memory. To remediate age-related deficits, cognitive training programs are increasingly being developed.
However, it is not yet definitively established if, and by what mechanisms, training ameliorates effects of cognitive aging.
Furthermore, a major factor impeding the success of training programs is a frequent failure of training to transfer benefits to
untrained abilities. Here, we offer the first evidence of direct transfer-of-benefits from perceptual discrimination training to
working memory performance in older adults. Moreover, using electroencephalography to evaluate participants before and
after training, we reveal neural evidence of functional plasticity in older adult brains, such that training-induced
modifications in early visual processing during stimulus encoding predict working memory accuracy improvements. These
findings demonstrate the strength of the perceptual discrimination training approach by offering clear psychophysical
evidence of transfer-of-benefit and a neural mechanism underlying cognitive improvement.
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Introduction

Computerized training programs are increasingly being devel-

oped to improve perception, attention and memory abilities in

older adults [1,2]. One cognitive training approach has been to

induce perceptual learning in trainees via repetitive exposure to

sensory stimuli in the setting of adaptively challenging stimulus

discrimination tasks [3]. Perceptual learning in the visual domain

has been documented to occur in young adults [4,5,6,7], although

it has been shown to be specific for the relevant stimulus features in

the task being practiced, such that there is limited improvement in

discrimination of features that differ by orientation [8,9,10], spatial

frequency [10], direction of motion [4,11] or visual field location

[9,10,12,13]. Although perceptual learning has also been docu-

mented to occur in older adults [14,15], the ability, or inability, of

discrimination training to transfer benefits to different perceptual

features has not yet been evaluated. It is reasonable that such

transfer may occur in a population that has baseline perceptual

impairment, such as older adults [3].

Working memory (WM) abilities are diminished in older adults

relative to performance of younger adults [16]. Aspects of age-

related decline in higher cognitive functions such as WM may be

related to deficits in perception [17,18], although impairment has

been shown to exist independent of perceptual differences [19].

We hypothesize that training programs that are successful in

improving perceptual abilities in older adults will also have direct

consequences on higher cognitive functions, such as WM, via the

generation of higher fidelity internal representations of to-be-

remembered stimuli [2]. It is critical to investigate the factors that

facilitate generalization of training-induced benefits, so as to

improve the efficacy of programs targeting cognitive decline in

older populations.

To examine the behavioral and neural effects of perceptual

discrimination training on a distinct perceptual task, as well as WM

performance, in healthy older adults, we evaluated two groups of 15

participants (ages 60–89 years) before (T1) and after (T2) either ten

hours of visual discrimination training over a three to five week period

(training group) or no training (control group). Stimuli used in the

training program were Gabor patterns (sine-waves windowed by a

2D Gaussian), which expanded or contracted two successive times

per trial (Fig. 1a). Participants pressed one of two buttons for each

movement to indicate whether they perceived the stimuli expanding

or contracting. Training was adaptive such that the speed of

expansion/contraction and the duration of the inter-stimulus interval

(ISI) scaled with improvements in response accuracy, so as to

continuously challenge the trainees [20]. Differing colors and

orientations of training stimuli varied across trials to facilitate

generalization. Changes in perception, attention and WM perfor-

mance on untrained tests were assessed for both groups to evaluate

transfer-of-benefit, and simultaneous electroencephalography (EEG)

recordings were utilized to assess neural mechanisms of training-

induced performance changes.
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Results

Neuropsychological Assessment
Baseline neuropsychological measures confirmed that partici-

pants showed normal cognitive performance. MMSE scores

ranged from 27–30 (mean = 29.3, SE = 0.16) with no significant

difference between training and control groups (t(28) = 0.62,

p = 0.87). Performance on NeuroTrax measures of global

cognition, memory, executive function, attention, and information

processing speed were within 2 SD of age and education matched

normative values for every participant for every measure with no

significant differences across groups (all t(28) .0.69, p.0.59).

Behavioral performance on trained perceptual task
Consistent with findings from perceptual learning studies in

young adults [21], the performance of older adults in the training

group significantly improved on the discrimination task, relative to

the untrained control group. Training and control groups showed

comparable performance for the trained task at T1 (all main

effects of group: F,2.23, p.0.15). Trained participants showed

significant improvement at T2 versus T1 in both speed threshold

on an adaptive test version of the trained task, and detection

accuracy on a fixed-speed test version of the trained task (all time

by group interactions: F.5.18, p,0.05). Of note, accuracy

improvement on the fixed-speed test was significant only for

medium and high difficulty levels of the task (i.e., 100 ms and

50 ms stimuli and ISI duration, respectively) and not the low

difficulty level (200 ms stimuli and ISI duration)(Fig. 1b). This

result supports previous evidence of perceptual learning in older

adults with challenging discrimination practice [22].

Behavioral performance on untrained perceptual task
To test whether discrimination training on the trained task

generalizes to improvements in untrained perceptual abilities in

older adults, both groups were tested on a perceptual discrimina-

tion task at T1 and T2 for the direction of motion of random dot

kinetograms (Fig. 1c). A single direction of 100% coherent motion

was presented followed by a second direction (fixed ISI = 2 sec)

and participants indicated whether they perceived the two

directions as the same or different by pressing one of two buttons.

Each participant’s discrimination threshold was determined using

a stair-step procedure (2u step). This discrimination threshold was

later used to determine the perceptual difficulty of the working

memory task (described below) for each participant. T1 baseline

Figure 1. Perceptual discrimination. 1a. Perceptual discrimination training paradigm. Gabor pattern filters required a discrimination judgment of
whether the stimuli expanded or contracted. Training was adaptive, such that changes in the ISI and stimuli duration scaled with performance. 1b.
Training effects on trained task. Trained older adults showed significant improvement over untrained controls at medium and high difficulty tasks
(100 ms and 50 ms stimuli and ISI duration, respectively). 1c. Untrained perceptual discrimination paradigm. Discrimination thresholds for direction of
100% coherent motion was tested using moving dot kinetograms. Participants made a judgment as to whether two presented directions of motion
matched one another. 1d. Training effects on untrained task. Perceptual discrimination thresholds of trained older adults improved significantly more
than untrained controls. * Asterisks indicate significant differences within group from T1 to T2 (paired t-test). Crosses indicates significant group by
time interactions (repeated measures ANOVA).
doi:10.1371/journal.pone.0011537.g001
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measures revealed that perceptual discrimination abilities of older

adults were significantly reduced compared to younger adults

(t(48) = 3.83, p,0.001), who performed an identical task in a

recent study [23]. This is consistent with perceptual deficits that

are known to occur with normal aging [24]. T1 perceptual

thresholds were comparable for training and control groups with

no significant main effect of group (F(1,28) = 0.06, p = 0.80)

(training mean = 28.33, SE = 1.78; control mean = 27.27,

SE = 1.95). However, training significantly improved perceptual

discrimination on this untrained task relative to age-matched

controls (time by group interaction; (F(1,28) = 8.40, p,0.01, effect

size d = 0.91) (Fig. 1d). Furthermore, individual improvement on

the trained task correlated with discrimination improvements on

the untrained task (r = 0.46, p,0.05, Figure S1). Together, these

results provide evidence of transfer of training benefits to an

untrained perceptual task in older adults.

Behavioral performance on the untrained working
memory task

To test whether perceptual discrimination training results in

improvement on higher-level cognitive operations, working

memory (WM) for the direction of motion of moving random

dot kinetograms was evaluated in two delayed-recognition tasks:

No Interference (NI) and Interrupting Stimulus (IS) (Fig. 2). For

the NI task, a motion stimulus to be remembered was presented,

followed by a delay period, and then a probe motion stimulus,

which was either identical to the original motion direction or

differed by a vector angle equivalent to the participant’s pre-

determined perceptual discrimination threshold. Participants

pressed one of two buttons to indicate whether the directions

were the same or different. In the T2 assessment, the vector angle

of the probe was determined using both the participant’s original

threshold at T1 and the post-training threshold at T2 (new

threshold) in separate experimental blocks. The IS task was

identical except that a circular motion stimulus was presented in

the middle of the delay period, and required a simple perceptual

discrimination (multi-tasking manipulation). In a Passive View

task (PV), participants were instructed to merely view the stimuli

and make a button press response at probe to indicate the

direction of an arrow (left or right). At baseline testing (T1), WM

accuracy was equivalent between the two older groups (no main

effect of group: F(1,28) ,0.001, p = 0.95) and was significantly

impaired by the presence of the secondary task (IS) in both

groups (main effect of task: F(1,28) = 5.63, p,0.05). Of note,

WM performance was also significantly impaired relative to

younger adults who performed identical versions of the delayed-

recognition tasks in a single EEG session without training for

another study [23]. This age-related deficit existed despite

perceptual difficulty being equilibrated across age groups using

the thresholding procedure (main effect of age: F(1,48) = 8.46,

p = 0.005).

Evaluation of WM performance on the NI task at the original

discrimination threshold revealed a training effect, such that only

the training group exhibited significantly improved WM accuracy

at T2 vs. T1 (time by group interaction; (F(1,28) = 4.982, p,0.05,

effect size d = 0.81) (Fig. 3). Thus, we show for the first time in any

age group that perceptual discrimination training can result in

improved WM performance on an untrained task. Remarkably,

after 10 sessions of training, the older adult post-training

performance reached the accuracy levels of younger adults

without training (t(33) = 0.26, p = 0.79), demonstrating that

aspects of age-related impairment in cognitive performance can

be improved via perceptual training.

One potential mechanism for this effect is that improved WM

performance is a direct consequence of an enhanced ability of

participants to generate high-fidelity internal representations of the

encoded stimuli during presentation [2]. A modest correlation

between improvements in perceptual discrimination threshold and

WM accuracy supports this conclusion (r = 0.43, p = 0.05, 1-tailed,

Figure S2). To evaluate this further, we tested training-related

Figure 2. Working memory paradigm. Delayed-recognition paradigm. Working memory for the direction of 100% coherent motion was tested
using moving dot kinetograms in two tasks. Participants encoded a direction of motion (cue) and after a delay period determined if the probe
direction matched the cue direction. In the Interrupting stimuli task (IS), a circular swirl of motion was presented in the middle of delay period. A
button press was required if the swirl was fast. A third task was perceptually equivalent to the WM tasks, but participants were instructed to passively
view stimuli and press a right or left button at probe depending on the direction of an arrow.
doi:10.1371/journal.pone.0011537.g002

Training Transfers in Aging

PLoS ONE | www.plosone.org 3 July 2010 | Volume 5 | Issue 7 | e11537



WM improvement independent of perceptual gains by assessing

changes in WM performance using each participant’s new

perceptual threshold at T2 (13/15 participants in the training

group showed decreased thresholds at T2, i.e., improved

discrimination). This analysis revealed that WM performance in

the training and control groups did not significantly improve when

tested at the new threshold (no main effect of time: F(1,28) = 0.02,

p = 0.89; no group by time interaction: F(1,28) = 0.02;

p = 0.90)(Fig. 3). Thus, normalizing perceptual demands to take

into account improved perceptual abilities after training eliminates

training-related facilitation of WM performance, supporting the

hypothesis that perceptual enhancement in the training group

drives the WM performance improvement.

WM performance was evaluated for the IS task at the

participant’s original perceptual threshold. Comparison of T1

and T2 accuracy revealed a practice effect, such that both training

and control groups significantly improved their WM accuracy

(main effect of time: F(1,28) = 17.84, p,0.001), whereas no

training effect was observed, i.e., no significant difference between

the groups (no time by group interaction: F(1,28) = 0.35, p = 0.56)

(Fig. 3). This is consistent with previous findings in younger and

older adults of practice-related improvements in WM performance

in the setting of external interference, even over the course of a

one-hour session [23,25]. However, it is important to note that

perceptual discrimination training did not ameliorate the negative

impact of interference on WM performance beyond that attained

by limited practice on the task. There was no practice or training

effect for the IS task at the new threshold (no main effect of time:

F(1,28) = 0.57, p = 0.46; no time by group interaction: F(1,28) =

0.80, p = 0.38).

Electroencephalography
To explore the underlying neural mechanisms of successful

transfer of perceptual training to WM performance gains, we

recorded event-related potentials (ERP) during the WM experi-

ments at both T1 and T2 (each group, N = 13). Analysis focused

on the N1 posterior visual ERP time-locked to encoding,

interference, and probe stimuli. The N1, a negative deflection

occurring between 140 ms and 220 ms, is a marker of early visual

processing of motion direction [26], with its anatomical source

localized to a network of visual cortical areas, including the middle

temporal area MT+/V5 [27,28]. N1 amplitudes at T1 were not

significantly different for training and control groups (no main

effect of group: F(1,24) = 1.37, p = 0.25). Evaluation of the ERP

for the encoding stimuli in the NI task at the original threshold

(i.e., the task that exhibited a WM training effect), revealed a

significant decrease in N1 amplitude at T2 for the training group,

but not the control group (time by group interaction: F(1,24) =

15.42, p,0.001) (Fig. 4). Moreover, there was a strong correlation

between improved WM accuracy and changes in N1 amplitude

with training (r = 0.82, p,0.001) (Fig. 5), suggesting that

diminished N1 amplitude generated by the encoded stimuli is a

predictor of training-related WM gains. This is consistent with our

hypothesis that training-induced changes in the visual processing

of encoded stimuli yield improved WM performance.

When interpreting the functional significance of the reduced N1

amplitude after training, it is important to consider that the N1

amplitude is modulated by attention [29], and so it is possible that

reduced demands of an ‘‘easier’’ post-training task may have

resulted in less attentional effort during encoding and thus a

decreased neuronal response [30]. To examine this possibility, we

Figure 3. Working memory performance. At T2, WM was tested on the NI and IS tasks at the participant’s original perceptual threshold
(obtained at T1) and new threshold (obtained at T2). Change in WM accuracy was calculated as T2 – T1. Training led to WM improvement in the NI
task compared to controls when tested at their original threshold (training effect). Neither group showed changes in WM performance when tested
at their new perceptual threshold. Both groups improved in the IS task at the original threshold (practice effect), but not at the new threshold.
* Asterisks indicate significant differences within group from T1 to T2 (paired t-test). Crosses indicates significant group by time interactions (repeated
measures ANOVA).
doi:10.1371/journal.pone.0011537.g003
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evaluated the N1 amplitude for the other WM tasks, notably the

tasks performed at the new threshold, in which there were no

observed WM improvements (i.e., equivalently challenging at T1

and T2). We found decreased N1 amplitudes at T2 versus T1 only

in the training group for encoded stimuli in the NI task at the new

threshold, and the IS task at the original and new threshold, (all

time by group interactions: (F(1,24) .4.48, p,0.05)). This three-

fold replication of the N1 training effect illustrates that it is not

simply the reflection of a change in attention mediated by task

demands, but reveals a training-induced modification in neural

response to behaviorally relevant motion stimuli. Interestingly,

passively viewed stimuli (PV) did not show N1 amplitude changes

after training, suggesting that attention is necessary for training-

related effects on visual processing.

No significant changes in the N1 amplitude time-locked to the

probes were identified in the training or control groups for NI, IS

and PV tasks (all group by time interactions F,1.90, p.0.18). A

comparable analysis was performed for the P1 component, a

positive deflection occurring between 60–140 ms, with no

observed differences across groups or time during encoding or

probe periods for NI, IS, and PV tasks. (all group by time

interactions: F,1.50, all p.0.21).

Although N1 amplitude changes during encoding predicted

improved WM performance in the NI task, this was not true for

the IS task. For this task, successful WM performance was

mediated by effective processing of interrupting stimuli, rather

than the representation of the encoded stimuli. A previous study in

younger adults showed that attentional modulation of interrupting

stimuli in this same task, as revealed by N1 amplitude indices,

predicted WM performance and decreases in enhancement of

these stimuli with practice over a single session predicted

improvements in WM [31]. Consistent with these findings, older

adults showed a significant decrease in enhancement of interrup-

tors during T2 (p,0.05). While this evidence of practice-related

changes in interference processing in older adults after limited

exposure to a task is encouraging, it is important to note that

Figure 4. EEG Recordings. Event-Related Potentials during stimulus encoding. Posterior occipital N1 amplitude (120–220 ms) significantly
decreased at T2 for the training, but not control group. Statistics are based on electrode of interest (EOI) clusters selected for each participant. Scalp
topographies of T2-T1 at the latency of mean N1 peak +/2 1sd illustrate the location of the training related functional plasticity.
doi:10.1371/journal.pone.0011537.g004
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improvements in WM performance by practice was limited, as

revealed by interference still disrupting WM performance at T2

relative to non-interference levels (NI task) after training (t(14) =

2.65, p,0.05).

Discussion

This study offers critical evidence of the benefit that perceptual

training has on visual perception and WM performance in older

adults. We present neural data of training-related plasticity in

older adults and identify a neural marker of perceptual training

transfer that correlates with WM performance enhancement. We

propose that the N1 amplitude decrease is a neural marker of the

perceptual gains induced by training, which then engenders WM

improvement.

These findings are consistent with animal models of perceptual

learning showing that tuning curves become narrower for the

trained population of visual cortical neurons [32], and that as

neurons narrow their tuning curves, smaller responsive neural

populations are reflected by decreased EEG [33,34] and fMRI

[35] signals in humans. Further, the observed plasticity in this

study occurs in neural populations higher than V1, consistent with

the notion that stimulus specificity during learning is targeted to

the level of visual processing demanded by the task [36]. The

absence of a training-related neural change at the P1, which is

temporally earlier than the N1 and reflects activity in earlier visual

cortical areas, supports this hypothesis.

This study validates the use of perceptual discrimination training

in older adults to improve WM performance, and highlights the

need for the continued development and rigorous evaluation of

training programs targeting deficient processes. Perceptual discrim-

ination training did not improve WM performance beyond control

practice levels when the delayed-recognition task was interrupted by

another task. This suggests that training specifically directed at

interference processing may be necessary to mitigate the negative

impact multi-tasking has on WM performance. Additionally, when

training-related perceptual improvements were normalized by

discrimination thresholding, the training group did not exhibit

improved WM accuracy and continued to show impaired WM

performance relative to younger adults (main effect age (1,33) =

3.07, p = 0.09) [31]. These results reveal that WM deficits with

aging cannot be corrected solely by remediating age-related

perceptual impairment, but perhaps by also targeting interventions

at other processes supporting WM, such as memory maintenance.

Materials and Methods

Ethical Statement
Participants were paid for their participation and gave informed

written consent. The Committee on Human Research at the

University of California, San Francisco, approved the EEG portion

of the study. The cognitive training portion of the study received

separate approval by an independent IRB review board (Indepen-

dent Review Consulting Incorporated, Corte Madera, CA).

Participants
32 healthy older adults (mean age 71.93, SE 1.33; 18 females) were

recruited and randomly assigned to control and training groups after

consent. Two participants were enrolled, but did not complete the

study because of unwillingness to participate in the final EEG session.

Statistics reported reflect 30 participants who completed 10 sessions

of training and both EEG sessions. Participants had 13–21 years of

education (mean = 17.24 years, SD = 2.32), with no significant

difference across groups (t(28) = 0.979, p = 0.34). All participants

had normal or corrected-to-normal vision, did not have a history of

stroke, traumatic brain injury, psychiatric illness, or previous

experience with visual cognitive training. Participants did not take

psychotropic medication. Participants were characterized as cogni-

tively normal using standard neuropsychological assessment con-

ducted prior to study initiation.

All participants were from the San Francisco Bay Area and

recruited using a database of research volunteers at Posit Science,

which was previously compiled using local advertisements and

mailings. Contraindications were screened for during a standard-

ized phone interview. Participants were randomized to training or

control groups after signing consent forms for participation in the

study at Posit Science offices. Experimenters from the University

of California, San Francisco who conducted the behavioral and

EEG analysis were blinded until after data for the final group

analysis was completed.

Performance of the older adults was compared to a group of 20

younger participants (mean age 24.2, SE 0.49; 9 females) who

engaged in the untrained perceptual and working memory tasks

without training during a single EEG session for another study [23].

Neuropsychological Assessments
Baseline neuropsychological measures were collected for each

participant to confirm that cognitive performance was within two

standard deviations of the normative values for their age and

education. Mini-mental state exam (MMSE) (all MMSE scores

were greater than 27) and NeuroTrax (Mindstreams) measures of

global cognition, memory, executive function, attention, and

information processing speed were completed by all participants.

NeuroTrax has been validated for use as an assessment for the

detection of possible mild cognitive impairment [37,38].

Training
Participants in the training group completed 10 hours of visual

cognitive training using the Sweep Seeker program (InSight, Posit

Science). Sweep Seeker training is a stand-alone module in the

Posit Science InSight software package. The perceptual training

exercise was embedded in a block type game to encourage

attention, provide feedback and rewards, and improve compliance

for the 10 hours of training. Additionally, the software was

Figure 5. Neural-behavioral correlation. Across participants,
decreased N1 amplitude during encoding correlated with WM
performance improvements in the NI task at the original threshold in
the training group (r = 0.82, p,0.001).
doi:10.1371/journal.pone.0011537.g005
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designed to be easy to use, so that previous experience with

computers would not limit the population that may benefit from

such a cognitive training approach. Training took place in 40-

minute sessions, 3–5 sessions/week for 3–5 weeks. Training

occurred in either in research offices (n = 6) or at home (n = 9)

where computer equipment was provided to participants.

Participants did not have the option of doing some training in

home and some at the research offices. There were no location-

dependent differences in trained task performance measured by

repeated measures ANOVA with factors location (home vs. office)

and time (pre-training performance vs post-training performance)

as indicated by no location X time interaction (F(1,13) = 0.89,

p = 0.36). The data from each training session was automatically

uploaded to remote servers, providing a complete record of

program usage (e.g., days trained, total training time) and progress

(e.g., stimulus challenge level). Participants were phoned regularly

to encourage compliance.

Each trial consisted of two sweeping Gabor pattern stimuli (sine-

wave patterns windowed by a 2D Gaussian) (Figure 1a). The

patterns either expanded or contracted across a range of spatial

frequencies (0.50 to 5.00 cycles per degree) and subtended 8

degrees of visual angle. The stimulus presentation time and ISI

were adjusted together using an adaptive staircase algorithm

(ZEST) [20]. Differing colors and orientations of sweeps varied

training conditions. Vertical, horizontal, and diagonal orientations

were utilized in distinct blocks. Steps were taken to assure that

training conditions at home and in the office were standardized by

calibrating stimuli to accurately specify chromaticities and relative

luminances on home computers. Participants indicated the

sequence of stimulus presentation by clicking on icons presented

after each trial. All training was performed at the 85% correct level

of the psychometric function estimated by the ZEST algorithm.

Thresholds were calculated by taking the log mean of two

randomly interleaved staircases.

Untrained Perceptual and Working Memory Task Stimuli
The stimuli consisted of a circular aperture containing 290 dots

(0.08u60.08u each) that subtended 8u of visual angle at a 75 cm

viewing distance and were centered at the fovea as previously

described [23].

WM Experiment with EEG
Stimuli. The stimuli consisted of a circular aperture

containing 290 dots (0.08u60.08u each) that subtended 8u of

visual angle at a 75 cm viewing distance and were centered at the

fovea. This field of 290 spatially random gray scale dots moved

with 100% coherence at an oblique angle at 10u per second.

Stimuli were presented with a gray fixation cross in the center of

the circular aperture with a black background of luminance level

0.32 cd/m2. All four sectors of the aperture were used (i.e.

northeast, northwest, southeast, southwest) except the cardinal

directions (up, down, left, right) [39]. The experimental stimuli

consisted of 12 different directions of motion (3 per sector). Stimuli

were presented through E-Prime software (Psychology Software

Tools, Inc.) run on a Dell Optiplex GX620 and a ViewSonic

G220fb CRT monitor.

Thresholding. Participants completed a motion thresholding

test prior to the onset of the main experiment in order to minimize

the effects of individual differences in discriminability. A staircase

procedure (2u increments) required participants to determine

whether two motion stimuli were moving in the same direction.

The two 100% coherent motion stimuli were presented for 800 ms

each and separated by 2000 ms (Figure 1c). An angle of

discrimination (the difference between two directions of motion)

was selected for each participant as the largest angle at which

discrimination performance was less than 100%.

Experimental Procedure. In a paradigm previously

described [23], participants were presented with three different

tasks randomized across six blocks, with two blocks per task

(Figure 2). There were two WM tasks: Interrupting Stimulus (IS),

and No Interference (NI). A third task instructed participants to

passively view the stimuli (PV). At T1, participants completed

another WM task, Distracting Stimulus (DS), which was not

completed at T2 because of experimental time constraints.Results

are not discussed here.

Data Acquisition. Participants sat in an armchair in a dark,

sound-attenuated room for neural recordings. Data were recorded

during blocks (two blocks per task condition) lasting approximately 8

minutes each and a total of 80 trials per task. Electrophysiological

signals were recorded with an ActiveTwo BioSemi 64-channel Ag-

AgCl active electrode EEG acquisition system in conjunction with

ActiView software (BioSemi). Signals were amplified and digitized at

1024 Hz with a 24-bit resolution. All electrode offsets were between

+/220 mV. Anti-aliasing filters were used during data acquisition,

and the data were referenced to the average offline. Precise markers

of stimulus presentation were acquired using a photodiode.

Data Analysis. EEG preprocessing: Eye movement artifacts

were removed using Brain Vision Analyzer (Brain Products GmbH)

through an independent component analysis (ICA). Only ICA

components consistent with topographies for eye blinks and

horizontal eye movement were removed. Additionally, individual

trials containing artifacts with a voltage threshold of 650 mV were

removed. Data were band-pass filtered between 1–30 Hz.

EEG analysis. A 200 ms pre-stimulus baseline was subtracted

from each trial prior to calculating the evoked-response potential

(ERP). ERP peaks were obtained from posterior scalp sites over pre-

selected latency ranges (P1 range: 60 ms–140 ms; N1 range: 120 ms–

220 ms). Trials were averaged into task and block-specific grand

average ERPs for each participant. ERP statistical analysis used an

electrode of interest (EOI) method [23,26,40,41,42,43,44,45,46]. A

unique electrode was selected for each participant and averaged with

3–4 surrounding electrodes for use in group-level statistics. EOIs were

defined for each participant as the posterior electrode whose grand

average of all tasks averaged together (IS, NI, and PV) had the largest

ERP peak amplitude. This method is designed to identify the

electrode most sensitive to the neural responses associated with the

task stimuli. EOIs for interfering stimuli were selected independently

from cue and probe EOIs. Separate EOIs were selected for P1 and

N1 peaks. EOIs were selected from the following posterior electrodes

for P1: P9, P7, P5, P6, P8, P10, PO7, PO3, POz, PO4, PO8, O1, Oz,

O2, Iz. Posterior midline electrodes were not included for N1 EOI

selection. EOI selection was made independently for T1 and T2

recording sessions. If a participant’s EOI across sessions was not the

same or neighboring electrode, the EOI was selected from the grand

average of T1 and T2 sessions. EEG data from 4 participants (2

training, 2 control) were not included in analysis due to equipment

changes across test sessions.

ERP statistical analysis was performed using two-way ANOVA

with factors of group (training vs. control) and time (T1 vs. T2) for

each task condition. The Greenhouse-Geisser correction was

applied when sphericity was violated. Significant main effects and

interactions were evaluated with post-hoc t-tests with false discovery

rate (FDR) correction for multiple comparisons [47]. Cohen’s d

effect size and two-tailed Pearson’s correlations were also calculated.

Behavioral analysis
RTs from the passive baseline task were subtracted from RTs

from the WM tasks to account for individual differences in motor
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speed. These motoric speed-corrected RTs are referred to as the

‘‘RT index.’’

Supporting Information

Figure S1 Correlation of performance gains on trained and

untrained visual perception discrimination tasks. Perceptual

improvement on the trained Sweeps Seeker task correlates with

perceptual improvement on the untrained motion direction task

(training group: r = 0.46, p,0.05).

Found at: doi:10.1371/journal.pone.0011537.s001 (0.42 MB TIF)

Figure S2 Correlation of performance gains in perceptual

threshold task and WM task (No interference). Perceptual

threshold improvement on the correlates with NI working memory

improvement at original threshold (T2 NI original - T1 NI)

(training group: r = 0.43, p = 0.05, 1-tailed).

Found at: doi:10.1371/journal.pone.0011537.s002 (0.42 MB TIF)
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