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Schizophrenia is frequently accompanied by depressive symptoms, but the pathological
mechanisms remain to be elucidated. In this study, we used chronic unpredicted
mild stress plus MK801 injection to generate a mouse model of schizophrenia
with depression, in which in vivo 2-photon calcium imaging and electrophysiological
recordings were performed in conjunction with behavioral phenotyping. Compared
to mice models with classical depression or to schizophrenia models, the animal
models with schizophrenia and depression comorbidity presented worse psychotic and
depressive symptoms. These behavioral deficits are associated with impaired neuronal
calcium activities in the frontal cortex and thalamic nuclei. Moreover, in sharp contrast
to classical models that have a satisfactory response to antipsychotic or antidepressant
drugs, this novel schizophrenia with depression model is resilient to combined drug
treatment in terms of behavioral and functional recovery. Taken together, these data
indicate that schizophrenia with depression likely involves a unique pathophysiology that
is different from schizophrenia or depression alone.

Keywords: schizophrenia, depression, mouse model, behavioral phenotypes, prefrontal cortex neuronal activity,
antipsychotic treatment

INTRODUCTION

It is estimated that up to 80% of patients with schizophrenia experience depressive episodes at
least once during the early phase of the disease (Upthegrove et al., 2010). Depressive disorder
prevalence in patients with schizophrenia can be as high as 40% and may be observed in any
disease stage (Conley et al., 2007; Fusar-Poli et al., 2013). In the past, the presence of mood
syndromes was recognized as a positive prognostic indicator in patients with schizophrenia
(Craddock and Owen, 2010). Recent studies, however, argue against such opinions by stating
that these comorbidities predict worse schizophrenia prognoses (Siris, 2000; Yung et al., 2007;
Upthegrove et al., 2010; Gardsjord et al., 2016; Helfer et al., 2016). To date, the neural mechanism
underlying schizophrenia with depression remains largely unknown. Some studies argue for the
impairment of the cortico-limbic circuit as the one underlying neuropsychiatric comorbidity
(Totterdell, 2006), and a few studies suggest the role of neuroinflammation in schizophrenia and
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depression (Anticevic et al., 2015). However, the detailed
mechanism, such as the activity of the neural circuit, in
such a comorbid condition is unclear yet, probably due
to the lack of animal models to mimic this condition.
Therefore, the animal study for schizophrenia with depression
should provide valuable information for clinical diagnosis
and intervention.

The existence of depressive syndromes in patients with
schizophrenia largely complicates the clinical remediation
and, more importantly, compromises the precise definition
and categorization of mental illnesses. For example, the
comorbid depressive and hypomanic symptoms in schizophrenia
largely affect the Diagnostic and Statistical Manual of Mental
Disorders (Fifth Edition) definitions of schizophrenia and
schizoaffective disorders (Siris, 2000; Helfer et al., 2016;
Yung et al., 2007; American Psychiatric Association [APA],
2013). On the other hand, it becomes more difficult to
adopt precise medications in schizophrenia patients who
present depressive syndromes as complications. Hence, there
is an urgent need to investigate the neural mechanisms
underlying comorbidities between depression and schizophrenia
to establish treatment targets and biomarkers, covering aspects
from behavioral symptoms to neural circuit activity, to
improve the medication efficiency of these patients (Bosanac
and Castle, 2013; Dauwan et al., 2016; Krupchanka and
Katliar, 2016; Nasrallah et al., 2015; Mao and Zhang, 2015;
Upthegrove et al., 2017).

To date, clinicians have investigated depressive disorder
and schizophrenia comorbidities in terms of epidemiology
(Strauss and Gold, 2012; Bosanac and Castle, 2013), clinical
manifestations (Strauss and Gold, 2012; Upthegrove et al.,
2017; Krynicki et al., 2018), therapeutic effects (Barnes et al.,
1989; Addington et al., 1996; Sandhu et al., 2013), functional
outcomes (Beck, 1970; Birchwood et al., 2005; Upthegrove
et al., 2014; Kam et al., 2015; McGinty et al., 2018), biological
functions (Anderson et al., 2013; Khandaker et al., 2014;
Samsom and Wong, 2015), somatic comorbidity (Upthegrove
et al., 2018; Gundogdu et al., 2019; Postolache et al., 2019),
suicide risk, and life quality (Pompili et al., 2007; Patel et al.,
2014; Upthegrove, 2015; van Rooijen et al., 2019). These
observations, however, do not consider the depressive symptoms
in schizophrenia patients based on a unified theory and tend
to isolate depressive disorder from schizophrenia. In fact,
depressive disorders, as comorbid symptoms in schizophrenia,
have unique features compared to those in unipolar or bipolar
depressive disorders (Bosanac and Castle, 2013; Pompili et al.,
2007). Therefore, the idea of recognizing depression and
schizophrenia as two independent mental disorders that coexist
as comorbid forms may be premature and lacks sufficient
support. Such classical views should be challenged in a
philosophical sense, as stated by Silverstein et al. who called for
a revolutionary re-thinking of scientific questions (Hesse, 1971;
O’Donohue et al., 2003).

In this study, we adopted a unified view to recognize
schizophrenia with depression as one unique psychiatric
disorder entity which shows distinct pathogenic mechanisms
compared to models of schizophrenia or depression. More

importantly, we also asked if the combined treatment with
antipsychotics and antidepressants can relieve the symptoms of
such schizophrenia with depression. Our hypothesis diverges
from classical views stating that schizophrenia with depression
syndromes are simply the combined pathologies of those two
psychiatric disorders by stating unique neural mechanisms.
To investigate our theory, we generated a mouse model of
schizophrenia with depression and utilized two-photon in vivo
imaging and electrophysiological recordings to study the neural
activities in such model.

MATERIALS AND METHODS

Animals and Overall Experimental
Designs
Male C57BL/6 mice (5–6 weeks old) were housed in an animal
facility with food and water given ad libitum. All animals
were randomly assigned into five groups: control, MK801,
chronic unpredicted mild stress (CUMS), CUMS +MK801, and
MK801+CUMS. For the control group, the mice were housed in
their homecage with no intervention. To create the schizophrenia
mouse model, the mice received an intraperitoneal injection
of MK-801, also known as dizocilpine, a non-competitive
N-methyl-D-aspartic acid (NMDA) receptor antagonist. The
drug infusion lasted for 10 days, with daily dosages at 0.1 mg/kg.
A CUMS model was used to create a rodent depression model
as previously reported (Liu W. et al., 2018). In brief, the
animals were exposed to different stressors including cage tilting,
wet bedding, forced swimming, sleep deprivation, and physical
restraint for 3 weeks. In the CUMS+MK801 group, representing
depression with schizophrenia, the animals received MK801 at
3 days following the conclusion of the CUMS treatment. In
the MK801 + CUMS model, representing schizophrenia with
depression, the mice first received an MK801 injection and were
enrolled in the CUMS paradigm at 3 days post-injection. The
brief experimental procedure was summarized in Figure 1. The
animal study was reviewed and approved by the Animal Ethical
Committee of Tianjin Medical University in accordance with
the Institutional Animal Care and Use Committee guidelines for
animal research.

Behavioral Phenotyping
All behavioral tasks were performed on day 3 after the end of
the intervention. The animals were sequentially enrolled in a
sucrose preference test and a forced swimming task with a 24-h
interval between them. A second cohort of mice was tested using
the prepulse inhibition (PPI) apparatus. The sucrose preference
test and forced swimming tasks followed previously published
methodologies (Yankelevitch-Yahav et al., 2015; Liu M. et al.,
2018). For the PPI test, a 120-dB (40 ms) startle (PA) was applied
after a 20-ms prepulse (PP) at 75 dB, with a time interval of
100 ms. The background noise was controlled at 65 dB. The
inter-trial time was set at 30 s. Generally, three sessions were
used and the scores were averaged. The PPI was calculated
as (PA - PP)/(PA).
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FIGURE 1 | Flowchart of experimental procedures. Chronic MK801 infusion or CUMS protocol was applied to induce schizophrenia or depression model,
respectively. CUMS and MK801 treatment were sequentially applied in generating depression plus schizophrenia, or schizophrenia with depression model.

In vivo Calcium Recordings
To record the prefrontal cortex (PFC) neuronal activity,
previously published methods (Koukouli et al., 2017) were
used with slight modifications. In brief, the anesthetized
mice were fixed, and a chronic cranial window was created.
Then, 200 nl of AAV2/9-syn-GCaMP6s virus (2 × 1013

genome copies/ml; University of Pennsylvania Vector Core) was
injected bilaterally into the prelimbic cortex using the following
coordinates: +2.8 mm from the bregma, ±0.5 mm. The imaging
window was covered with a circular coverslip, and the skull was
sealed using dental cement. A customized steel bar was embedded
into the skull to enable the head of the mouse to be fixed during
the imaging session.

During two-photon in vivo imaging, previously reported
approaches (Koukouli et al., 2017) were followed. A two-
photon microscope (LSM780; Zeiss, Germany) was used
with a × 16, 0.8 N.A. water-immersed objective. Using an
excitation wavelength of 950 nm, time-series images were
recorded at 1.96 Hz for 150-s periods. The captured images
were analyzed using ImageJ (National Institutes of Health,
Bethesda, MD, United States). Regions of interest were selected
manually in ImageJ with a FIJI plug-in package (Koukouli
et al., 2017), followed by the detection and normalization of
calcium transients.

Patch-Clamp Recordings
Electrophysiological recordings were performed in thalamic
medium spiny neurons following previously published protocols

(Ding et al., 2010). In brief, the brain slices were prepared and
infused with artificial cerebrospinal fluid (2 mM KCl, 0.12 M
NaCl, 2 mM MgSO4, 1.2 mM KH2PO4, 26 mM NaHCO3,
2.5 mM CaCl2, and 11 mM glucose) at room temperature for
recovery. Whole-cell patch-clamp recordings were performed
to detect miniature excitatory post-synaptic currents (mEPSCs)
in the presence of TTX and picrotoxin (Sigma, St. Louis, MO,
United States). Pipettes for voltage-clamp recordings were filled
with internal solution (all in mM: 120 CsMeSO3, 15 CsCl, 8 NaCl,
10 TEA-Cl, 10 HEPES, 2–5 QX-314, 0.2 EGTA, 2 Mg-ATP, and 0.3
Na-GTP; pH 7.3). Data filtered at 2–5 kHz were recorded using a
MultiClamp 700A.

Recording of Visual-Evoked Potentials
Visual-evoked potentials were measured in all groups of mice
from the thalamic nuclei using previously published protocols
(Montesano et al., 2015). The mice were deeply anesthetized with
sevoflurane. The skull was exposed, and an electrode was placed
in the visual thalamus using a stereotaxic apparatus and fixed to
the skull. During the recording, the animal was placed in a dark
environment, and white light stimuli (0.1 Hz, 300 ms; LED light)
were presented. The signals were amplified and filtered at 1 kHz.

Statistical Analysis
All experimental data are presented as the mean± standard error
of the mean unless otherwise specified. A two-sample Student’s
t-test or non-parametric K-S test was used to compare the means
between two groups. For multi-group comparisons, one-way
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analysis of variance was performed, followed by Tukey’s post hoc
comparison. GraphPad Prism 7.0 was used for statistical analyses
and data plotting.

RESULTS

Distinct Behavioral Features in Mouse
Models of Schizophrenia With
Depression
To investigate the neuropathology of schizophrenia with
depression, its behavioral phenotypes were first compared with
those of other commonly used depression or schizophrenia
models. NMDA receptor antagonist MK801 and CUMS were
combined to generate a murine model of depression with
schizophrenia (CUMS + MK801) and another model that
mimics schizophrenia with depression (MK801 + CUMS). To
test the validity of these models, behavioral tasks examining
symptoms of depression and schizophrenia were employed. The
forced swimming task was used to evaluate helplessness in the
rodents, although the MK801-treated mice presented minor
changes, while the CUMS and CUMS+MK801 groups displayed
significantly longer durations of immobility (Figure 2A). More
importantly, the MK801 + CUMS group exhibited an even
higher mean immobility time compared to that in the CUMS
group (Figure 2A), suggesting the worsening of helplessness
under these comorbid conditions. Similar patterns of anhedonia
were found in the mice as well; while both the CUMS and
CUMS+MK801 groups showed a decreased sucrose preference,
the MK801 + CUMS mice exhibited an even lower sucrose
preference rate (Figure 2B). These two datasets clearly illustrate
that schizophrenia with depression normally presents more
severe behavioral symptoms compared to unipolar depression.
It is further noticed that although a previous report indicates
an anti-depressant effect of single MK801 in a mouse CUMS
model (Yang et al., 2018), our CUMS + MK801 group did
not have any significant improvement of depressive phenotypes.
Such discrepancy is probably due to the sub-chronic MK801
infusion used in the current study, in contrast to the single
injection in the anti-depressant work. Furthermore, an evaluation
of sensory gating function abnormalities, a typical symptom
of schizophrenia, showed that the MK801 + CUMS group
presented the most severe deficits in the auditory response among
all groups, as suggested by the lower PPI ratio (Figure 2C). These
data collectively demonstrate that schizophrenia with depression
exhibits multiple symptoms including helplessness, anhedonia,
and sensory gating deficits; most of these characteristics are
further deteriorated compared to those in depression and
schizophrenia alone.

Distinct Behavioral Features in Mouse
Models of Schizophrenia With
Depression
After noticing the worsened mental and sensory functions
in the schizophrenia with depression model, this model was
further examined regarding whether it also exhibits unique

neural mechanisms. Utilizing in vivo two-photon imaging,
calcium concentration changes in neurons of layer 2/3 in
the dorsolateral part of the prefrontal cortex (dlPFC) were
recorded in awake mice which had been virally transfected
with the genetically encoded calcium indicator GCaMP6s.
The continuous recording of neuronal activity (Figure 3A)
demonstrated that all four mouse models (MK801, CUMS,
CUMS + MK801, and MK801 + CUMS) had significantly
reduced activity compared to that of the untreated control
mice based on the total number of calcium spikes (Figure 3B)
and the frequency of calcium transients (Figure 3C). Also,
the MK801 + CUMS group presented lower calcium signals
compared to those of all other groups. These results largely
agree with the abovementioned behavioral phenotypes, thus
supporting the presence of worse pathological conditions in
schizophrenia with depression.

Based on the impaired sensory gating function as shown
by the lower PPI ratio in these mice (Figure 2C), the activity
of the neural circuits was investigated in the thalamic nuclei,
which are recognized as the integration center of sensory inputs.
Using ex vivo patch-clamp recordings, the mEPSCs of thalamic
medium spiny neurons (MSNs, Figure 3D) were evaluated.
Upon comparing healthy controls to the schizophrenia (MK801)
and schizophrenia with depression (MK801 + CUMS) models,
MK801 administration led to elevated mEPSC amplitudes
and frequencies (i.e., lower inter-event intervals), but the
MK801 + CUMS group presented lower mEPSC amplitudes
and frequencies (Figures 3E,F). These data indicate that the
present schizophrenia with depression model may involve neural
mechanisms distinct from those in schizophrenia models. As
further evidence, the visual-evoked potentials in the thalamic
regions in those three groups were examined. The results
showed that the schizophrenia model mice had nearly normal
responses to the applied visual stimuli. By contrast, the visual-
evoked responses in schizophrenia with depression model mice
had decreased strength. These data further support that the
schizophrenia with depression model had broader and more
severe neural pathway deficits than the schizophrenia model.

Effectiveness of Antipsychotic Drugs
Targeting Schizophrenia With Depressive
Disorders
After acknowledging the distinct behavioral phenotype and
unique neural circuit deficits in the schizophrenia with
depression model, the possible pharmacological effects of
commonly used antipsychotic drugs were investigated in
this comorbidity model; the commonly used antidepressant
fluoxetine and the antipsychotic drug risperidone were used.
Pilot studies showed that both risperidone and fluoxetine had
satisfactory effects in reversing schizophrenic and depressive
symptoms, respectively. Theoretically, the combined use of
risperidone and fluoxetine may help to relieve the comorbidity
of schizophrenia and depression syndromes. However, the
treatment strategy of combining these two drugs may only
improve behavioral deficits in the CUMS + MK801 model. By
contrast, the combination of these two drugs, following the
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FIGURE 2 | Evaluation of the depressive and the psychotic symptoms among the different rodent models. (A) Immobility time during the forced swimming task is
shown. (B) The sucrose preference ratio reveals prominent anhedonia in all models except for the MK801 administration alone. (C) The prepulse inhibition test
shows auditory gating deficits in schizophrenia but not in depression models. CUMS, chronic unpredicted mild stress. ns, no significant difference; *P < 0.05;
**P < 0.01; N = 5 per group.

standard protocol, did not significantly improve the immobility
time in the forced swimming task (Figure 4A) and the sucrose
preference ratio (Figure 4B) in the MK801 + CUMS mice.
Moreover, when testing performance in the PPI test, which is one
typical feature of schizophrenia, we found that, similar with those
in depressive phenotypes, drug treatment rescued such sensory
gating deficits in all but not in the MK801 + CUMS model
(Figure 4C). These results further support the hypothesis that
schizophrenia with depression has unique pathological features
that are different from those of either depression or psychotic
disorders. The ineffectiveness of the combined drug use suggests
the necessity to develop unique drugs targeting schizophrenia
with depressive disorders.

Differential Modulation of Neural Circuit
Activity by Antipsychotic Drugs
Based on the behavioral phenotypes and the responses to
combined treatment using both antidepressant and antipsychotic
drugs, the schizophrenia with depression model was theorized to
exhibit distinct neural circuit activities upon drug treatment. To
validate this hypothesis, in vivo calcium imaging was performed
again in a mouse model which had received a GCaMP6s injection
plus drug infusion (Figure 5A). Imaging the L2/3 neurons of the
PFC revealed that an antipsychotic or antidepressant treatment
can restore normal neuronal calcium signaling to a certain
extent (compare Figures 3B,C with Figures 5B,C). Moreover,
the combined treatment with risperidone plus fluoxetine can
rescue this activity in the CUMS + MK801 mice. However,
in the schizophrenia with depression model, generated by the
MK801 + CUMS treatment, the combined pharmacological
treatment did not achieve satisfactory effects as the calcium
signaling remained at low levels after the drug treatment
(Figure 5C). These data largely agree with the unchanged
behavioral phenotypes as mentioned before (Figure 4). Since the

data show that impaired visual-evoked potentials in thalamic
nuclei occur specifically in the schizophrenia with depression
model (Figure 3G), visual responses were also recorded in
these mice after the drug treatment. Surprisingly, the co-
treatment of risperidone plus fluoxetine further aggravated the
visual response deficits instead of alleviating the dysfunction
as expected (Figure 5D). These results further suggest distinct
features in schizophrenia with depression, distinguishing it from
other mental disorders and thus calling for novel insights into
possible drug interventions.

DISCUSSION

In this study, a series of behavioral studies and functional
recordings were performed to compare various aspects
across isolated or combined models of depression and
schizophrenia, followed by pharmacological treatment and
post hoc observations. Two essential and previously unrecognized
findings were established from these data, which support the
holistic view on schizophrenia with depression instead of a
classical comorbidity model.

First, the schizophrenia with depression model, generated
by MK801 injection followed by CUMS treatment, presented
more severe impairments in behavioral performance and neural
activity. Specifically, the MK801 + CUMS group exhibited lower
sucrose preference and PPI ratio compared to the isolated
schizophrenia and depression models, respectively (Figure 2).
Such model has implications in psychiatric clinicians as the
comorbid of depressive symptoms in schizophrenia patients
is frequently identified (Upthegrove et al., 2017), and severe
depressive symptoms may further deteriorate the condition of
schizophrenia patients (Hou et al., 2016). A further discussion
for the potential pathological mechanisms underlying such
comorbid thus has values for clinics. Although such behavioral
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FIGURE 3 | Impaired transmission in the cortical and the subcortical neural circuits. (A) Representative time-lapse images of calcium transients in the dlPFC in all
experimental groups are shown. (B) Quantitative analysis results of integrated calcium spikes over the recoding period (2.5 min). (C) The average frequency of
calcium spikes in Hz is shown. (D) Representative electrophysiological recording traces of striatal MSNs in the control and in the MK801 and MK801 + CUMS
groups are shown. (E) The average amplitude of mEPSCs in MSNs. (F) The total inter-event interval in MSNs is shown. (G) Relative visual-evoked potentials in the
thalamic nuclei upon visual stimulation are shown. CUMS, chronic unpredicted mild stress; mEPSC, miniature excitatory post-synaptic current; IEI, inter-event
interval; dlPFC, dorsolateral part of the prefrontal cortex; MSN, medium spiny neuron. *P < 0.05; **P < 0.01; ***P < 0.001; N = 5 per group.
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FIGURE 4 | Behavioral phenotypes in mouse models of schizophrenia with depression after treatment with antidepressant and antipsychotic drugs. (A) Immobility
time in the forced swimming test after receiving fluoxetine and/or risperidone treatment is shown. (B) The sucrose preference ratio in all treatment groups is shown.
(C) PPI assay in all treatment groups is shown. CUMS, chronic unpredicted mild stress. *P < 0.05; N = 5–6 per group.

phenotypes can also be explained by the interaction between
two regulatory pathways that can further aggravate each other’s
severity, a further investigation largely disagreed with this
interpretation. In particular, mice of the dual-symptomatic
model had impaired neuronal activity in the PFC region
(Figure 3), which is critical for mental function (Hiser and
Koenigs, 2018). It was further noticed that visual-evoked
responses were specifically impaired in the schizophrenia with
depression model (Figure 3G). These data illustrate that this dual
model may involve a unique pathological mechanism distinct
from that in either schizophrenia or depression alone. This
mechanism may work as a top-down regulatory pathway affecting
mental, sensory, and cognitive pathways across different brain
regions, leading to behavioral phenotypes that share features of
schizophrenia and depression.

Second, the pharmacological intervention experiments further
support the view that the schizophrenia with depression model
is pathologically different from the simple combination of these
two mental illnesses. As suggested by Figure 4, treatment
with fluoxetine or risperidone effectively relieves the typical
symptoms of depression or schizophrenia, whereas the combined
drug application cannot relieve the helplessness or anhedonia
symptoms in the MK801 + CUMS model. Such observations
in mouse models largely agree with clinical observations
showing the minimal alleviation of depressive symptoms by
antidepressant treatment in schizophrenia patients complicated
with depressive disorders (Fond et al., 2018). This behavioral
observation is further substantiated by the analysis of neuronal
recordings showing that the impaired neuronal activity in
the PFC cannot be relieved by the combined antipsychotic
and antidepressant treatment. Taken together, this knowledge

supports our conclusion that a distinct neuromodulation
pathway may exist beyond the canonical mechanisms of
depression or schizophrenia and lead to the dual symptoms of
depression and psychotics in the present model.

Notably, the combined drug treatment did not improve
the impaired sensory responses in the thalamic nuclei or the
visual-evoked responses (Figure 5C). Sensory gating deficit is
a prominent feature of schizophrenia and can occur in certain
subpopulations of depressive patients (Micoulaud-Franchi et al.,
2016). As observed in the PPI test, the MK801 + CUMS
model exhibited worse sensory processing compared to the
model of schizophrenia alone. Therefore, these findings provide
both auditory and visual sensory functional evidence, indicating
abnormalities of the neural circuits in the schizophrenia with
depression model. The ineffectiveness of the combined drug
treatment targeting the visual response further illustrated that
antipsychotic drugs can only relieve sensory gating deficits in the
classical schizophrenia model, whereas the schizophrenia with
depression model has distinct neural pathways that affect the
sensory processing functions.

Furthermore, different behavioral patterns exist between the
CUMS + MK801 and MK801 + CUMS models; the former
presents mild anhedonia, helplessness, and sensory gating
deficits, whereas the latter displays aggravated behavioral deficits
in both depressive and psychotic symptoms (Figure 2). Such
interesting findings receive partial support from a clinical report
showing the possible involvement of metabolic disorders in
schizophrenia and depression, and antipsychotic treatment
could further aggravate such predisposition (Kucerova et al.,
2015). These differences in behavioral phenotypes were
supported by calcium and electrophysiological recordings,
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FIGURE 5 | Neuronal activity of the cortical and the thalamic nuclei after drug treatment. (A) Representative time-lapse stacked images of L2/3 neurons in the dlPFC
in all experimental groups with or without drug treatment are shown. (B) Integrated calcium transients over the recording time (2.5 min) are shown. (C) The calcium
spike frequency in Hz is shown. (D) Visual-evoked potentials recorded from the thalamic nuclei in response to the presented stimuli are shown. Ris, risperidone; Flu,
fluoxetine; CUMS, chronic unpredicted mild stress; dlPFC, dorsolateral part of the prefrontal cortex. *P < 0.05; **P < 0.01; N = 5–6 per group.

in which the MK801 + CUMS model presented the
lowest neuronal activity in the cortical or thalamic nuclei
(Figure 3). These data indicate that distinct neuromodulating
effects that distinguish between the CUMS + MK801 and
MK801 + CUMS models exist, the former seemingly presenting
additive depression and schizophrenia effects, whereas the
latter may involve other mechanisms beyond these two
syndromes. This hypothesis was partially supported by the
pharmacological intervention assays demonstrating that the
combination of typical antidepressant plus antipsychotic
drugs effectively relieved symptoms in the CUMS + MK801
model but did not improve the depressive symptoms in the
MK801+ CUMS model.

As a potent NMDA receptor antagonist, MK801
administration prominently affects the glutamatergic system
(Thornberg and Saklad, 1996), which may further influence

dopaminergic or serotoninergic systems across different brain
regions (Carlsson and Carlsson, 1990). It is usually believed
that patients with depression or rodent models of depression
have insufficient dopaminergic/serotoninergic reward systems,
leading to anhedonia and helplessness syndromes (Grace, 2016).
Glutamatergic pathway remodeling may impair the resilience of
dopamine or serotonin pathways, making them more vulnerable
to psychological stress (Hutchison et al., 2018). Moreover,
since antidepressants such as fluoxetine aim to potentiate
the serotoninergic system (Perez-Caballero et al., 2014), the
top-down impairment of the glutamate–serotonin system may
also compromise the efficiency of such drugs, thus explaining
the resilience of the MK801 + CUMS model against combined
medication therapy. In summary, the seemingly paradoxical
results from the CUMS +MK801 and MK801 + CUMS models
support our hypothesis that schizophrenia with depression
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involves unique neural mechanisms, which require further
dedicated studies for substantiation.

There are certain limitations in the present study. First,
the sequential treatment of MK801 and CUMS in generating
the psychiatric disorder model may raise the possibility
that a post-schizophrenia depression model was reproduced.
Such concerns can be partially relieved since the CUMS
stimuli were applied when the MK801-induced psychotic
symptoms still existed, rather than after their disappearance.
Second, the therapeutic effect of combined medication
was significantly better in the CMUS + MK801 model
compared to that in the MK801 + CMUS model. These
seemingly paradoxical phenotypes require further study
for mechanistic substantiation. Nevertheless, major findings
indicate that the glutamatergic pathway may interact with
the reward system to produce the complicated symptoms in
the comorbid model.

Many hypotheses have been developed in an effort to explain
the neuropathology of schizophrenia and depression. Each
hypothesis, however, has its bias mainly due to the research focus
of the study when it was originally deployed. For example, the
dopamine theory of schizophrenia mainly attempts to explain
the therapeutic effect in alleviating positive symptoms (Howes
and Kapur, 2009). The neurodevelopment hypothesis, on the
other hand, attempts to clarify the brain damage in high-risk
populations of schizophrenia (Pino et al., 2014; Murray et al.,
2017). For depressive disorders, the neuroimmune theory largely
fits the elevated immune factors in adolescent patients (Miller
and Cole, 2012) and the increased levels of inflammatory factors
that are synchronized with the acute stage of a depressive
episode (Slavich and Irwin, 2014). Since previous studies have
repeatedly discussed possible explanations for schizophrenia
pathogenesis (Insel, 2010; Falkai and Schmitt, 2019; Sahakian
and Savulich, 2019; van Rooijen et al., 2019), the present
psychiatric disorder entity model of schizophrenia accompanied
by depressive symptoms can explain the unfavorable prognosis
of these symptoms.

To our knowledge, this is the first study to clarify the
neural activity alterations in a model of schizophrenia with
depression. Our animal model demonstrates that the functioning
of critical neural activities in the PFC is more severely

affected in schizophrenia with depression mouse models than
in schizophrenia or depression model alone. More importantly,
a combined treatment using antipsychotics and antidepressants
cannot fully reverse either the behavioral or the neural activity
impairments. These data suggest that schizophrenia complicated
by depression may be a previously unrecognized mental disorder
entity that is independent from other mental disorders.
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