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The unfolded protein response (UPR) is an adaptation
mechanism activated to resolve transient accumulation of
unfolded/misfolded proteins in the endoplasmic reticulum.
Failure to resolve the transient accumulation of such proteins
results in UPR-mediated programmed cell death. Loss of tu-
mor suppressor gene or oncogene addiction in cancer cells can
result in sustained higher basal UPR levels; however, it is not
clear if these higher basal UPR levels in cancer cells can be
exploited as a therapeutic strategy. We hypothesized that co-
valent modification of surface-exposed cysteine (SEC) residues
could simulate unfolded/misfolded proteins to activate the
UPR, and that higher basal UPR levels in cancer cells would
provide the necessary therapeutic window. To test this hy-
pothesis, here we synthesized analogs that can covalently
modify multiple SEC residues and evaluated them as UPR
activators. We identified a spirocyclic dimer, SpiD7, and
evaluated its effects on UPR activation signals, that is, XBP1
splicing, phosphorylation of eIF2α, and a decrease in ATF 6
levels, in normal and cancer cells, which were further
confirmed by RNA-Seq analyses. We found that SpiD7 selec-
tively induced caspase-mediated apoptosis in cancer cells,
whereas normal cells exhibited robust XBP1 splicing, indi-
cating adaptation to stress. Furthermore, SpiD7 inhibited the
growth of high-grade serous carcinoma cell lines ~3-15-fold
more potently than immortalized fallopian tube epithelial
(paired normal control) cells and reduced clonogenic growth of
high-grade serous carcinoma cell lines. Our results suggest that
induction of the UPR by covalent modification of SEC residues
represents a cancer cell vulnerability and can be exploited to
discover novel therapeutics.

Unfolded protein response (UPR) is an adaptation mech-
anism designed to handle increased folding needs in cells and
restore proteostasis. In normal cells, extrinsic stressors such
as nutrient deprivation or acidosis trigger transient activation
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of UPR to restore proteostasis. Failure to restore proteostasis
activates an apoptosis program. UPR is a protective mecha-
nism designed to handle stress, and the level/intensity of
stress dictates cell fate decisions (1–8). Under acute endo-
plasmic reticulum (ER) stress conditions, adaptation mech-
anisms, such as expression of chaperones to increase folding
capacity and ER-associated degradation (ERAD) proteins to
clear misfolded proteins, are activated to restore normal
homeostasis (9–11). However, under chronic ER stress, the
adaptation mechanisms are overwhelmed, and cell death
pathways are activated by, among others, transcription factor
C/EBP homologous protein (CHOP) (12). In addition to cell
extrinsic stressors that are transiently experienced by normal
cells, tumor cells also face cell intrinsic stressors such as loss
of tumor suppressors and oncogene addiction. A recent study
showed that loss of the tumor suppressor phosphatase and
tensin homolog deleted on chromosome 10 in high-grade
serous carcinoma (HGSC) was associated with a higher
burden of misfolded proteins. Phosphatase and tensin ho-
molog deleted on chromosome 10 loss resulted in (a) higher
basal levels of UPR-associated proteins and (b) increased
sensitivity to bortezomib (13). This higher basal proteostasis
makes cancer cells particularly vulnerable to UPR activation–
induced apoptosis. Figure 1 is a model for the aforemen-
tioned, wherein the resting proteostasis in cancer and normal
cells is shown in red and green, respectively. The effect of
UPR activation is shown as red and green arrows in cancer
and normal cells, respectively. The therapeutic window
shown as a double-headed arrow, that is, the difference be-
tween the resting proteostasis levels of cancer cells and
normal cells is the same for UPR activators and UPR in-
hibitors. Theoretically, from a therapeutic standpoint, UPR
activators will drive cancer cells toward apoptosis, whereas
UPR inhibitors will reduce the proliferative capacity of the
cancer cells.

UPR activation is regulated by three major pathways,
namely activating transcription factor 6 (ATF6), protein kinase
R–like ER kinase (PERK), and inositol-requiring enzyme 1
(IRE1). Although all three pathways upregulate the expression
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Figure 1. Rationale for the development of UPR inhibitors and UPR
activators. The red and green dotted lines indicate hypothetical resting
proteostasis levels in cancer and normal cells, respectively. The red and
green arrows indicate UPR activation in cancer and normal cells. The blue
arrow indicates the effects of UPR inhibition in cancer cells. UPR, unfolded
protein response.
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of chaperones, IRE1 and PERK pathways also upregulate
ERAD and apoptosis-associated genes, respectively. Activation
of UPR pathways is monitored by specific readouts. Decrease
in ATF6 levels serves as a sensor for ATF6 pathway activation.
Thapsigargin (Tg)-induced ER Ca2+ depletion leads to the
proteolytic cleavage of membrane-bound ATF6 to release
soluble ATF6(p50), which translocates to the nucleus and
activates transcription of the chaperone binding immuno-
globulin protein (BiP) (11). Hypoxia-induced stress leads to the
activation of PERK pathway. This is indicated by hyper-
phosphorylation of PERK and phosphorylation of serine 51
(pS51) on eukaryotic initiation factor 2α (eIF2α) (14). These
phosphorylation events serve as readouts for PERK pathway
activation. Increased level of unfolded proteins causes IRE1-
dependent splicing of a small intron from X-box binding
protein 1 (XBP1) (15–17). Spliced XBP1 is a sensor for the
IRE1–XBP1 pathway that transcriptionally regulates levels of
ERAD components (18).

A wide array of small molecules that directly or indirectly
perturb UPR have been reported (19). The therapeutic win-
dow, that is, the difference in resting proteostasis in cancer
cells versus normal cells, suggests that both UPR inhibitors and
UPR activators can be explored as cancer therapeutics (Fig. 1).
Examples include BiP inhibitor YUM70 that exhibits in vitro
and in vivo effects in pancreatic cancer models (20, 21). Studies
with IRE1 inhibitor MKC8866 in multiple prostate cancer
models revealed that it targeted the prosurvival role of IRE1–
XBP1 axis that activated c-Myc (22, 23). Knockout and
mutational studies with PERK and eIF2αS51A, respectively,
impairs tumor growth in hypoxic regions because of impaired
integrated stress response (24). PERK inhibitors, GSK2606414
and GSK2656157, exhibited antitumor effects; however,
pancreatic damage because of dose-limiting toxicity remains a
concern (25–27). Along with PERK, general control
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nonderepressible 2 and heme-regulated inhibitory kinase are
eIF2α kinases that are known to elicit integrated stress
response. An example of a direct activator of UPR is the urea
analog (3r) that inhibited tumor growth by heme-regulated
inhibitory kinase–mediated phosphorylation of eIF2α (28).
UPR activators that do not directly target the proteins asso-
ciated with UPR have also been identified. Compound 147,
identified through an elegant screen, covalently modifies pro-
tein disulfide isomerases to preferentially activate ATF6 (29).
Proteasome inhibitors (Velcade, Ninlaro, and Kyprolis) elevate
the levels of ubiquitinated proteins, thereby activating UPR-
mediated cell death. A characteristic of misfolded proteins is
a higher percentage of surface-exposed hydrophobic patches.
This is recognized by the endogenous protein quality control
machinery and activates their degradation. This inspired
several laboratories to append hydrophobic tags to high-
affinity small molecules to drive the degradation of the target
proteins (30–38). Along these lines, we explored covalent
modification of surface-exposed cysteine (SEC) residues to
simulate elevated levels of unfolded/misfolded proteins to
selectively induce UPR-mediated cancer cell death.

Results

Analog 19 covalently modifies >330 proteins

We previously reported the discovery of a spirocyclic
compound with an α-methylene-γ-butyrolactone (19) that
covalently modified NF-κB pathway proteins, RELA (v-rel
avian reticuloendotheliosis viral oncogene homolog A) and
IKKβ (inhibitor of NF-κB kinase subunit beta), by targeting
SECs (39–41). To identify proteome-wide targets of analog 19,
we conducted a click-mass spectrometry (MS) study using an
alkyne-tagged analog 19 (Fig. 2). A total of 635 proteins were
covalently bound by analog 19 (peptide threshold >95%;
protein threshold >99% with one peptide minimum) from two
runs (Table S1). RELA and IKKβ are low abundant proteins,
and they were not identified in the click-MS study. The bio-
logical replicates recalled �53% (339) of proteins that were
bound to analog 19, and 6% of the recalled proteins are
localized to the ER (42). Pathway analysis (reactome, version
79; reactome.org) revealed that 14 of 20 most significant
pathways were related to translation of proteins (Table S2).
Since analog 19 covalently modifies >330 proteins, we hy-
pothesized that a dimer of analog 19 with two covalent
modifiers would either covalently modify multiple residues in
these proteins to mimic a large hydrophobic patch on the
surface or bind to proximal Cys residues on two proteins to
simulate a misfolded protein and activate UPR.

Dimer of analog 19 (SpiD7) activates UPR

To test this hypothesis, we assembled dimers of analog 19
with 7-carbon and 12-carbon linkers (SpiD7 and SpiD12)
along with an acyclic dimer (SpiD7-A), dimer without the
covalent modifier (SpiD7-R), and a diiodo compound (SpiD7-
C) and evaluated them for UPR activation. Briefly, OVCAR5
cells were incubated with the aforementioned compounds
(Fig. 3A), and the lysates were probed for proteins in the UPR

https://reactome.org


Figure 2. Identification of proteome-wide targets of 19 in MiaPaCa2 cells. Cells were incubated with 10 μM of alkyne-tagged monomer 19 for 1 h. The
lysates were subjected to click reagents and biotin-azide. Biotinylated 19-tagged proteins were isolated on a streptavidin column. Following elution
proteins were subjected to mass spectrometry analyses. Venn diagram showing the recalled number of proteins identified in the biological replicates.
A scatter plot of the number of peptides in the 339 recalled proteins from the biological replicates.
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pathways (Fig. 3B). The results showed that SpiD7 was the
only compound that reduced full-length ATF6 levels which is
indicative of cleavage-induced activation and induced XBP1
splicing. We also observed PERK activation (the slower mov-
ing p-PERK band) resulting in eIF2α phosphorylation. More-
over, in SpiD7-treated lysates, we observed reduced caspase
7 and 9 levels, along with increased levels of cleaved poly(ADP-
ribose) polymerase (PARP). We did not observe any such ef-
fects in 19, SpiD12, SpiD7-A, SpiD7-R, and SpiD7-C indicating
that the (a) linker length, (b) spirocyclic core, and (c) Michael
acceptor contribute to UPR activation and induction of
apoptosis. Consistently, results from a growth inhibition assay
showed that SpiD7 was the most potent among the panel of
analogs screened (Fig. 3C).
Figure 3. Effect of SpiD7 and its analogs on UPR-associated proteins, ca
structure–activity relationship (SAR) study. B, cancer cells (OVCAR5) treated with
6 h. The lysates were probed for the indicated UPR and apoptosis-associated p
SpiD7, SpiD12, SpiD7-A, SpiD7-R, or SpiD7-C and incubated for 72 h, and grow
D, immortalized fallopian tube epithelial cells (FT282C11) and cancer cells (OVC
was recorded after a 10 min incubation (n = 6, average ± SD, p value two-ta
(OVCAR5) were treated with 10 μM of 19 and SpiD7 and incubated for 2 h
proteins. Blots shown are representative examples of at least biological replic
SpiD7 activates UPR in both normal and cancer cells and
selectively induces apoptosis in cancer cells

The levels of SEC residues are greater in unfolded proteins
as compared with their folded counterparts. A thiol probe
tetraphenylethene maleimide (TPE-MI) was used to measure
unfolded protein levels in cells by binding to free sulfhydryl
groups on cysteine residues present on unfolded proteins,
which are otherwise buried in their folded counterparts
(43, 44). We treated immortalized fallopian tube epithelial cells
(FT282C11) (45, 46), which represent a normal cell control,
and cancer cell lines (OVCAR5 and OVCAR8) with TPE-MI to
assess relative levels of unfolded proteins. We observed high
TPE-MI fluorescence in cancer cells suggesting elevated levels
of SECs (unfolded proteins) (Figs. 3D and S1).
ncer cell growth, and apoptosis. A, structure of compounds used for the
10 μM of 19, SpiD7, SpiD12, SpiD7-A, SpiD7-R, or SpiD7-C and incubated for
roteins. C, cancer cells (OVCAR5) treated with varying concentrations of 19,
th inhibition (GI) was determined using Alamar Blue (n = 3, average ± SD).
AR5) were incubated with 10 μM of fluorescent dye TPE-MI, and fluorescence
iled t test). E, immortalized fallopian tube cells (FT282C11) and cancer cells
. The lysates were probed for the indicated UPR and apoptosis-associated
ates. UPR, unfolded protein response.

J. Biol. Chem. (2022) 298(5) 101890 3



ACCELERATED COMMUNICATION: SpiD7 is a UPR activator
Next, we treated FT282C11 and OVCAR5 cells with 19 or
SpiD7 to determine their effect on UPR activation. In dimethyl
sulfoxide–treated samples, we observed elevated levels of spli-

cedXBP1 in OVCAR5 cells when compared with
FT282C11 cells (Fig. 3E, lanes 1 versus 4). This suggests that
UPR is activated (higher resting proteostasis, Fig. 1) in resting
cancer cells compared with normal cells. Analog 19 did not
affect the levels of pS51-eIF2α, XBP1 splicing, or ATF6,
demonstrating that 19 does not activate UPR in either
OVCAR5 or FT282C11 cells (Fig. 3E, lanes 1 versus 2 and 4
versus 5). In SpiD7-treated FT282C11 (Fig. 3E, lanes 1 versus
3) and OVCAR5 (Fig. 3E, lanes 4 versus 6) cells, we observed
an increase in pS51-eIF2α levels. A robust increase in XBP1
levels was observed in SpiD7-treated FT282C11, whereas no
such increase was observed in OVCAR5 cells (Fig. 3E, lanes 1
and 3 versus 4 and 6). SpiD7 nonselectively activated ATF6
(Fig. 3E, lanes 3 and 6), which is consistent with reported
small-molecule probes that covalently target cysteine residues
on protein disulfide isomerases to activate ATF6 (29). More-
over, we observed a more robust CleavedCaspase 7 and Clea-

vedPARP levels in SpiD7-treated OVCAR5 cells when
compared with FT282C11 cells (Fig. 3E, lanes 3 versus 6). We
also compared SpiD7 and the classical UPR activator Tg for
induction of apoptosis in normal and cancer cells (Fig. S2).
Figure 4. RNA-Seq analyses with samples derived from cancer cells (OV
volcano plot showing the differential RNA expression between the 2 h vehicl
lighted in red and green). B, representative gene set enrichment analysis for the
showing twofold change of the GO ER stress gene set for the 2, 6, and 12 h, Spi
(OVCAR5) treated with SpiD7 (10 μM) for 2, 6, and 12 h probed for key proteins
least a biological replicate. ER, endoplasmic reticulum; FDR, false discovery ra
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Unlike Tg, SpiD7-mediated PARP cleavage is approximately
2.7-fold higher in OVCAR5 cells as compared with
FT282C11 cells.
RNA-Seq analyses indicate that SpiD7 activates UPR

To further assess if SpiD7 activates UPR, OVCAR5 cells
were treated with SpiD7 and incubated for 2, 6, and 12 h. RNA
isolated from these samples was sequenced by the University
of Nebraska Medical Center (UNMC) sequencing core.
Representative volcano plot describing differential RNA
expression between vehicle-treated and SpiD7-treated cancer
cells for 2 h is shown in Figure 4A (please see Fig. S3 for the
volcano plot for the 6 and 12 time points). A greater than two-
fold gene expression change was observed in >113 genes at a
false discovery of rate <0.05. Gene set enrichment analysis
showed a time-dependent increase in the normalized enrich-
ment scores for the hallmark UPR gene set (Fig. 4B, 6 h
treatment and Fig. S3 for the 2 and 12 h treatment). Euclidean
cluster analysis greater than twofold change for the Gene
Oontology ER stress and hallmark UPR gene set for 2, 6, and
12 h treatment is summarized in Figure 4C and Fig. S4,
respectively. A time-dependent increase in the expression for
majority of genes (ATF3, HERPUD1, CHAC1, DNAJC3,
CAR5) treated with SpiD7 (10 μM) for 2, 6, and 12 h. A, representative
e and SpiD7 treatment against p value (≤0.05 and twofold change is high-
hallmark UPR gene set for 6 h, SpiD7-treated cells (FDR ≤ 0.05). C, heat map
D7-treated cells. D, Western blot analyses of lysates derived from cancer cells
that indicated UPR activation. Blots shown are representative examples of at
te; GO, Gene Ontology; UPR, unfolded protein response.
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WIPI1, CEBPB, DDIT4, ERN1, eukaryotic translation initia-
tion factor 2 alpha kinase 3 [EIF2AK3], ATF4, DNAJB9, XBP1,
heat shock protein family A member 5 [HSPA5], and TSPYL2)
in the Gene Ontology ER stress and the hallmark UPR gene set
was observed demonstrating induction of UPR. Of note,
overexpression of genes CHAC1, ATF3, ATF4, and EIF2AK3
are associated with proapoptotic effects mediated by the
PERK/ATF4/CHOP signaling pathway. Western blot analyses
with lysates of the time-course study done in parallel revealed
a time-dependent increase of BiP (GRP78) and pS51-eIF2α in
SpiD7-treated cells (Fig. 4D). The time-dependent increase in
CHOP and PARP cleavage suggests inability of the cancer cells
to overcome the SpiD7-induced covalent modification of
proteins (Fig. 4D).

Efficacy studies with SpiD7

Next, to determine the relative potency of the SpiD7 and 19
to inhibit growth of HGSC cell lines (47, 48), we subjected
them to a 3-day cell growth assay. Among the cell lines
(Kuramochi, OVCAR4, SNU-119, OVSAHO, CaOV3, and
OVCAR8), the most sensitive cell line was OVCAR8, and
SpiD7 was 14.4-fold more potent than 19, and the least sen-
sitive cell line was Kuramochi. On an average, SpiD7 was
approximately sixfold more potent than 19 in inhibiting HGSC
cell growth. SpiD7 was approximately 3- to 15-fold more
potent in inhibiting the growth of HGSC cells over
FT282C11 cells (Fig. 5A). To assess the ability of SpiD7 to
inhibit colony formation, OVCAR8 and CaOV3 cells were
subjected to 7- and 14-day clonogenic assay, respectively
(Fig. 5B). Briefly, single-cell suspension of �103 HGSC cells
was incubated with SpiD7, colonies allowed to form for 7 or
14 days, stained with crystal violet, and colonies containing
over 50 cells were manually counted. SpiD7 reduced clono-
genic growth and survival of HGSC cells (OVCAR8 and
CaOV3), which is consistent with reported studies that showed
reduction in colony formation upon UPR induction (49, 50).
The activation of caspases, a class of cysteine proteinases, is
routinely used by us and others as indicators for the induction
of apoptosis (40, 51–56). The results show that SpiD7 activates
effector caspases 3/7 in HGSC cell lines (CaOV3, OVCAR8,
and Kuramochi) (Fig. 5C).
Figure 5. Efficacy studies with SpiD7 in HGSC cell lines. A, growth inhibitio
lines (n = 3, average ± SD). B, clonogenic survival studies with dimer SpiD7 in
colonies with more than 50 cells (n = 3, average ± SD, p value two-tailed t test).
for 24 h and caspase 3/7 activity assessed (n = 2). HGSC, high-grade serous c
Discussion

Here, we demonstrate that covalent modification of SEC
residues induces UPR activation resulting in cancer cell death.
In a previous study, we found that an isatin-derived spirocyclic
core with an α-methylene-γ-butyrolactone moiety (analog 19)
inhibits NF-κB pathway by covalently binding to cysteine
residues on RELA and IKKβ. Proteome-wide profiling of
analog 19 targets using a click-pull down-MS study showed
that analog 19 covalently modifies >330 proteins with high
confidence. We also found that the modified proteins included
those involved in key ER functions such as protein folding and
cellular response to stress, thus indicating that 19 could be
modulating the UPR.

We used TPE-MI to show elevated levels of SECs in cancer
cells when compared with nontransformed immortalized cells
indicating the presence of higher levels of unfolded proteins.
This suggests that covalent modification of SECs will simulate
the presence of misfolded proteins and disproportionately
affect the cancer cells. Cells treated with UPR activator tuni-
camycin, which irreversibly binds to UDP-N-acetylglucos-
amine–dolichyl-phosphate N-acetylglucosamine-1-phosphate
transferase, exhibit accumulation of unfolded/misfolded pro-
teins in the ER and UPR activation (57). Treatment with lower
dosage or shorter time results in adaptation or a lag period,
whereas higher dosage and longer incubation times results in
cell cycle arrest and eventually apoptosis by robust upregula-
tion of CHOP and Gadd34 (58, 59).

Since 19 covalently modifies >330 proteins, we hypothe-
sized that dimers that can covalently modify more than one
sulfhydryl group and as a consequence simulate increased
levels of misfolded proteins will activate UPR. The limited
structure–activity relationship study with 19, SpiD7, SpiD12,
SpiD7-A, SpiD7-R, and SpiD7-C, identified structural element
of SpiD7, such as linker length, the spirocyclic core, and the
Michael acceptor, is required for activation of UPR. We
recently showed that SpiD7 covalently modifies RELA to
generate stable high molecular weight species (41). A logical
extension is that SpiD7 simulates the presence of misfolded
proteins to activate UPR. A comparison of SpiD7 activity in
cancer cells (OVCAR5) versus normal cells (FT282C11) shows
selective activation of IRE1 pathway in FT282C11 cells,
n (3 days) assay with monomer 19 and dimer SpiD7 in a panel of HGSC cell
HGSC cell lines. The bar graph represents quantification of the number of
C, under multiplexing conditions, HGSC cell lines were incubated with SpiD7
arcinoma.
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indicating adaptation. It is important to note that when
compared with FT282C11 cells, the basal XBP1 levels in
OVCAR5 are elevated, which is probably required to handle
the sustained cell intrinsic stress. This suggests that the IRE1
pathway in OVCAR5 cells is operating at maximal efficiency in
its resting state. Activation of the PERK and ATF6 arms of the
UPR pathway was observed in both OVCAR5 and
FT282C11 cell lines. Analyses of time-course RNA-Seq data-
sets of OVCAR5 cells treated with SpiD7 identified 136 and 31
genes with p value <0.05 that were fourfold up and fourfold
down, respectively, and exhibited a time-dependent increase or
decrease (Table S3). Among the most differentially regulated
genes, 99 mapped to an entity in reactome. Several stress
response pathways including UPR activation were featured in
the 20 most significant pathways that were perturbed by SpiD7
(Table S4).

In SV40-transformed mouse fibroblast, tunicamycin treat-
ment selectively induced apoptosis in the transformed fibro-
blast by increasing the intracellular Ca2+ and accumulation of
unglycosylated proteins in the ER (60). This is consistent with
our observation of robust increase in cleaved-PARP and
cleaved-caspase 7 levels in OVCAR5 cells treated with SpiD7
but not in FT282C11 cells. This suggests that IRE1 activation
and robust XBP1 splicing observed in FT282C11 cells coun-
teracts SpiD7-induced stress to block UPR-mediated
apoptosis. Whereas in the cancer cells, the IRE1 pathway is
activated in its resting state; therefore, there was no additional
increase in XBP1 splicing upon SpiD7 treatment. XBP1
splicing is known to mitigate the ER stress in secretory B cells
in multiple myeloma and triple-negative breast cancer cells to
facilitate growth and survival (61, 62). This is similar to what
we see in our study with FT282C11 cells wherein covalent
modification of proteins by SpiD7 induces ER stress resulting
in robust XBP1 splicing. Since IRE1 pathway is activated in
resting OVCAR5 cells, the adaption threshold is breached
upon SpiD7 treatment to activate programmed cell death. On
the other hand, analog 19 did not induce the activation of
UPR, indicating that at equimolar concentrations, dimer
SpiD7–induced covalent modification of proteins is more
effective in inducing UPR activation.

The time-course study with SpiD7 showed elevated levels of
ER chaperone BiP as well as increase in p-eIF2α indicating
activation of PERK, along with increased CHOP and cleaved-
PARP protein levels. These observations are consistent with
the RNA-Seq data that showed increased HSPA5 (BiP),
EIF2AK3 (PERK), and DNA damage–inducible transcript 3
(DDIT3) (CHOP) levels. Previous studies with Tg, which is
known to covalently modify the sarcoendoplasmic reticulum
calcium transport ATPase pump, showed that disruption of
the cellular Ca2+ homeostasis results in the induction of
apoptosis by sustained elevation of ATF4, CHOP, and BiP
followed by a gradual increase in cleaved PARP levels (63).
Although SpiD7 and Tg activate UPR, our head-to-head
comparison study of SpiD7 and Tg in normal versus cancer
cells suggests that the mechanism associated with UPR acti-
vation plays a critical role in selectively inducing apoptosis in
6 J. Biol. Chem. (2022) 298(5) 101890
cancer cells. Growth inhibition studies showed that SpiD7 is
approximately sixfold more potent inhibiting the growth of
HGSC cell lines when compared with 19. Moreover, depend-
ing on the HGSC cell lines, SpiD7 exhibited �3-fold to 15-fold
selectivity in inhibiting the growth of HGSC cell line over
FT282C11. Since SpiD7 also perturbs the NF-κB pathway, the
observed inhibition of growth and induction of apoptosis is not
exclusively because of UPR activation. Our studies provide
critical proof of concept for a novel therapeutic modality; we
recognize that additional studies with other dimers that have
head groups that can covalently modify SECs are required to
validate this strategy. In conclusion, our studies show that
small molecules that possess the ability to covalently modify
multiple SECs in protein complexes can selectively induce
apoptosis in cancer cells by UPR activation.

Experimental procedures

Cell lines

Nontransformed human telomerase reverse transcriptase–
immortalized human fallopian tube epithelial cells FT282C11
and human cancer cell lines MiaPaCa2, OVCAR5, OVCAR8,
and CaOV3 were cultured in Dulbecco’s modified Eagle’s
medium with high glucose (catalog no.: SH30022; Hyclone)
with 10% fetal bovine serum (catalog no.: 26140079; Life
Technologies) and 1% penicillin–streptomycin (catalog no.:
16777-164; Hyclone). Human cancer cell lines Kuramochi,
SNU-119, and OVSAHO were cultured in RPMI1640 (catalog
no.: SH30027; Hyclone) with 10% fetal bovine serum and 1%
penicillin–streptomycin.

Cell lysis and Western blot

Cell lysis and Western blot analyses were done following
reported methods (52, 54, 55, 64, 65).

Antibodies

ATF6 (CST; catalog no.: 65880), α-tubulin (CST; catalog
no.: 3873), Cl-PARP (CST; catalog no.: 9541), PARP (CST;
catalog no.: 9542), XBP1 (Abcam; catalog no.: Ab198999),
pS51-eIF2α (CST; catalog no.: 3398), eIF2α (CST; catalog no.:
5324), Cl-Caspase-7 (CST; catalog no.: 8438), Bip (CST; cata-
log no.: 3177), PERK (CST; catalog no.: 5683), CHOP (CST;
catalog no.: 2895), Caspase 7 (CST; catalog no.: 9492S), Cas-
pase 9 (CST; catalog no.: 9502S), and XBP1 (Invitrogen; cat-
alog no.: PA5-27650).

RNA extraction and RNA-Seq analyses

OVCAR5 cells were seeded at a density of 2 × 106 cells in
100 mm dishes and allowed to adhere overnight. The cells
were treated with 10 μM of SpiD7 for 2, 6, and 12 h. The cells
were washed with PBS post-treatment and incubated for 5 min
at room temperature on shaker with 2 ml of Trizol (catalog
no.: 15596018; Invitrogen). The samples were harvested and
collected in microfuge tubes (1 ml per 2 ml tube). RNA pu-
rification steps were performed using the Direct-zol Miniprep
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Plus kit (catalog no.: #R2070; Zymo Research) according to the
manufacturer’s protocol.

RNA-Seq of the samples was performed at the UNMC
Genomics Core Facility following reported method (66) using
two lanes of the HiSeq 2500 DNA Analyzer (Illumina) to
generate a total of approximately 20 to 25 million 50 bp single
reads for each sample. The quality of the sequencing was
continually monitored with a Q30 score. Following
sequencing, the samples were demultiplexed to produce
FASTQ files. The resulting sequence files were processed by
the UNMC Epigenomics core facility. Adaptor sequences and
low-quality (Phred score: 20) ends were trimmed using the
Trim Galore software package (http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/). The resulting FASTQ
files were aligned to the human genome (GRCm38/mm10)
using the software TopHat (version 2.0.8) (http://ccb.jhu.edu/
sofware/tophat/index.shtml). The software Cufflinks (version
2.1.1) (http://cole-trapnell-lab.github.io/cufflinks/) was used to
estimate the expression values, and Cuffdiff (version 2.1.1;
cufflinks) was used to determine the differential expression.

Colony formation assay

Colony formation assay was done following reported
methods (67). Briefly, single-cell suspension of OVCAR8 and
Caov3 cells was seeded in 6-well dishes at a density of
1000 cells per well in triplicates. After overnight incubation,
cells were treated with different concentrations of SpiD7 and
allowed to form colonies for 7 or 14 days. After incubation,
cells were fixed with methanol, stained with 0.5% crystal violet
in PBS, rinsed with water, and air dried overnight. Colonies
containing >50 cells were counted using inverted light mi-
croscope manually.

Growth inhibition and caspase 3/7 assays

Growth inhibition and caspase 3/7 assay was done following
reported methods (46, 51, 53–55, 68–71).

Statistical methods

The mean ± SD of biological replicates was used to generate
the graphs, and statistical analyses were performed using two-
tailed Student’s t test.

Data availability

All data generated and analyzed in this study are included in
the article or can be obtained from the authors upon reason-
able request. The MS proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE (72) partner
repository with the dataset identifier PXD029783 and 10.6019/
PXD029783. All FASTQ files were deposited in the Gene
Expression Omnibus database under accession number
GSE190368. Please direct all requests to Amarnath Natarajan
(anatarajan@unmc.edu).
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