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1  | INTRODUC TION

Ethological and ecobehavioral field studies are often hampered 
by the scale and difficulty of data collection. Long periods of time 
and complex data acquisition procedures are required to compose 
an accurate picture of environmental‐behavioral interactions at a 
single site. Expanding this to include concurrent data from multiple 
sites that may have varying habitats spread across multiple locales 

exacerbates existing data collection issues and limits the number of 
populations that can be studied (Bonier et al., 2007).

Identifying how the environment can influence animal behavior 
becomes even more difficult when the conditions or events being 
studied are uncommon or unpredictable. For instance, many animals 
may alter behavioral patterns dramatically in the face of unusual or 
extreme weather patterns (Bateman et al., 2015; Romero, Reed, & 
Wingfield, 2000), but observation and data collection during such 
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Abstract
Field studies seeking to identify interactions between the environment and behav‐
iors of wild songbirds are often restricted by time, labor, and accessibility of the site; 
hampering the collection of long‐term, high‐resolution data. Here, we describe the 
development, utilization, and initial results of a long‐term field study of wild songbird 
feeding patterns using data collected through an inexpensive microcomputer‐con‐
trolled automated feeder. Our studies indicate the “smart feeder” is capable of relia‐
ble and accurate data collection on feeding and behavioral metrics over long durations 
with relation to a wide range of environmental conditions. This enables detailed 
analysis of songbird’s environment–behavior interactions. Our results have identified 
trends in environment–behavior interactions, microhabitat variations, species‐spe‐
cific feeding profiles, and differences in the frequency and involvement of displace‐
ment events. Computerized feeders enabled us to address environment–behavior 
interactions, resulting in more detailed data than traditional observational methods. 
This reinforces conclusions from previous work regarding the potential for auto‐
mated data collection to be adapted for a wide variety of research studies across the 
field of ethology.
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events are frequently hampered by the same factors. It can be diffi‐
cult to predict an incoming blizzard or tropical storm, and the harsh 
conditions of these events can also limit access to sites, impair visi‐
bility, and create risks to researcher safety.

Similarly, many research questions may require multiple observa‐
tions of behavioral events that occur infrequently or unpredictably, 
such as the initial arrival of individuals at a breeding site, aggressive 
interactions between heterospecific competitors, or mate choice in‐
teractions. In some situations, these events can be studied only by 
spending large amounts of time onsite waiting for the event to hap‐
pen (Bennett, 1990; Walther, Chen, Lin & Sun, 2017). Unfortunately, 
many researchers do not have the time or resources to devote to 
these sorts of long‐term observations.

In addition, the behaviors researchers seek to study may be fun‐
damentally altered by the act of observation (Burley, Krantzberg, & 
Radman, 1982; Metz & Weatherhead, 1991). The presence of the 
researcher, even when minimized through distance, camouflage or 
cover, creates a potential confound that can alter both the incidence 
and salient features of behavior (Farmer, Leonard, Mills Flemming, 
& Anderson, 2014; Gibson, Blomberg, Atamian, & Sedinger, 2015; 
Jiguet, 2009). Similarly, it is difficult if not impossible to conduct 
certain types of experimental protocols while avoiding interactions 
between the researcher and the research subject. For instance, a 
hypothetical avian study involving playback of predatory vocaliza‐
tions during chick feeding events would require close observation 
of parental behavior and a dynamic interaction with a playback ap‐
paratus; the researcher would have to watch the nest for the return 
of the parents and play the predatory vocalization at exactly the 
right moment. This hypothetical study requires the researcher to be 
present in relatively close proximity to the nest, creating a potential 
confound. As a result, this research question becomes not “how do 
parents react to predatory vocalizations during chick feeding” but 
rather “how do parents react to predatory vocalizations during chick 
feeding, when a potential threat (the researcher) is near the nest.”.

Other approaches such as large teams of researchers and/or citi‐
zen science can ameliorate some of these difficulties, however come 
with complications of their own (Dickinson, Zuckerberg, & Bonter, 
2010). Citizen Science initiatives may be particularly hampered in 
that they require buy‐in from an often uninterested public and pos‐
sess relatively high turnover rates (Bonter & Cooper, 2012). Data 
collected through citizen science are also vulnerable to substantial 
accuracy variation as well as uneven spatial and temporal resolutions 
due to inconsistent distribution and involvement of participants 
(Farmer et al., 2014).

A technologically driven approach to data collection can provide 
an alternative, or supplementary, method of addressing the practical 
problems limiting ecobehavioral research. A number of researchers 
have integrated computers into their data collection devices, mak‐
ing them capable of reliable, round‐the‐clock, remote ecobehavioral 
data collection (Lendvai et al., 2015; Small, Bridge, & Schoech, 2011; 
Venier, Holmes, Holborn, Mcilwrick, & Brown, 2012). Aplin, Farine, 
Morand‐Ferron, and Sheldon (2012) and Firth and Sheldon (2015) 
used automated feeding units equipped with RFID (radio‐frequency 

identification) tags to track individual movements and construct so‐
cial networks of great tits (Parus major), blue tits (Cyanistes caeruleus), 
and other species. Though these feeders were only able to respond 
to tagged animals, and did not record environmental metrics of the 
feeding, they did demonstrate that computerized feeders can suc‐
cessfully enable novel types of field data collection.

While many early attempts at computerized field monitoring 
devices have been generally limited by the nature of the data they 
collect, their manufacturing expense, and their propensity to errors 
and critical failures, recent technological developments in embed‐
ded computing, 3D printing, and fabrication have made customized, 
flexible behavioral data collection devices a more reasonable pros‐
pect. Solving or minimizing the difficulties inherent in collecting con‐
tinuous, accurate and fine‐scale data over multiple disparate areas 
is an increasingly achievable goal that allows researchers to test hy‐
potheses previously left untested due to lack of necessary resources 
and abilities.

In order to partially address these needs within the field of avian 
behavioral ecology, we developed the Programmable Automated 
System for Songbird Ecobehavioral Research (PASSER). The goal 
of PASSER was to produce a highly reliable, low cost, mobile, and 
adaptable system that could provide round‐the‐clock monitoring of 
long‐term species level avian feeding behavior, as well as a variety 
of potentially salient environmental variables. Here, we describe the 
methodology and mechanisms of the PASSER “smart feeder” sys‐
tems we produced, and provide an overview of their data collection 
capabilities. Specifically, we test the hypotheses that the (a) feeding 
behaviors of species (both inter‐ and intraspecifically) will vary within 
sites as well as (b) between sites. We also test the hypothesis that (c) 
involvement in displacement events will vary across species. Lastly, 
we compare data collected by our computerized feeders against that 
of human collected data via field observations to test the hypothesis 
that (d) our computerized feeders are capable of collecting similar 
data with greater accuracy than traditional observational methods.

2  | METHODS

2.1 | Design

The feeders are rectangular boxes measuring 20.2 × 20.2 × 35.6 cm, 
made of 0.635 cm thick acrylic with integrated 3D‐printed plastic 
components. These printed portions provide support to the feeder 
and house batteries, computer components, sensors, and a motor. 
We used AutoCAD (Autodesk Inc.) to design the main structure, 
and TinkerCAD (Autodesk Inc.) for visual modeling and creation 
of the 3D‐printed parts. The acrylic for the main feeder structure 
was cut with a ShopBot Computer Numerical Control machine 
(ShopBot, Durham, USA). 3D components were printed on a Stratus 
Mojo (Stratasys, Eden Prairie, USA) and a MakerBot Replicator 2 
(MakerBot, New York, USA). Feeders were fused with acrylic glue, 
sealed with silicone, and treated with a hydrophobic spray to keep 
out water. Each feeder can be powered directly from a wall outlet 
or by two DC batteries (Voltaic Systems V44 Lithium‐Ion Batteries; 



12524  |     PHILSON et al.

Voltaic Systems, New York, USA) that sit atop the feeder. Longevity 
of the batteries is increased by attaching one or more solar panels (9‐
watt Voltaic Solar Cells; Voltaic Systems, New York, USA) positioned 
atop, or near the feeder. Batteries are currently swapped out every 
48–72 hr (depending on the amount of sunlight the solar cells have 
received) to ensure the feeders remain running.

Birds interact with two key components while at the feeder, a 
perch and feed tray. Both of these components are located on the 
front face of the feeder. In the configuration we currently use, the 
perch is a rod that is 8.9 cm wide and 0.925 cm in diameter, po‐
sitioned 4.8 cm from the feed tray. The feeding tray measures 
8 × 3.8 × 2.5 cm, providing easy access for small and mid‐sized birds. 
We use a feed mix comprised of cracked and uncracked sunflower 
seeds and millet, though this can easily be substituted with other 
feeds as needed. See Figure 1 for visual.

The feeder is controlled by a Raspberry Pi Zero computer 
(Raspberry Pi, Cambridge, UK) using the operating system Raspbian 
(Raspberry Pi, Cambridge, UK) with code written in the BASH script‐
ing language. The Pi is connected to six components: a temperature/
humidity sensor (DHT), a servo motor, a proximity sensor, a real‐time 
clock (RTC), a repositionable armature camera, and a USB drive 
(Adafruit Industries, New York, USA; Logitech, Romanel‐sur‐Morges, 
Switzerland). The DHT sensor collects temperature and humidity 
data from the feeder’s immediate microclimate and is located on the 
side of the feeder. The servo motor, located internally between the 
feed tray and feed reservoir, spins a wheel, dispensing food from 
the feed reservoir to the feed tray. The proximity sensor is situated 
directly above the feed tray, immediately facing the perch, and is 
triggered upon occlusion of its direct line of sight, within 5 cm. The 
RTC, which contains a separate internal battery, is used to maintain 
accurate dates and times. Data collected by the feeder (temperature, 

humidity, time, date, and images) are saved on the USB drive for easy 
retrieval and access. The Raspberry Pi, RTC, and USB are located in 
a sealed, waterproofed compartment below the primary feed reser‐
voir. In addition to these components, an 85 × 50cm touch screen 
(Adafruit Industries, New York, USA) mounted directly in front of 
the perch allows for feeder‐bird interactions. The screen is versatile, 
allowing for predetermined visual media, live feeds from the cam‐
era, or interactive stimuli to be displayed in a customizable fashion. 
General maintenance (replacement of sensors, cleaning the feeder, 
etc.) was performed as needed, most often at night.

We estimate the price of early feeder prototypes (not including 
labor or design) cost in the vicinity of $500–$600 USD. Newer de‐
signs, based on preexisting templates and proven components, can 
be produced for an estimated $322 USD, with a majority of costs 
allocated to batteries, solar cells, 3D printing.

2.2 | Function

Aggregation of these components allows for the feeder to recognize 
when a bird arrives, and in turn activates a chain of events that col‐
lects both environmental data and images of the feeding bird. The 
exact chain of events is reconfigurable. In its current iteration, oc‐
clusion triggers the servo to dispense food within 2 s and activates 
the camera, which takes a series of 10 photos across 8.2 s. After the 
photos, the DHT is activated to record temperature and humidity 
data, while the built‐in RTC records the date and time of the bird’s 
visit. We have also incorporated a delay between triggering events 
to minimize the number of times the feeder is triggered by a single 
feeding event, such that the feeder can only be activated every 11 s.

2.3 | Field sites and feeder deployment

We placed feeders at three sites (Campus, Residential, and 
Conservancy) all within a 2.88 km radius in southwest Virginia’s New 
River Valley. Each site was assessed for level of anthropogenic distur‐
bance (Table 1). We quantified disturbance using three metrics: percent 
of total area comprised of green space, local human population den‐
sity, and frequency of human traffic within 25 m of the feeder. Percent 
green space was calculated within a 250 m radius of each feeder using 
satellite images from Google Earth Pro (Google, Mountain View, USA). 
Images were analyzed in ImageJ (NIH, Rockville, USA) to calculate the 
total area of green space (vegetation, unpaved ground, and small areas 
of water) versus built space (buildings and paved areas such as side‐
walks and parking lots). We calculated local human population density 
using population totals from the census block groups that feeders were 
located within (Data Access and Dissemination Systems, 2010), divided 
by the areas of these block groups (determined using 2010 US census 
maps and Image J; Data Access and Dissemination Systems, 2010). To 
quantify human traffic frequency, an observer recorded the number 
of people and motor vehicles passing within 25 m of the feeder during 
a 30‐min period. People or vehicles that loitered within 25 m of the 
feeder were counted once per minute to incorporate their continued 
presence into the data set. Observations were repeated at each site 

F I G U R E  1   The PASSER smart feeder with key components 
labeled
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three times between 17 November 2017 and 14 December 2017, and 
averaged. All observations were performed within 4 hr of dawn on 
weekdays to ensure that our human activity estimates would be com‐
parable to bird activity levels estimated through traditional observation 
methods, described below.

We deployed feeders and collected pilot data from 29 August 
2017 to 15 January 2017. This 140‐day period of feeder deployment 
allowed for both seasonality and weather to be assessed as dynamic 
factors in the study. The Campus feeder was deployed for 82% of 
this time period, the Residential feeder was deployed for 64% of the 
time, and the Conservancy feeder was deployed 71% of the time. 
We will use ANOVA, t test, and equivalence statistical analyses to 
interpret our data.

2.4 | Traditional field observations

To compare the feeders’ data collection abilities to data collected via 
traditional methods using human observers, we performed four ob‐
servations between 1 February 2018 and 23 February 2018 on each 
of the two feeders that received consistent bird activity earlier in the 
pilot period (Campus and Residential). Each observation consisted of 
a single observer watching the feeder with binoculars for a period of 
30 min. Observers sat in a stationary position 20 m from the feeder or 
employed a nearby building as a blind in cases of extreme cold or when 
the front of the feeder was not visible from 20 m due to intervening 
vegetation or structures. At the beginning and end of each observa‐
tion, the observer held up a card in front of the feeder’s camera and 
triggered the proximity sensor to mark the set of data we would later 
compare their personal observations to. Observers recorded and iden‐
tified by species (and sex, when possible) for each individual to visit the 
feeder, as well as any instances of incoming birds displacing the previ‐
ous occupant at the feeder. Visits were recorded in order of occurrence 
for optimal comparison with feeder recordings of the same time period. 
This resulted in data on the number of visits to the feeder, the number 
of species to use the feeder, the relative numbers of visits per species, 
and displacement behaviors among and between species.

3  | RESULTS

3.1 | Overall feeder performance

Our three feeders were actively recording data, on average, for 72% 
of the total deployment period (campus feeder = 82%; residential 

feeder = 64%; nature conservancy feeder = 71%). In this time, they 
recorded 19,660 total image sets triggered by visits to the feeders. 
When triggered, feeder cameras took sets of 10 photos, with an av‐
erage of 0.64 s between individual photos. The time from proxim‐
ity sensor activation to camera activation was 2.8 s on average; this 
time to initial photo has been shorted to 1.7 s by changing the order 
in which the sensor activates the food‐dispensing servo and camera 
to prioritize the camera.

During the deployment period, feeders were occasionally re‐
moved for maintenance and repair or to avoid damage during ex‐
tremely adverse weather conditions such as windstorms. Some data 
were also lost due to loss of battery power. Early in the deployment 
period, these gaps in data collection occurred more frequently, how‐
ever, adjustments made to the physical design, power supply, sen‐
sors, and software during the deployment period have substantially 
improved feeder reliability.

3.2 | Comparison of feeders to human observations

Feeders recorded an average of 7.4 (SE = 8.5) visits/30 min. obser‐
vation by an average of 1.6 (SE = 0.9) species. Human observers re‐
corded an average of 11.6 (SE = 10.5) visits/30 min. observation by 
an average of 2.4 (SE = 1.5) species. T tests comparing (a) number of 
visits observed by humans versus feeders and (b) number of species 
observed by humans versus feeders did not find significant differ‐
ences between human and feeder performance (F‐ratio = 0.7879, 
p = 0.3897 and F‐ratio = 1.4483, p = 0.2488, respectively). We also 
performed two‐sample equivalence tests to determine the degree 
to which human and feeder data matched. For the test comparing 
the number of visits observed by humans versus feeders, we used an 
equivalence bound of 22.5 (25% of the mean of the human observa‐
tions). This threshold was chosen because we expected some varia‐
tion in these overall numbers due to the human ability to discriminate 
between repeat bird visits and a single long feeding bout, which the 
feeders currently lack due to their use of a simple proximity sen‐
sor trigger. Mean visits were found to be similar at this threshold 
(lower bound p = 0.0011, upper bound p < 0.0001, SE = 4.787). The 
equivalence test comparing number of species observed by humans 
versus feeders used an equivalence threshold of one species, which 
was chosen because it was the lowest possible detectable difference 
and because both feeders and human observers were known to oc‐
casionally miss a species. The results showed equivalence only for 
the upper bound, indicating that the current iteration of our feeders 

TA B L E  1   Quantitative measures of human‐related disturbance at our three feeder deployment sites

Site % green space
Human population density 
(people/km2) Average motor vehicles/hr

Average 
pedestrians/hr

Campus 28.3 11,589.50 0 116.6

Residential 72.72 887.4 4 2

Nature conservancy 97.4 20.8 0 0

Note. Green space measures are a percentage of total area within a 250 m radius of each feeder. Human population densities are for the US census 
block group that the feeder was located within. Average vehicles and pedestrians per hour are for a 25 m radius area around each feeder.
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lacks a high degree of similarity to humans in the number of spe‐
cies they detect. (lower bound p = 0.347, upper bound p = 0.0070, 
SE = 0.623).

Species that human observers recorded but that were missed by 
the feeders during certain observations were black‐capped chicka‐
dees, tufted titmice, song sparrows, and house sparrows. Feeders 
may have missed feeding events due to technological issues such 
as the slight lag time between sensor activation and camera acti‐
vation or the proximity sensor not activating appropriately when a 
bird arrived. Human observers also missed birds visiting the feeder; 
during one observation, a human observer missed visits by northern 
cardinal(s) that were recorded by the feeder. During another obser‐
vation, both the human and feeder missed a visit by a house sparrow 
that was recorded on a separate video camera set up for comparison 
purposes.

3.3 | Site differences

Our three deployment sites were selected for their differences in 
degree of human disturbance, both in terms of development and 
day‐to‐day activity. Campus was our most disturbed site, with the 
lowest percentage of green space, highest human population den‐
sity, and significantly more pedestrians per hour than the other 
sites (Oneway ANOVA: F‐ratio = 33.98, p = 0.0005). The nature 
conservancy, as expected, was our least disturbed site for all three 
of these metrics. The residential site fell in the middle, although it 
had more cars passing near the feeder than either of the other sites 
(F‐ratio = 12.00, p = 0.008) due to the position of the feeder within 
25 m of a road (Table 1).

Both total and average daily bird activity varied greatly depend‐
ing on feeder location (campus feeder = 7,058 total, 61.4 per day; 
residential feeder = 11,569 total, 134.5 per day; nature conservancy 
feeder = 0 total, 0 per day), with the residential feeder receiving the 
most activity and the nature conservancy feeder remaining unvis‐
ited during the entire deployment period. Species composition of 
the feeding groups also varied between sites. Northern cardinals 
(Cardinalis cardinalis), black‐capped chickadees (Poecile atricapillus), 
eastern tufted titmice (Baeolophus bicolor), blue jays (Cyanocitta 
cristata), American goldfinches (Spinus tristis), and house finches 
(Haemorhous mexicanus) were present at both the campus and res‐
idential feeders to varying degrees. The campus feeder was also 
visited by downy woodpeckers (Picoides pubescens). The residential 
feeder was frequented by song sparrows (Melospiza melodia), house 
sparrows (Passer domesticus), and Carolina wrens (Thryothorus ludovi-
cianus) and occasionally visited by mourning doves (Zenaida macro-
ura) and eastern towhees (Pipilo erythrophthalmus), none of which 
were seen at the campus feeder.

Temporal feeding patterns also differed between sites. 
Specifically, a multiple regression model with species, site, and 
the interaction between species and site as explanatory variables, 
with hour of first feed for the day as the response variable found 
that birds typically fed earlier on campus than at the residential 
site (means equal 8.42 and 8.52, respectively; F‐ratio = 14.2956, 

p = 0.0002). This model included house finches, northern cardinals, 
tufted titmice, and black‐capped chickadees, the four species most 
commonly observed at both locations. The interaction term of this 
model was also significant (F‐ratio = 4.7735, p = 0.0028), indicating 
that inter‐site differences were larger for some species than others. 
Most notably, house finches were the latest to start feeding on cam‐
pus, but the earliest feeders at the residential site.

We used multiple regressions to analyze feeding patterns rela‐
tive to temperature and humidity data from the four common spe‐
cies found at both sites, as listed above. The model with temperature 
as the response variable and species, site, and the interaction of spe‐
cies and site as the explanatory variables found that average feeding 
temperature at the campus site was significantly higher than at the 
residential site (averages equal 11.71 and 9.62 degrees Celsius, re‐
spectively; F‐ratio = 39.03, p < 0.0001). Some species’ average feed‐
ing temperatures also differed by site (F‐ratio = 13.66, p < 0.0001). 
For example, a post‐hoc Tukey HSD test found that, though tufted 
titmice fed at the lowest temperature of any of the four species at 
the campus location (9.38°C), their average feeding temperature at 
the residential location (11.37°C) was higher than any of the other 
species (Figure 2a). Similarly, our model with humidity as the re‐
sponse variable and the same explanatory variables showed that 
humidity varies significantly by site (averages equal 50.16°C and 
79.66°C, respectively; F‐ratio = 856.94, p < 0.0001) and that species 
typically fed at different humidities at different sites (F‐ratio = 21.13, 
p < 0.0001; Figure 2b).

3.4 | Species differences

The smart feeders proved themselves capable of recording a wide 
range of data. Over their 4.5‐month deployment, the feeders re‐
corded 18,627 feeding events across 12 species of birds, as well as 
eastern gray squirrels. Common species included northern cardinals, 
house sparrows, tufted titmice, black‐capped chickadees, and song 
sparrows, with blue jays, house finches, and Carolina wrens also ap‐
pearing fairly often. Additional, relatively infrequent (<50 observa‐
tions) feeder visitations were recorded from downy woodpeckers, 
American goldfinches, mourning doves, and eastern towhees.

There were noticeable differences in feeder use across spe‐
cies within our data set. Some species fed more frequently than 
others (Table 2). Similarly, some species fed earlier than others (F‐
ratio = 10.7353, p < 0.0001; Table 2). Weather also had species‐spe‐
cific effects on feeder use across sites (multiple regression models, 
described in Site Differences, above: temperature, F‐ratio = 2.8264, 
p = 0.0371; humidity, F‐ratio = 30.0796 p < 0.0001). Average feed‐
ing humidity varied significantly across all four species, with house 
finches feeding at the highest relative humidity (77.68%) followed by 
northern cardinals (55.54%) and black‐capped chickadees (47.25%) 
at similar intermediate humidities, then tufted titmice at the lowest 
humidity (43.93%; Tukey‐Kramer HSD; Figure 2a,b).

Species also displaced each other at the feeding perch asym‐
metrically. Song sparrows and tufted titmice were more likely to be 
displaced than to displace other species (p = 0.0234 and p = 0.0007, 
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respectively; binomial probability test), while black‐capped chick‐
adees and northern cardinals were more likely to be the displacer 
(p = 0.0167 and 0.0249, respectively; binomial probability test; 
Figure 3). Species also differed significantly in how commonly 
they were involved in displacement events overall (χ2 = 26.1068, 
p = 0.0020; Pearson chi‐squared probability test). For example, 
house sparrows were much more likely to be part of a displacement 
event than song sparrows (11.5% of observations versus 2.8% of ob‐
servations; Table 3), despite a similar number of observations of both 
species from the same feeder (house sparrows = 4,468 observations, 
song sparrows = 4,392 observations, residential feeder; Table 3).

4  | DISCUSSION

4.1 | Smart feeder successes and limitations

The studies described here show that the PASSER smart feeders were 
able to successfully achieve the objective of large‐scale automated 

F I G U R E  2   (A) Mean temperature (°C) 
of feeding per species by site. Post‐hoc 
tukey HSD test results run for both sites 
together. Significance between species 
shown. Species codes: HOFI =House finch 
(Haemorhous mexicanus), ETTI =Eastern 
tufted titmice (Baeolophus bicolor), NOCA 
=Northern cardinal (Cardinalis cardinalis), 
BCCH =Black‐capped chickadee (Poecile 
atricapillus). (b) Mean humidity (%) of 
feeding per species by site. Post‐hoc 
tukey HSD test results run for both sites 
together. Significance between species 
shown. Species codes: HOFI =House finch 
(Haemorhous mexicanus), ETTI =Eastern 
tufted titmice (Baeolophus bicolor), NOCA 
=Northern cardinal (Cardinalis cardinalis), 
BCCH =Black‐capped chickadee (Poecile 
atricapillus)

TA B L E  2   Total visits recorded by the feeder for all species that 
visited and hour of earliest feeding averaged across all visits made 
by each species

Species # of Visits
Earliest 
Feeding Time

American goldfinch 46 9:00

Black‐capped chickadee 1553 8:05

Blue jay 239 8:11

Carolina wren 258 10:25

Downy woodpecker 21 10:30

Eastern towhee 1 8:00

Eastern tufted titmouse 1,189 8:29

House finch 838 8:08

House sparrow 4,468 8:47

Mourning dove 41 9:30

Northern cardinal 4,929 7:58

Song sparrow 4,392 7:35
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feeding data collection of songbird’s environment–behavior interac‐
tions. The feeders collected reliable environmental and behavioral 
data across a variety of weather conditions with relatively minimal 
hands‐on maintenance, generating a large and varied data set map‐
ping feeder activity with high resolution and accuracy. In the course 
of several months, the PASSER feeders recorded almost 20,000 
feeding events and over 170,000 individual photographs, generated 
from 2 of the 3 active feeders.

Though the feeders were able to collect data on over 72% of 
the time period, they were not without issue. However, after iter‐
ations of the feeder correcting for their vulnerability to weather, 
lack of sufficient battery power, and other general design issues, the 
overall performance and reaction speed of feeders were improved 
(feeders collected data 89% of the time in the final month of the 
study). Despite these improvements, running a large array of these 
feeders would require some technical skill and the time to devote 
to feeder maintenance due to the need for fine‐tuning to specific 
circumstances and additional troubleshooting.

Feeders were highly successful in semi‐urban and residential lo‐
cations; however, they experienced extremely low use in more rural 

locations. This suggests that both species and habitat type may be 
important factors when considering whether these feeders are ap‐
propriate for a given research study (Clergeau, Savard, Mennechez, 
& Falardeau, 1998). Due to their unusual design and the constraints 
of feeders in general, individual animals with limited experience 
using feeders may be reluctant to use them, potentially producing 
bias in a data set or restricting its overall generalizability (Cooper, 
Hochachka, & Dhondt, 2007; Melles, Glenn, & Martin, 2003; Robb, 
McDonald, Chamberlain, & Bearhop, 2008).

In addition, it is worth noting that the feeders produced an over‐
whelmingly large amount of data, with the photographs having to 
be logged and identified by trained observers, making the time to 
process these data sets substantial. That said, the fixed angle of 
the camera relative to feeding birds makes these ideal for machine 
learning and automated photographic coding (Kelling et al., 2013; 
Yoshihashi, Kawakami, Iida, & Naemura, 2017). We are currently 
developing neural network software to aid in identification of sub‐
jects based on natural markings. This software has already shown 
great potential to identify both species and sex of birds from single 
photographs.

F I G U R E  3   Percent of total feeds 
each species was displaced/displacer out 
of total feeding events. Species listed 
had>10 displacement events during study 
period. Species codes: BCCH =Black‐
capped chickadee (Poecile atricapillus), 
ETTI =Eastern tufted titmice (Baeolophus 
bicolor), HOFI =House finch (Haemorhous 
mexicanus), HOSP =House sparrows 
(Passer domesticus), NOCA =Northern 
cardinal (Cardinalis cardinalis), SOSP =Song 
sparrows (Melospiza melodia)
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n of Total 
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% of Feeds 
Displaced

% of Feeds 
as Displacer

BCCH 1553 36 58 2.32% 3.73%

ETTI 1,189 58 28 4.88% 2.35%

HOFI 838 18 29 2.15% 3.46%

HOSP 4,468 231 241 5.17% 5.39%

NOCA 4,929 26 42 0.53% 0.85%

SOSP 4,392 71 49 1.62% 1.12%

AMGO 46 2 1 4.35% 2.17%

BLJA 239 1 0 0.42% 0.00%

CAWR 258 7 2 2.71% 0.78%

Note. Only species with >10 displacement events during study period listed. Species codes: BCCH 
=Black‐capped chickadee (Poecile atricapillus), ETTI =Eastern tufted titmice (Baeolophus bicolor), 
HOFI =House finch (Haemorhous mexicanus), HOSP =House sparrows (Passer domesticus), NOCA 
=Northern cardinal (Cardinalis cardinalis), SOSP =Song sparrows (Melospiza melodia).

TA B L E  3   Count and percent of feeds 
where species was displaced, or was the 
displacer for both locations
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Current designs of our feeders are unable to identify and target 
birds on an individual level, a capability that other computerized 
feeding units using RFID systems currently have (such as: Firth, 
Voelkl, Farine, & Sheldon, 2015; Voelkl, Firth, & Sheldon, 2016). 
This makes our current feeders unsuitable for studies needing to 
identify individual birds. However, we anticipate our neural net‐
work software will soon have the matrices required for individual 
identification.

4.2 | Smart Feeders in comparison to 
traditional methods

Traditional first‐person observational techniques and smart feed‐
ers each have strengths and weaknesses, and as such may often 
work best as complementary, rather than alternative, data col‐
lection techniques. The average number of species recorded by 
human observers, though not statistically different from those 
recorded by the feeders, was also not statistically similar. While 
neither feeders nor human observers consistently recorded every 
visit to the feeder, human observers tended to record more spe‐
cies than the feeders did. Feeders tended to miss species that the 
human observers noted as making quick feeding visits. Such rapid 
visits were most likely shorter than the 1.7 s trigger speed of the 
feeder camera and may account for this discrepancy. Thus, the 
current version of the feeder may not be appropriate for stud‐
ies that require accurate recordings of all species or are focused 
on species that tend to perform rapid feeding visits rather than 
remaining at the feeder to eat. Additionally, as discussed above, 
the feeders’ motion‐triggered camera feature does not allow us to 
discriminate reliably between multiple consecutive visits by birds 
of the same species and a continuous feeding bout by a single in‐
dividual who triggers the camera repeatedly, unless individuals in 
the population have been previously marked. Such discrimination 
may not be necessary for all studies, as multiple records, whether 
of one bird or many, can provide an estimate of the relative use 
of feeders by different species in the area and under various con‐
ditions. Continued development of these feeders, including the 
addition of recognition software, will begin to resolve some of 
these issues.

Nonetheless, our smart feeders have some distinct advantages 
over human observers, not the least of which is their ability to collect 
data consistently over long periods of time, regardless of weather, 
location, and time of day. Because of this, smart feeders are able to 
assemble not only comprehensive observational data sets over long 
periods, but are also able to record relatively large numbers of oth‐
erwise infrequent or unusual occurrences, including such activities 
as displacements, co‐feeding behaviors, and uncommon or transi‐
tory species feeding events. Unlike feeder designs that rely on RFID 
tags, these data can be collected without previously capturing and 
marking all individuals in the target population. Thus, these feeders 
enable the continuous monitoring of large numbers of birds or on 
species where capture (to be marked with RFID or color bands) may 
not be practical.

Additionally, because feeders keep an up‐close photographic 
record of species that visit, mistaken species identification is not 
an issue in the same way that it can be with human observers, who 
may be unfamiliar with certain species, momentarily distracted, 
or unable to discriminate similar species while maintaining a non‐
disruptive distance from the feeder. Because the feeders are 
almost entirely non‐disruptive; due to their passive nature and 
inanimacy, once birds have become accustomed to their presence 
they do not alter patterns of behavior in the way that a human 
observer may (Farmer et al., 2014; Gibson et al., 2015; Jiguet, 
2009). As such, they are also able to interact, with a high degree 
of stimulus, with feeding birds. This makes it possible to pres‐
ent controlled stimuli directly to subject animals, giving rise to a 
number of potential experimental interventions and treatments 
that would otherwise have been extremely difficult to conduct 
in the wild (Camín, Martín‐Albarracín, Jefferies, & Marone, 2016; 
Greenburg, 1984).

4.3 | Data collected from our smart feeders

Our smart feeders recorded a wide range of species feeding. They 
also captured different patterns of behavior across these species, 
including overall numbers of visitations, timing of visitations, and 
propensity for displacing or being displaced during feeding. Feeder 
data also showed that species’ individual feeding profiles differed 
in regard to basic weather conditions. Given the ongoing shifts in 
weather patterns and climate (Fontaine, Decker, Skagen, & Riper, 
2009; Root, Price, Hall, & Schneider, 2003), mapping interactions 
between meteorological patterns and animal behavior are of ever‐
increasing importance to both understand the underlying connec‐
tions that influence the day to day lives of animals and as a means to 
predict vulnerabilities that may precede species die‐offs or environ‐
mental collapse.

Data collected by feeders showed strong and reliable differences 
across sites. As noted, three smart feeders were placed at three 
sites: Campus, Residential, and Nature conservancy. Sites were in 
relatively close proximity to one another (<3 km), and as such did 
not experience any substantial differences in climate or weather. 
However, they did exhibit large differences in the overall nature 
and degree of anthropogenic disturbance. Campus and residential 
sites had substantial overlap in the types of species that visited and 
the time pattern of these visitations, though the residential feeder 
recorded both more frequent feeding events and a wider range of 
species. In addition, the four species we analyzed (house finches, 
black‐capped chickadees, tufted titmice, and northern cardinals) 
all exhibited differences in earliest average daily feeding time both 
overall and relative to each other. Such differences may be related 
in part to local environmental variation. T tests comparing tem‐
perature and humidity of all recorded visits to the feeders irre‐
spective of species showed that both measures differ significantly 
between sites (temperature: t‐ratio = 35.6504, p < 0.0001; humid‐
ity: t‐ratio = −75.1974, p < 0.0001), suggesting either that all species 
visiting the feeders shifted their feeding times across sites in the 
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same direction or that microclimate differences exist between sites 
(Figure 2a,b). Differences in feeding behavior between sites may also 
be related to interspecific interactions; competition between spe‐
cies may impact which species feed at certain times.

Feeders excelled at collecting uncommon behavioral events. 
In the course of 140 days of analysis, the feeders recorded 450 
displacement events, during which one bird would be displaced/
replaced by another within the timeframe of three consecutive pho‐
tos from a single triggering event (~1.5 s; Table 3). Analysis showed 
strong species‐related patterns with some species preferentially re‐
placing others (Figure 3).

4.4 | Future directions

Applying computer automation to traditional field‐based etho‐
logical studies focusing on the interaction between the environ‐
ment and avian feeding behaviors has not previously been widely 
available due to limitations of technology, cost and accessibility/
expertise. The work we have piloted with the PASSER project 
demonstrates that techniques to address environment–behavior 
questions are not only coming of age but also go beyond simply 
easing the process of data collection to enable novel research 
lines and methodologies that would not have otherwise been eas‐
ily conducted.

The flexibility inherent in the “smart feeder” allows them to be 
easily modified or customized. Perches and placement can be altered 
to provide access to a variety of species, including species that feed 
on the ground or on the wing. Control of food delivery enables pre‐
cise dietary modulation, including supplementation, restriction, and 
the delivery of different food types or chemically modified foods to 
different species or even individuals, through incorporation of RFID 
or similar devices. Interactive presentation of stimuli can be made 
across multiple sensory modalities through incorporation of audio 
or video displays. Even olfactory cues could be dynamically modified 
with relative ease, if needed.

It is important to note that embedded “smart technology” in 
ethological studies need not be limited to feeders. Our laboratory 
is already at work on “smart nests” that incorporate many of the 
same design principles discussed above, including solar power and 
interactive recordings. These “smart nests” also incorporate active 
sampling devices, allowing as needed capture and containment, and 
collection of microbial, fecal, and/or feather samples. Zárybnická, 
Kubizňák, Šindelář, and Hlaváč (2016) has already constructed simi‐
lar nest boxes to study cavity‐dwelling animals.

Overall, these smart feeders have allowed our research team to 
more closely and accurately investigate feeding behaviors in wild 
songbirds, comparing them across both spatial and temporal ranges. 
They have enabled recording and analysis of both unpredictable 
and uncommon events, and in so doing have provided us with new 
insights into environment–behavior interactions. We anticipate fur‐
ther use of these and similar models in ours, and many other’s future 
studies, incorporated as a supplement to traditional ethological ob‐
servational methods.
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APPENDIX 
List of materials and equipment used to design and assemble our 
feeder units

Feeder dimensions: 20.2 × 20.2 × 35.6cm
Feeders structure: 0.635 cm thick acrylic sheets, Stratasys Mojo 

QuickPack ABS Print Engine (Stratasys, Eden Prairie, USA), and 
MakerBot PLA Filament (MakerBot, New York, USA)

Designed using: AutoCAD (Autodesk Inc.) and TinkerCAD 
(Autodesk Inc.)

Machines used: ShopBot Computer Numerical Control spindle bit 
machine (“CNC”; ShopBot, Durham, USA), Stratus Mojo (Stratasys, Eden 
Prairie, USA), and MakerBot Replicator 2 (MakerBot, New York, USA)

Power source: Voltaic Systems V44 Lithium Ion Batteries and Voltaic 
Systems 9‐watt Voltaic Solar Cells (Voltaic Systems, New York, USA)
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Computer: Raspberry Pi Zero ‐ Version 1.3 with Raspbian operation 
system (8 GB SD Card w/ Stretch Lite; Product ID: 2820; Raspberry Pi, 
Cambridge, UK; Adafruit Industries, New York, USA)

Computer accessories and sensors: PiTFT Plus 480 × 320 3.5" 
TFT+Touch screen for Raspberry Pi (Product ID: 2441), DHT11 
basic temperature‐humidity sensor + extras (Product ID: 386), 
Adafruit DS1307 Real Time Clock Assembled Breakout Board 
(Product ID: 3296), VCNL4010 Proximity/Light sensor (Product 
ID: 466), Micro servo (Product ID: 169), USB cable ‐ USB A to 
Micro‐B (Product ID: 592), Breadboarding wire bundle (Product 
ID: 153), Break‐away 0.1" 2 × 20‐pin Strip Dual Male Header 
(Product ID: 2822), Adafruit Perma‐Proto Quarter‐sized 
Breadboard PCB (Product ID: 1608). All from Adafruit Industries 
(New York, USA).

Data Storage: SanDisk Ultra Fit USB 3.0 Flash Drive (32 gb; 
Western Digital Technologies, Milpitas, USA)

Camera: Logitech C270 HD Webcam (Logitech, Romanel‐sur‐
Morges, Switzerland)

Additional Materials (general): Acrylic glue, silicone, hydrophobic 
spray, electrical tape and Gorilla tape

F I G U R E  A 1   View from our PASSER smart feeder’s camera. Top left: Eastern tufted titmice (Baeolophus bicolor) at the campus feeder. 
Bottom left: Male northern cardinal (Cardinalis cardinalis) at the campus feeder. Top right: Song sparrow (Melospiza melodia) at the Residential 
Feeder. Bottom Right: Female house sparrow (Passer domesticus) at the residential feeder

F I G U R E  A 2   A side view of our PASSER smart feeder at the 
campus location


