Effects of exogenous calcium on the
drought response of the tea plant (Camellia
sinensis (L.) Kuntze)

Lyudmila S. Malyukova’, Natalia G. Koninskaya', Yuriy L. Orlov*>? and
Lidiia S. Samarina™*

! Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences,
Sochi, Russia

% Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow, Russia

? Digital Health Institute, .M. Sechenov First Moscow State Medical University of the Ministry of
Health of the Russian Federation (Sechenov University), Moscow, Russia

4 Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia

ABSTRACT

Background: Drought is one of the major factors reducing the yield of many crops
worldwide, including the tea crop (Camellia sinensis (L.) Kuntze). Calcium
participates in most of cellular signaling processes, and its important role in stress
detection and triggering a response has been shown in many crops. The aim of this
study was to evaluate possible effects of calcium on the tea plant response to drought.
Methods: Experiments were conducted using 3-year-old potted tea plants of the best
local cultivar Kolkhida. Application of ammonium nitrate (control treatment) or
calcium nitrate (Ca treatment) to the soil was performed before drought induction.
Next, a 7-day drought was induced in both groups of plants. The following
physiological parameters were measured: relative electrical conductivity, pH of cell
sap, and concentrations of cations, sugars, and amino acids. In addition, relative
expression levels of 40 stress-related and crop quality-related genes were analyzed.
Results: Under drought stress, leaf electrolyte leakage differed significantly,
indicating greater damage to cell membranes in control plants than in Ca-treated
plants. Calcium application resulted in greater pH of cell sap; higher accumulation of
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INTRODUCTION

High yields under unfavorable environmental conditions are important for sustainable
crop production. Drought is a major environmental constraint reducing the yield of many
economically important crops, and climate aridization has been increasing worldwide.
One negative effect of drought stress is oxidative damage leading to disturbances of
physiological and biochemical processes causing significant losses in tea quality and yields
(Upadhyaya & Panda, 2004; Marcinska et al., 2013; Maritim et al., 2015). During earlier
research, many genetic and physiological mechanisms of drought tolerance have been
clarified in various crops including the tea crop (Bhagat, Baruah ¢ Cacigue, 2010;
Damayanthi, Mohottil ¢ Nissanka, 2010; Man et al., 2011; Baruah & Bhagat, 2012;
Maritim et al., 2015; Zhu, 2016; Fleta-Soriano & Munné-Bosch, 2016; Malyukova et al.,
2020, 2021; Samarina et al., 2020). It has been shown that plants reorganize their
osmoregulatory and antioxidant systems and secondary-metabolite production in
response to drought stress (Fleta-Soriano ¢» Munné-Bosch, 2016; Zhu, 2016). Many
transcription factors and metabolite-related genes are involved in the drought response in
the tea plant. For example, key cold response regulators ICE, CBF, and DHN participate in
the drought response too (Liu et al., 2016a; Yin et al., 2016; Ban et al., 2017; Hu et al., 2020).
Transcriptomic data on the tea plant have revealed 12 transcription factor families (AP2/
EREBP, bHLH, bZIP, HD-ZIP, HSF, MYB, NAC, WRKY, zinc-finger protein transcription
factors, SCL, ARR, and SPL) performing crucial functions in tea drought responses via
both abscisic acid (ABA)-dependent and ABA-independent pathways (Liu et al., 2016a;
Yue et al., 2015; Wang et al., 2016a; Cui et al., 2018; Chen et al., 2018; Ma et al., 2019;
Samarina et al., 2020).

Although many mechanisms of tea drought responses have been revealed, the topic of
exogenous regulation of drought tolerance by chemical and biological compounds is still
not elucidated sufficiently. Some studies indicate enhancement of drought tolerance by
hormone treatments (Man et al., 2011; Njoloma, 2012; Upadhyaya ¢ Panda, 2004). On the
other hand, external application of mineral nutrients to increase drought tolerance still has
not been studied well. Among a wide range of biogenic macro- and microelements,
calcium is of particular interest because it participates in signal transduction under
unfavorable environmental conditions (Zhang et al., 2015; Edel et al., 2017; Singh, Parihar
& Prasad, 2018; Thor, 2019; Hosseini et al., 2019; Ramirez-Builes et al., 2020). Calcium
takes part in most of cellular signaling processes, and its important role in early stress
detection and triggering a response has been demonstrated in many crops (Kim, 2009;
Upadhyaya et al., 2012; Singh, Parihar & Prasad, 2018; Thor, 2019; Hosseini et al., 2019).
Calcium interacts strongly with reactive oxygen species and participates in H,O, sensing
and in the induction of antioxidant defense in plants (Rentel ¢» Knight, 2004; Evans et al.,
2005; Noctor, 2006). It is believed that calcium influx and cytoplasmic calcium ([Ca2+]cyt)
are important for ABA transduction in guard cells, whereas ABA can regulate stomatal
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aperture in guard cells. In Arabidopsis thaliana, amplitudes of extracellular Ca**
concentration oscillation and of cytosolic Ca®* concentration oscillation are controlled by
soil Ca®" levels and transpiration rates (Hetherington ¢ Brownlee, 2004; Kim, 2009).

Although external calcium application has been useful at increasing abiotic-stress
tolerance in several crops, it is not usually considered a tool for improving drought
tolerance of tea plantations because tea is an acidophilic crop. Nevertheless, a deficiency of
soil calcium was revealed during our long-term observations in tea plantations on the
Black Sea Coast of the Caucasus. Soil acidification usually develops during long-term
cultivation of tea on acidic soils, thereby significantly diminishing the amounts of available
forms of calcium (Malyukova et al., 2021). Thus, the aim of the present study was to assess
a possible effect of external calcium application on the drought response of the tea plant in
terms of physiological parameters and gene expression levels.

MATERIALS AND METHODS

Plant materials, growth conditions, and stress induction

Three-year-old vegetatively propagated potted plants of the best local tea cultivar Kolkhida
were used in this study (Fig. S1). Plants were 50 cm tall and grown in 2-liter polyethylene
pots filled with brown forest acidic soil. Before the drought treatment, the experimental
plants were precultivated under controlled conditions for 15 days at 20 °C £ 2 °C,
humidity of 60% + 5%, light intensity of 5,000 lux, on a 16/8 h light/dark cycle. At the
beginning of this period, one of two fertilizer treatments was started.

— Control treatment: four-time application of an ammonium nitrate solution, 50 ml
(150 mg/l, which is equivalent to 100 mg of nitrogen per plant) per pot of soil, during a
month: days 0, 10, 20, and 30. Soil pH was 3.9.

- Ca treatment: four-time application of a calcium nitrate solution, 50 ml (400 mg/l, which
is equivalent to 100 mg of nitrogen and 150 mg of calcium per plant) per pot of soil during
the month: days 0, 10, 20, and 30. Soil pH was 4.3.

On day 30, leaves were sampled for physiological, biochemical, and gene expression
analyses and were designated as “no drought” treatment groups. After that, these plants
were subjected to soil drought via a gradual decrease in watering: during 7 days, soil
humidity was reduced from 70% + 2% to 16% + 2%, until cell sap concentration reached a
critical level of 10-12%. Next, leaves were sampled for physiological, biochemical, and gene
expression analyses and were designated as “drought” treatment groups.

For each analysis, 27d 31 and 4™ mature leaves from the top of a plant were sampled in
the morning between 8 and 9 am. All experiments were performed on three biological
replicates (three plants); all experiments were conducted twice in the 2019-2020 period.

Assays of physiological and biochemical parameters
(FW — DW)

Fw
leaf mass, and DW is dried leaf mass (leaves were dried at 105 °C in an oven for 5 h)

(Yamasaki & Dillenburg, 1999).

The leaf water content was calculated as C = * 100%, where FW is fresh
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Electrolyte leakage was determined using a ST300C portable conductivity meter
(Ohaus, USA) via the following formula:

(1)
BL =~ 100,

()

where L0 and L1 are electrical conductivity immediately and 2 h after leaf immersion in
deionized water, respectively, and L2 is conductivity after boiling for 120 min at 100 °C
with subsequent cooling to room temperature (Bajji, Kinet ¢ Lutts, 2001).

pH of cell sap was determined by means of a Testo 205 pH-meter (Moscow, Russia)
with a hydrogen electrode. For this measurement, 1,000 mg of fresh leaf tissue was
homogenized in 20 ml of distilled water (Malyukova et al., 2020).

Amino acids (mg g~ dried leaf mass), sugars (mg g ' dried leaf mass) and cations
(ug g~ ' dried leaf mass) and organic acids (mg g~' dried leaf mass) were assayed by
capillary electrophoresis on a Kapel-105M analyzer (Russia) (Brykalov et al., 2019).

Analyses of gene expression profiles by quantitative
reverse-transcription PCR (qRT-PCR)
Total RNA was extracted from the third mature leaf in three biological replicates by the
guanidine method according to the manufacturer’s protocol (Biolabmix, Novosibirsk,
Russia; https://biolabmix.ru/). The concentration and quality of RNA were determined on
a Bio-drop pLite spectrophotometer (Biochrom, Cambridge, UK) and RNA integrity was
assessed by electrophoresis in a 1% agarose gel. Then, 1,000 ng of RNA was treated with
1 ul of DNasel Buffer and 1 ul DNasel (Biolabmix, Novosibirsk, Russia; https://biolabmix.
ru/) for 30 min at 42 °C with subsequent DNase inhibition by heating. After that, 1,000 ng
of RNA was employed to prepare 20 pl of cDNA using the M-MuLV-RH-kit (Biolabmix,
Novosibirsk, Russia; https://biolabmix.ru/) with subsequent quality evaluation by gel
electrophoresis and qRT-PCR on LightCycler96 (Roche Life Sciences, Penzberg, Germany;
https://lifescience.roche.com/global_en.html). After cDNA preparation, all samples were
diluted to the same concentration of 700 ng ul~* according to standardization by means of
the expression of a reference gene, actin (NCBI Gene ID: 114316878). To measure gene
expression, QPCR was carried out in a 15 pl reaction mixture consisting of 7.5 pl of 2x
SybrBlue qRT-PCR buffer with hot-start polymerase (Biolabmix, Novosibirsk, Russia;
https://biolabmix.ru/), 0.2 pl of each primer (forward and reverse), 1 pl of cDNA, and the
rest of the volume was PCR grade water. A two-step amplification program was as follows:
preheating for 5 min at 95 °C, 40 cycles of amplification (10 s at 95 °C and 30 s at
56-62 °C), final extension for 5 min at 72 °C, and melting for 3 min at 95 °C. In total, more
than 40 genes were analyzed in this study (Table S1).

The relative gene expression level was calculated by the 2744 method of Livak ¢
Schmittgen (2001), where
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Figure 1 Physiological parameters of the tea tree under drought. Relative electrical conductivity (A), leaf water content (B), and pH of cell sap (C).

Different lowercase letters indicate significant differences at P < 0.05.

Full-size K] DOIL: 10.7717/peerj.13997/fig-1
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Data analysis and visualization

The experimental design was completely randomized. One-way ANOVA and Student’s ¢
test were performed to find significant differences in effects among the treatments.

The significance of the differences was evaluated by the Fisher test, LSDys, and standard
deviations from the mean. In addition, principal component analysis (PCA) and
hierarchical clustering were conducted to examine the relations and visualize genetic and
biochemical results. Dissimilarities were calculated using the DICE coefficient, with
agglomeration by Ward’s method. Two separate matrices of biochemical and the genetic
data were subjected to PCA. Before this procedure, the data were normalized: all data were
converted to the ratio of a drought treatment group to a no-drought treatment group. After
that, the normalized matrices were analyzed separately by Pearson (n)-type PCA, and two
plots (biochemical and genetic) were superimposed. Statistical analyses of the data were
carried out in the XLSTAT software (free trial version) (https://www.xlstat.com/).

RESULTS

The effect of Ca application on physiological and biochemical
parameters of the tea plant under drought

Under drought stress, three-time elevation of electrolyte leakage was noted in control
plants but not in Ca-treated plants (Fig. 1A). A significant decrease in the water content
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Figure 2 Biochemical parameters in the tea tree under drought. Accumulation of biochemical compounds in mature tea leaves under drought
stress: sugars (A), cations (B), amino acids (C), and organic acids (D). Different lowercase letters indicate significant differences at P < 0.05.
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(from 76-77% to 71-72%) was detected in both control and Ca-treated plants (Fig. 1B).
Furthermore, pH of cell sap increased significantly under drought stress in both groups of
plants, and Ca-treated plants experienced higher elevation of pH as compared to control
plants (Fig. 1C).

As for biochemical parameters, Ca-treated plants manifested significantly higher
glucose (23 mg g™ ') and fructose (17.6 mg g~') accumulation as compared to control plants
(18.6 and 11.9 mg g ', respectively) under drought (Fig. 2A). Additionally, in both groups
of plants, cation contents changed significantly in tea leaves under drought (Fig. 2B). That
is, control plants showed a significant decrease in the Na* content from 506 to 193 ug g ™'
dry leaf mass, which was not observed in Ca-treated plants, but significant elevation of the
Ca®* content from 253 to 398 ug g ' dry leaf mass and increased Mg** accumulation were
registered in Ca-treated plants under drought.

Drought stress diminished the content of several amino acids, namely Met, Val, Phen,
Arg, and Leu, in mature tea leaves. In Ca-treated tea plants, Met, Val, and Tyr accumulated
more strongly under drought stress (Fig. 2C). Among these compounds, the highest
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accumulation was detected for two amino acids (Met (3-fold) and Val (2-fold)) in
comparison with no-drought conditions. The levels of Pro, Ser, Thr, and Ala were not
influenced either by Ca application or by drought induction.

Different levels of organic acids were present before drought induction: control plants
had 1.5-2.0-fold higher levels of malic, citric, succinic, and acetic acids than the Ca-treated
plants did (Fig. 2D). Under drought stress, contents of malic, succinic, citric, and acetic
acids declined 2-3-fold in control plants. By contrast, only the citric acid content decreased
in Ca-treated plants. To summarize, drought treatment significantly affected physiological
integrity of tea plants, but Ca-treated and control plants showed different responses to
drought, indicating better physiological status under stress in Ca-treated plants.

The impact of Ca application on gene expression profiles of the tea
plant under drought and relations with biochemical data

Hierarchical clustering based on the gene expression profiles gave five distant clusters
(Fig. 3). The upper cluster contained 13 genes including nine genes upregulated by drought
(CRK45, NAC26, TPS11, LOX1, DREB26, LOX6, GS, ADC, and BAM).

The second cluster was the biggest one and comprised 26 genes. Among them, 13 genes
(WRKY2, FLS2, FLSb, LDOX, F3’H, F3H, WRKY42, FLS, bHLH102, TCS, TS, CAUI, and
CHI) were downregulated by drought stress, and the other 13 genes (SnRK1I.1, SnRK1.2,
SnRK1.3, IMPDH, DHNI1, RS1, Anase, DHN3, ANR, SUS, RS2, GR-RBP3, and CHS) were
not affected by drought.

The third cluster consisted of three genes with increased expression under drought:
GOLS3, SWEET2, and DHN2. The greatest fold change was registered for two
genes—RHL41 and GOLSI—which were outliers.

Finally, among the drought-induced genes, four genes (RHL41, GOLS1, LOX1, and
DREB26) were more strongly expressed in Ca-treated plants than in control plants.

Pairwise comparisons of the four treatment groups by PCA uncovered high Pearson’s
correlation between two principal components and factors at a significance level of
a = 0.05. Several genes and biochemical parameters clearly separated two groups
(Drought-Control and Drought-Ca) with high positive loadings (Fig. 4). The largest square
cosines (0.78) were observed in principal component 1 (PC1). Examination of the biplot
(superimposed PCA plots) revealed that the Drought-Control and Drought-Ca vectors are
positioned on the positive and negative sides of PC1, respectively, with high loadings.
Several data points related to each vector were found to be grouped closely with them.
For example, the highest positive loading belongs to genes RHL41, GOLSI and LOX1I, and
amino acids Met and Val are distributed with high loading along the Drought-Ca vector.
In addition, many genes and biochemical parameters that were more pronounced in the
control (no drought) treatment group are densely clustered and located on the PC2 side,
orthogonally to the drought-related vectors. Nonetheless, most of PC2 scores are low,
meaning weak correlations between the data points.
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Figure 3 Gene expression in the tea tree under drought. A heat map of relative gene expression and
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in Ca-treated plants; orange: genes with greater upregulation under drought in control plants; gray: genes
with decreased expression in both groups of plants vs. no drought. Different lowercase letters indicate
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Malyukova et al. (2022), PeerdJ, DOI 10.7717/peerj.13997 2090 818


http://dx.doi.org/10.7717/peerj.13997/fig-3
http://dx.doi.org/10.7717/peerj.13997
https://peerj.com/

Peer/

4
3

tartaric acid

Gly

.

2 Gly
Drought Control Drought Control
Gly

1 CHI CAU1TCS TS

bHLH102 GluEgge FLShy,
FLS2 g .
F3'H Fructose’-n?‘r .
WRKY2 [pogitricacid e §Eﬁ° .
= Phen 3% droug
FLS  citric acid lﬁ"

I

F2 (17.46 %)
F2 (47.53 %)
o

F3H acetic acid Pe Hydr
malicacid e .
WRKY42 4 ,GLS
-1 succinic acid e
.
Tyr
Drought Ca Drought Ca
2 | .
. Val
Met
.
3 T Met
L]
o o RHL41 .
LOX1 Met GOLS1
4
-4 -3 -2 -1 0 1 2 3 4 5 6
F1(52.47 %)
F1(82.54 %)

Figure 4 PCA of biochemical and genetic parameters. A PCA biplot representing superimposed data
from biochemical and genetic principal component analyses in Ca-treated (Ca) and Ca-untreated
(Control) tea plants under drought. Green: genetic data, blue: biochemical data.

Full-size K&l DOT: 10.7717/peerj.13997/fig-4

DISCUSSION

The effect of Ca application on physiological and biochemical
parameters of the tea plant under drought
In this study, we assessed the effect of calcium application to soil on the tea plant drought
response. Under drought stress, typical physiological changes were observed in plants such
as alterations in the leaf water content, electrolyte leakage, and pH of cell sap, which are
prominent phenotypical indicators of the drought response in plants. Nonetheless,
Ca-treated plants manifested less electrolyte leakage and elevated pH, pointing to less
damage to cell membranes under drought stress. Cell sap pH is the one of the first signals
leading to ABA synthesis and stomata closure; therefore, it is a sensitive physiological
indicator of the drought response (Song et al., 2008), consistently with our results.
The higher concentration of sugars observed in Ca-treated tea plants before stress
induction is probably due to predominance of the sucrose biosynthetic pathway over the
starch biosynthetic pathway; this arrangement can ensure higher viscosity of the cytoplasm
to prevent water evaporation under drought, in agreement with previous data (Kaelke ¢
Dawson, 2005; Kasuga, Arakawa & Fujikawa, 2007; Regier et al., 2010).

Among the other physiological parameters, the cation content is an important
diagnostic parameter for site-specific and efficient nutrient management (Hauer-Jdikli ¢
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Trinkner, 2019). Our results uncovered drought-induced elevation of the Mg** content in
Ca-treated plants; this alteration can provide better antioxidant defense under drought
stress, as reported by some researchers (Hauer-Jakli & Triankner, 2019). Magnesium, the
most abundant free divalent cation in the cell, participates in carbon fixation and
photosynthesis. It acts as an activator or cofactor of enzymes in carbohydrate metabolism
and plays an important part in photo-oxidative defense (Guo et al., 2015; Hauer-Jakli ¢
Trinkner, 2019; Grzebisz, 2013; Chen et al., 2018). On the other hand, some studies
indicate antagonistic relations between Mg2+ and Ca*" in plants (Gransee ¢ Fiihrs, 2013), a
synergistic effect of Ca** and K* uptake, and no influence on Mg*? uptake in the coffee
plant (Ramirez-Builes et al., 2020). Nonetheless, these studies mostly describe competitive
absorption of Mg2+ and Ca®" from the soil fertilized with these nutrients. In our work, the
Mg** accumulation can be explained by relocation of the magnesium ions transported
from other organs into leaves; this process was positively affected by Ca** application.

Accumulation of amino acids is a well-known mechanism of osmotic adjustment, of
detoxification of reactive oxygen species, and of intracellular pH regulation under various
osmotic stresses (Silvente, Sobolev ¢ Lara, 2012). Among different amino acids, Met and
Val accumulated to a greater extent under drought stress in our Ca-treated tea plants than
in control tea plants. Both are protein-bound amino acids and play an important role in
plant metabolism (Jander ¢ Joshi, 2010; Binder, 2010; Hildebrandt, 2018).
Aspartate-derived amino acid Met is tightly connected with the metabolism of
branched-chain amino acids Val, Leu, and Ile, which activate jasmonic acid (JA) signaling;
the latter is crucial for plants’ resistance to biotic and abiotic stressors (Jander ¢ Joshi,
20105 Binder, 2010). Thus, higher accumulation of Met and Val in the tea plant may be one
more piece of evidence for activation of JA signaling by Ca** under drought. Of note,
under drought stress, Gly accumulation was higher in control plants than in Ca-treated
plants. Gly is a major component of glycine-rich proteins and is involved in RNA
post-transcriptional processing, including splicing and polyadenylation, which are
believed to perform a crucial function in plants’ responses to abiotic stressors (Khan et al.,
2017; Czolpinska ¢~ Rurek, 2018). Further studies are necessary to assess the role of Gly and
of the Gly metabolic pathway in the tea plant under drought conditions.

Organic-acid metabolism not only equilibrates redox potential in plant cells but also
transfers redox equivalents between cell compartments thereby supporting various
metabolic processes (Igamberdiev ¢ Eprintsev, 2016; Igamberdiev & Bykova, 2018). Here,
before drought induction, several organic acids (malic, citric, succinic, and acetic) steadily
accumulated in control plants in comparison with Ca-treated plants (Fig. 2D). By contrast,
under subsequent drought stress, the contents of malic, succinic, citric, and acetic acids
diminished in control plants but not in Ca-treated plants. Other authors reported that the
total amount of organic acids decreases under osmotic stress in bean leaves (Sassi et al,
2010). On the other hand, drought does not trigger the accumulation of organic acids
except for succinate in soybean (Silvente, Sobolev ¢» Lara, 2012). We observed a lower level
of citric acid in our plants treated with calcium. Some researchers report that citric acid can
improve photosynthetic rates, reduce reactive oxygen species, and provide better
osmoregulation under drought stress (Tahjib-Ul-Arif et al., 2021). Therefore, additional
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studies are necessary to evaluate the effect of drought stress on the organic acid
fluctuations in tree crops.

The influence of Ca application on gene expression profiles of the tea
plant under drought and relations with biochemical data

Most of crop quality-related genes proved to be downregulated under drought stress in the
tea plant, in line with other studies (Li et al., 2015; Li et al., 2019; Wang et al., 2016a).
On the contrary, several stress-related genes were upregulated by drought in both control
and Ca-treated plants, in agreement with other research pointing to their involvement in
stress responses (Wang et al., 2016b; Liu et al., 2016b; Samarina et al., 2020; Wrzaczek
et al., 2010; Tanaka et al., 2012; Paul & Kumar, 2013; Li et al., 2016; Ban et al., 2017; Cheng
et al, 2016; Yin et al., 2022).

Among the upregulated genes, three (LOX1, RHL41, and GOLSI) showed 2-3 times
greater relative expression in Ca-treated plants as compared to control plants. GolS is the
key enzyme for the synthesis of raffinose family oligosaccharides, which serve as
osmoprotectants in plant cells and protect salicylate from an attack by hydroxyl radicals
(e.g., galactinol and raffinose perform this function) (Panikulangara et al., 2004;
Nishizawa, Yabuta & Shigeoka, 2008; Falavigna et al., 2018; Li et al., 2019). The plants
overexpressing GOLSI accumulate galactosyl inositol, which acts as a sugar signal in the
ethylene signaling cascade (Li ef al., 2019). GolSI- or GolS2-overexpressing Arabidopsis
thaliana has high intracellular levels of galactinol and raffinose, which correlate with
higher tolerance of drought stress (Panikulangara et al., 2004). Based on our results, it can
be hypothesized that calcium affects GOLSI expression and participates in the galactinol
biosynthesis pathway leading to better acclimation of the tea plant to drought.

RHL41 (responsive to high light) is a member of the C2H2 family and is related to
zinc-finger protein Zatl2. Transgenic Arabidopsis plants overexpressing RHL41 possess
thick dark green leaves and higher anthocyanin and chlorophyll contents (Iida et al., 2000).
RHL41 plays a critical part in salt and drought responses by participating in the
ABA-dependent pathway (Miller, Shulaev ¢» Mittler, 2008; Ghorbani, Alemzadeh ¢ Razi,
2019; Samarina et al., 2020). In our previous study, increased accumulation of RHL41
transcripts was observed, indicating specific involvement of this gene in drought defense
(Samarina et al., 2020). In the present study, Ca treatment enhanced the upregulation of
RHILA41 in the tea plant, pointing to a stronger ABA-mediated response to drought; this
phenomenon can explain better protection of membranes from oxidative stress.

The LOX gene family is known to be involved in lipid catabolism for oxylipin synthesis
playing an important role in the JA-dependent pathway in various stress responses
(Liavonchanka & Feussner, 2006). CsLOXI is induced by a pathogen infection and brief
cold treatment in the tea plant and partakes in the JA-responsive pathway (Zhu et al.,
2018). In our work, calcium treatment affected the upregulation of LOX1, meaning the
activation of the ABA-independent stress response. This finding is consistent with data
from Montillet et al. (2013), who demonstrated that LOX1 performs a major function in
the control of stomatal defense and plant innate immunity. They reported that the
activities of an oxylipin- and an ABA-dependent pathway converge on anion channel
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SLACI thereby regulating stomatal closure. Thus, we can speculate that calcium
participates in the regulation of stomatal aperture in guard cells not only through
activation of ABA signaling but also through oxylipin signaling activation by inducing the
LOX1 expression. This theory is supported by PCA: the positive association of Met and Val
contents with the LOXI gene and high positive loading along the Ca vector observed in
PCA (Fig. 4) confirmed the important role of calcium in the JA-mediated drought
response in the tea plant. As mentioned above, under drought stress, Met and Val
accumulated more in Ca-treated tea plants, and these amino acids participate in JA
pathway activation.

Notably, in our study, three stress-related transcription factors (b HLH102, WRKY2, and
WRKY42) were downregulated by drought stress in both control and Ca-treated plants.
These genes are involved in stress and hormone signaling, particularly in the
ABA-mediated abiotic-stress response (Wang et al., 2016a; Phukan, Jeena ¢ Shukla, 2016;
Jiang et al., 2017; Cui et al., 2018). This contradictory result may be due to
genotype-specific responses or dissimilar stress conditions used in various studies. A
limitation of our study is that we did not evaluate a short-term drought response. Further
investigation will help to assess temporal and spatial expression alterations of the
aforementioned genes.

CONCLUSIONS

Effects of external Ca application on drought responses of the tea tree were evaluated.
Under drought, a greater increase in cell sap pH; higher accumulation of Tyr, Met, and Val;
greater contents of the malic and citric acids; and higher Mg®* concentration were
observed in Ca-treated tea plants. Among the upregulated genes, three genes (LOX1I,
RHL41, and GOLSI) showed 2-3 times greater relative expression in Ca-treated plants
than in control plants. PCA results indicate a positive correlation of Met and Val contents
with LOXI mRNA expression, confirming the important function of calcium in the
activation of JA signaling in the tea plant under drought stress. On the basis of these
results, it can be theorized that calcium affects the galactinol biosynthesis pathway and
participates in the regulation of stomatal aperture in guard cells not only through ABA
signaling activation but also through oxylipin pathway activation. Thus, calcium improves
the drought response in the tea tree. These findings improve our understanding of
calcium-mediated drought defense in tree crops. Further studies will reveal temporal and
spatial changes of expression of the above-mentioned genes.
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