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Abstract

Spatial datasets of building footprint polygons are becoming more widely available and

accessible for many areas in the world. These datasets are important inputs for a range of

different analyses, such as understanding the development of cities, identifying areas at risk

of disasters, and mapping the distribution of populations. The growth of high spatial resolu-

tion imagery and computing power is enabling automated procedures to extract and map

building footprints for whole countries. These advances are enabling coverage of building

footprint datasets for low and middle income countries which might lack other data on urban

land uses. While spatially detailed, many building footprints lack information on structure

type, local zoning, or land use, limiting their application. However, morphology metrics can

be used to describe characteristics of size, shape, spacing, orientation and patterns of the

structures and extract additional information which can be correlated with different structure

and settlement types or neighbourhoods. We introduce the foot package, a new set of open-

source tools in a flexible R package for calculating morphology metrics for building footprints

and summarising them in different spatial scales and spatial representations. In particular

our tools can create gridded (or raster) representations of morphology summary metrics

which have not been widely supported previously. We demonstrate the tools by creating

gridded morphology metrics from all building footprints in England, Scotland and Wales, and

then use those layers in an unsupervised cluster analysis to derive a pattern-based settle-

ment typology. We compare our mapped settlement types with two existing settlement clas-

sifications. The results suggest that building patterns can help distinguish different urban

and rural types. However, intra-urban differences were not well-predicted by building mor-

phology alone. More broadly, though, this case study demonstrates the potential of mapping

settlement patterns in the absence of a housing census or other urban planning data.

Introduction

Accurate and complete maps of buildings are a foundational data layer for researchers and

practitioners seeking to understanding cities and characteristics of the built environment.

Identifying and mapping the footprints of structures and their agglomerations into human

settlements is a first step towards improving our understanding of local population patterns,
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providing services and utilities to all areas, and mapping building stock and urban extents [1–

4]. Within the field of planning and particularly the area of urban morphology, the form and

the patterns of buildings in space have been a means to explore the history of cities and the

political economic and social forces shaping their developments [5, 6]. The visible patterns

and features of the built environment can be quantified with a wide range of morphology met-

rics [7]. These metrics describe characteristics (e.g. size, shape, density, compactness, arrange-

ment) of individual buildings or within areas, which can be used to describe urban context at a

fine spatial scale [8].

Building footprint datasets are also becoming key inputs for research in geographic infor-

mation science and other related areas. For example, building footprints have been used to

identify areas at risk of the 100 year floodplain [9]. Footprints have also been used as part of

building models to estimate structure age for energy consumption [10] and to model rooftop

solar potential [4]. Other recent analyses involving building datasets have included delineating

urban areas based on building densities for all of France [11] and Spain [1] and deriving

settlement types [12]. These applications have not always explicitly engaged with past research

on urban morphology and urban planning; however, they often share similarities in their

approaches of using or extracting information based on building footprint datasets. Specifi-

cally, within much of the work involving building maps there is often a goal to identify or

classify similar patterns of morphometric characteristics. The identified classes can then help

distinguish intra-urban neighbourhoods, differentiate settlement types or periods of develop-

ment [3, 8, 13, 14].

Across many research areas there is a trend towards big data analysis to explore urban areas

[5], including using building datasets and morphology metrics. This trend has been noted pre-

viously as part of the growing use of computational methods and larger datasets more gener-

ally and particularly in geographic data science [15]. The opportunities for these types of

analyses are increasing as spatial databases of building footprint polygons with complete and

consistent coverage for large regions and entire countries are becoming more readily available.

Some governments and national mapping agencies already make such geospatial building

datasets openly available. In Great Britain there is the Ordnance Survey OpenMap Local [16].

Some major cities including New York City [17], Chicago [18], and Washington, DC [19]

provide their own data, among other examples. Finally, volunteered geographic information

(VGI), such as OpenStreetMap (www.openstreetmap.org), is another source, producing build-

ing coverage through manual digitising from imagery or by incorporating open building

datasets.

The growth of very high spatial resolution imagery (sub-metre) and improvements in

computational power and algorithms are enabling another source of building footprints from

automatic extraction and mapping from overhead imagery. Recent research has explored the

potential for using deep learning techniques such as neural networks to produce pixel-level

labelling of buildings [20, 21]. The growth of computing resources is enabling such automated

building extraction algorithms to be scaled up to cover whole countries. For example, Micro-

soft used a convolutional neural network to extract 125 million building footprints from imag-

ery across the United States. A post-extraction processing step was applied to create more

regularly shaped polygons. They later applied a similar method to produce building footprints

across Uganda and Tanzania [22, 23]. The Microsoft building footprint datasets are openly

available (https://github.com/Microsoft/USBuildingFootprints). Facebook Analytic Labs also

implemented building feature extraction from high resolution imagery for 140 countries [24];

however, the only publicly available data from this work have been aggregated to a 1 arc-sec-

ond (approximately 30 m) resolution. The remote sensing-derived building polygon datasets

complement other spatial vector databases of building footprints and are increasing the
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availability and geographic coverage of such building data, particularly in resource-poor set-

tings or low-/middle-income countries which may lack other sources of information on urban

planning or the built environment.

With the growth in available data for building footprints from a range of sources, research-

ers and practitioners need software tools to enable effective use of the larger data sources and

to extract the variety of metrics suitable for further analysis and interpretation. The purpose of

this paper is to introduce the foot package [25], a set of open-source software tools as part of

the R computing language [26] for calculating common building footprint metrics. These tools

are provided to support flexible workflows applied to 2D spatial polygon building representa-

tions and to calculate morphology metrics suitable for many different applications. We dem-

onstrate the use of the foot tools to calculate building pattern metrics for all of England,

Scotland, and Wales. We use the resulting gridded summary metrics of building patterns to

develop a simple settlement classification. This example is intended to demonstrate how new

information can be extracted from building footprint datasets. This approach may be of more

value in low- and middle-income countries where up-to-date data on land use or neighbour-

hood types do not already exist, but where new building footprint datasets are becoming avail-

able. All results from this study are openly available from the University of Southampton

repository at https://doi.org/10.5258/SOTON/D1674.

Calculating building footprint metrics

The R package foot consists of a set of functions to calculate common morphology measures of

vector representations of building footprints. These functions can be applied at the scale of the

individual footprint shape, but the package also contains functions to summarise the measures

for differing levels of geography. The main calculations are combined into a function to imple-

ment common workflows. The foot package is coded entirely in the R statistical computing

language, making use of the sf, stars, and lwgeom packages [27–29] to access external spatial

data libraries.

In the following sections we detail the basic use of the package and some of its key features.

Development of the package is ongoing and the latest version of the source code is available

under a GPL-3.0 open source license from Github (https://www.github.com/wpgp/foot).

Basic use and available metrics

After installing the foot package and its dependencies (see S1 Text), the package can be loaded

in an R session. A small sample of building footprints are provided with the package which

were publicly released and licensed by Microsoft under the Open Data commons Open Data-

base License (ODbL v1.0). These data are used for the demonstrations in this section. Further

details of the package are available from the documentation (see? foot) and in three tutorial

vignettes installed with the package and available in the supplementary materials (S2 Text).

The available metrics calculate area, perimeter, roundness, compactness, angle of rotation,

and nearest neighbour distance. These measures can be summarised for a user-defined region

with a total, count, mean, median, min, max, standard deviation, coefficient of variation, near-

est neighbour index, or entropy. In addition, there are options for a binary indicator of foot-

print present (or not) and a count of footprints per zone. Not all summaries are available for

all measures, as appropriate. The list of measures is given in Table 1, and the names of the

functions to calculate the metrics can be listed in an R session using list_fs().

The shape index implemented is calculated as the ratio of footprint area to the area of the

minimum bounding circle which contains the footprint polygon. The shape values can range

from 0 to 1, indicating more complicated shapes to less complicated or more circular shapes.
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The compactness measure implemented is the Polsby-Popper index [30], which is calculated

from the area (a) and perimeter (p) for any building footprint i as: ci ¼
4pai
p2
i

. A value of 1 indi-

cates the most compact shape while values approaching zero reflect shapes with no compact-

ness. The metrics are introduced in more detail in the package documentation and vignettes.

These metrics were chosen as commonly used morphology measures to quantify the dimen-

sion, shape, and distribution of building features in local areas [7]. Future developments in

foot will allow users to define their own metrics and summary functions.

Some less-conventional measures are also implemented in the foot package. The angle is a

measure of structure orientation. It is calculated as the heading, in degrees, of the rotated mini-

mum bounding rectangle. To summarise the orientations for a local area, the angle (along

with its 180 degree opposite) are binned into 10-degree categories and the Shannon entropy

value (H) is calculated [31]. For each zone, entropy is calculated as: H ¼ � S
n

i¼1
PðoiÞ logePðoiÞ,

where P(oi) represents the proportion of building orientations in each bin, i, out of n total

bins. Additionally, this entropy can be normalised (the default setting in foot) to describe the

local deviation from a hypothetical perfect grid of structures, potentially suggesting areas with

more (or less) formal planning and similarly oriented structures. The angle entropy measure is

based on a study of street network orientations demonstrated by Boeing [32]. The nearest

neighbour index (NNI) is more commonly used in spatial point pattern analysis [33], but it

can be used to quantify patterns of building centroid points and summarise the tendency to

spatially cluster or be dispersed within a geographic region. NNI is based on comparing the

observed average nearest neighbour distance to a hypothetical distance that could be expected

if points were randomly distributed in the same area. NNI is calculated as: NNI ¼
S

n

i¼1di
n

:5
ffiffi
A
n

p ,

where d is the nearest neighbour distance for building i, out n total buildings, and A is the total

area of the zone being evaluated. This measure has been applied previously to detect differ-

ences in residential areas [34].

An example of basic usage is shown in Code Block 1, below. The core functionality is

accessed through calculate_footstats. All functions in the foot package follow the

same naming template. The first argument to a function is always a footprint dataset which

allows for piping syntax using the %>% operator, if the user prefers. The characteristics to

calculate are specified in the “what” argument. Users can specify the units of measure for the

morphology characteristics. The default return value for summary functions is a data table

[35] with measurement units [36] or a Geotiff for gridded outputs.

Table 1. Currently available measurements and summary statistics available in the foot package.

Area Perimeter Rotation Angle Nearest Neighbour Distance Shape Compactness

Mean X X X X X X

Median X X X X X X

Standard Deviation X X X X X X

Min, Max X X X X X X

Coefficient of Variation X X X X X X

Total (sum) X X

Entropy X

Nearest Neighbour Index X

Summary statistics are available for a range of characteristics (area, perimeter, angle of rotation, nearest neighbour distance, shape, compactness) for building footprint

polygons.

https://doi.org/10.1371/journal.pone.0247535.t001
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Code block 1. Basic usage of the foot package. The code snippet demonstrates how the

package can be used to calculate building-level and summary measures of basic area and

perimeter characteristics. The default return value for all foot functions is a data table. Func-

tions shown are applied to a sample dataset provided with the R package code.
# load package
library(foot)
# list available metrics
list_fs()
# load sample data
data("kampala", package = "foot")
buildings <- kampala$buildings
# calculate building-level measures
calculate_footstats(buildings, what = c("area", "perimeter"))
# calculate average area of all footprints
calculate_footstats(buildings,
what = "area",
how = "mean")

# calculate the coefficient of variation for all perimeters
calculate_footstats(buildings,
what = "perimeter",
how = "cv")

The function calculate_footstats is a convenience function to also support calcu-

lating multiple metrics and creating area-level summary measures of footprint characteristics.

An example is demonstrated in Code Block 2. To create area-level summary measures a user

must first define the group to which a building belongs. Most commonly this grouping will be

a geographically-defined zone (e.g. an administrative unit), but in theory any classification

assigned at the building level could be used as a grouping variable for these analyses. Summary

calculations also require a valid summary statistic (Table 1) for the characteristic, specified as

one or more parameters to the “how” argument.

Code block 2. Defining geographic zones and calculating area-level summaries. The

calculate_footstats function supports area-level summary measures of footprint

morphology characteristics by allowing users to supply spatial datasets of footprint polygons

and area zones. Multiple summary metrics can be calculated on the footprints and the result is

a table of summary measures.
# load sample polygon zones from package data
adminzones <- kampala$adminZones
# Creates zonal index and calculates multiple metrics
results <- calculate_footstats(buildings, # supply footprints

zone = adminzones, # supply zonal polygons
what = c("area", "perimeter"),
how = c("mean", "cv"))

print(results)
# alternatively, buildings within zones can be pre-defined
bldgsZone <- zonalIndex(buildings,

zone = adminzones,
method = "centroid", # or ’intersect’ or ’clip’
returnObject = TRUE)

# new set of building footprints with `zoneID`added
bldgsZone

# calculate multiple metrics with pre-defined zone identifiers
results2 <- calculate_footstats(bldgsZone,

zone = "zoneID", # supply column name
what = c("area", "perimeter"),
how = c("mean", "cv"))
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print(results2)

Identifying the buildings’ geographic zone can be accomplished as a pre-processing step in

a GIS, with other spatial tools in R, or by using functions provided in the foot package. The

zonalIndex function spatially links footprints and geographic zones and provides a unique

ID for calculations. This function is used internally by calculate_footstats when a

user supplies a spatial polygon as the argument to the zones.

The zonal index function has further parameters for greater control when defining inclu-

sion. A user can define the buildings belonging to a zone in three ways: 1) as any polygons

whose centroid point intersects a zone; 2) as any polygons which intersect a zone, or, 3) build-

ing footprint shapes can first be clipped to the bounds of the zone and then intersected (Fig 1).

Note that when intersecting building polygons with zones, buildings which overlap multiple

zones will be included in each zone, duplicating the building record. This side-effect can be

desirable for smoothing style analyses with overlapping moving windows. Additionally,

Fig 1. Defining building footprints within a geographic area using the zonalIndex function. Users can provide shapes to

define a zone. Shaded regions of polygon footprint are included in the morphology calculations and summary measures for the

red “zone.” The building footprint shapes can be included in the zone if their centroids intersect the zone (A), if any part of the

footprint intersects the zone (B), or the footprint shapes can be clipped to the zone bounds (C). Building footprint data shown in

this figure are made available by Microsoft under the Open Data Commons Open Database License (ODbL v1.0).

https://doi.org/10.1371/journal.pone.0247535.g001
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clipping building shapes could introduce small slivers, but these polygons can be filtered out in

the calculate_footstats. The footprint clipping approach may be necessary for certain

types of analyses if, for instance, exact building areas within a plot are desired. By default, how-

ever, zonalIndex uses the centroid point of the building polygons to intersect with the

zones. This process is faster, prevents duplicating features (unless zones overlap), and avoids

slivers from clipping.

Multiple representations

One of the strengths of the foot package is its flexible design to allow output summaries for

multiple scales and geographic representations. These scales include the building level, areal

level (as demonstrated in Code Blocks 1 and 2), and for a gridded dataset as shown in Fig 2.

Output at the building-level is the most granular level where each building polygon has its geo-

metric features calculated (Fig 2A). This level of output might be used to help characterise

individual building use or residential vs. non-residential function [37, 38]. The areal level pro-

vides zonal summaries of metrics for units and allows users to characterise differences among

administrative units, city blocks, or other areas (Fig 2B). The zones do not have to be extensive

lattices, they can be separate survey plots for example. As noted above, how to define which

(parts of) buildings are included within a zone allows for different representations and flexibil-

ity in analyses. The concept of a zonal summary measure can be extended to regularly shaped

grid (Fig 2C and 2D), discussed further in the next section.

Grids and spatial resolutions

Calculating summary measures of building morphology on a regular grid, or spatial raster,

provides certain advantages. From a data management perspective, grids are often easier to

store and manipulate than geodatabases containing millions of footprints [39]. But there are

also advantages from an analytical perspective. Morphology calculations have often been tied

to the scale of a “plot” defined by property lines, roads or Thiessen polygons [8, 40]. However,

this decision could be problematic in places without pre-defined small urban zones or lacking

good data on roads to define these areas. A gridded morphology dataset can also begin to pro-

vide a landscape perspective of the variations in the built environment [12]. Grids allow for the

modifiable area unit problem (MAUP) to be examined through easily changed origins and res-

olutions. Moreover, a gridded format for building morphology can allow these metrics to be

more easily integrated with other gridded geospatial data layers [e.g. 41] to support additional

spatial modelling and analyses.

The foot package provides a second main function specifically designed to create gridded

summary statistics of building morphology metrics, such as shown in Fig 2C and 2D. The

calculate_bigfoot function takes footprint shapes and a template raster defining the

extent and resolution as its inputs. Similar parameters are specified for the “what” and “how”

arguments for characteristics and summary statistics, respectively. The function is designed

with computational efficiency in mind for producing country-scale datasets, as demonstrated

in the case study presented in the next section. Internally, the function creates bounding

box queries to extract and process only small subsets of the data. These processing steps can be

done in parallel on multiple processing cores when sufficient memory is available. The grid

cells of the template raster serve as the “zones” for summary calculations, and similar to the

calculate_footstats function, can allowing for shape clipping in the inclusion criteria.

This function also introduces a parameter for a focal radius to calculate metrics within a

wider area than a single grid cell. The focal radius establishes a circular processing window

centred on each grid cell of the template raster. Varying the focal radius provides further
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flexibility when processing gridded data to represent the building patterns within different spa-

tial scales which can help to describe the local contexts [12, 34]. Example calculations of

gridded outputs are shown in Fig 3 using the code in Code Block 3. Note that with a high spa-

tial resolution template grid and a large focal radius, the windows from neighbouring grid cells

will overlap. This is a potentially desirable effect and creates a smoothed summary measure,

though building footprints are effectively counted multiple times into each overlapping zone.

The choice of spatial resolution and whether to use a focal window depends on the specific

application, but the options are available in the foot package.

Fig 2. Morphology metrics summarised in different representations. The foot package calculations can include the

building level (A), the area level (B), or on regular grids without (C) or with (D) overlapping local windows to create a

smoothed summary calculation. Building footprint polygons are overlaid on Fig 2B, 2C, and 2D. Building footprint

data shown in this figure are made available by Microsoft under the Open Data Commons Open Database License

(ODbL v1.0).

https://doi.org/10.1371/journal.pone.0247535.g002
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Code block 3. Calculating gridded representations of footprint morphology metrics.

The calculate_bigfoot function allows for summaries to be calculated within grid cells

defined by a template raster, or within user-defined circular moving windows. The results of

this sample code are shown graphically in Fig 3.
# load building footprints
data("kampala", package = "foot")
buildings <- kampala$buildings
# load template grid with 100m resolution
g <- kampala$mastergrid
# change resolution
g50 <- raster::disaggregate(g, fact = 2)
g200 <- raster::aggregate(g, fact = 2)
# varying template grid resolution
# Figure A
k50 <- calculate_bigfoot(buildings,
what = "settled",
how = "count",
template = g50,
parallel = FALSE,
verbose = TRUE)

Fig 3. Varying resolution and focal radius in gridded summaries of building counts. The output spatial resolution can be

varied (A and B) and this can be used in conjunction with a circular window with a user-defined focal radius (C and D) to

produce gridded summaries. Data shown are the authors’ calculations using building footprints are made available by Microsoft

under the Open Data Commons Open Database License (ODbL v1.0).

https://doi.org/10.1371/journal.pone.0247535.g003
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# Figure B
k200 <- calculate_bigfoot(buildings,
what = "settled",
how = "count",
template = g200,
parallel = FALSE,
verbose = TRUE)

# varying focal radius of moving window
# note: template grid resolution remains fixed
# Figure C
r50 <- calculate_bigfoot(buildings,
what = "settled",
how = "count",
template = g,
focalRadius = 50,
parallel = FALSE,
verbose = TRUE)

# Figure D
r300 <- calculate_bigfoot(buildings,
what = "settled",
how = "count",
template = g,
focalRadius = 300,
parallel = FALSE,
verbose = TRUE)

Case study: Building patterns in Great Britain

We demonstrate the use of the foot package as well as the applicability of gridded output repre-

sentations through a case study of the building patterns in Great Britain. The data used are 2D

building footprints from Ordnance Survey’s OS OpenMap Local for 2018 (Contains Ordnance

Survey data © Crown copyright and database right 2018). These data were publicly released

under the Open Government License (OGL v3.0). The data were retrieved as a single, merged

GeoPackage file [42]. The dataset contains 2D building footprints as polygons for all of

England, Scotland, and Wales. In order to produce a gridded output, we first created a 100 m x

100 m resolution grid covering the entire landmass defined by Ordnance Survey. This grid

serves as the template for the extent and resolution of the output metrics. The resolution for

the grid was chosen from initial test runs as a compromise to reduce output file size while

maintaining sufficient resolution to detect local changes in building patterns. The foot package

(version 0.6) and the calculate_bigfoot function was then used to calculate all metrics.

Two sets of morphology summary metrics were calculated. In the first set, no focal window

was used and buildings were summarised into intersecting 100 m grid cells without clipping.

In the second set of outputs, a 250 m focal radius window centred on each template grid cell

was added and again buildings were summarised into all intersecting areas without clipping.

Using the gridded building pattern layers from the first step, we proceeded to create a settle-

ment typology map by clustering and grouping the grid cells based on the morphology values.

We applied a Gaussian mixture modelling approach using the R package mclust [43, 44].

Gaussian mixture models (GMMs) are a model-based clustering algorithm which use multi-

variate normal distributions to describe any grouping in the data. The number and size of

these distributions are treated as unknowns in the model which are then fit using expectation-

maximisation (EM), leading to an unsupervised clustering of the observed data points. GMMs

have more flexibility than other unsupervised methods, such as K-means, because they can

allow for varying volume, shape, and orientation of the clusters in data space. In order to select
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the best performing clustering model, we fit mixture models with between 2 and 15 potential

groups while allowing fully varying covariance structure (volume, shape, and orientation). A

Bayesian information criterion (BIC) score is used to compare the models and select the best

fitting number of groups [44]. Using the selected number of groups, we predicted the settle-

ment type for each 100 m grid cell based on the maximum predicted probability of group

assignment. We also applied a 3 x 3 cell majority filter to smooth the predictions. This method

of using GMMs for clustering has been used previously for settlement classification mapping

[12]. We chose an unsupervised, model-based method as this is an exploratory analysis meant

to be examined and compared with other urban delineations and classifications; however,

alternative, supervised clustering methods could be used with the morphology metrics to

improve on a settlement typology.

The resulting layers of footprint metrics and the settlement type map were examined visu-

ally and then compared them with two existing settlement maps for England and Wales by

summarising the majority settlement type to the Census Output Area (OA). We compare our

results first to the rural-urban classification (RUC) for 2011 OAs [45]. The RUC classification

is based on physical settlement form and the density of residential dwelling locations. Rural

and urban areas are further divided into broad categories based on the settlement patterns. We

also compare the footprint-derived classification to the 2016 Multidimensional Open Data

Urban Morphology (MODUM) dataset [46]. MODUM was produced using self-organising

maps to cluster multiple OA characteristics including building footprint measure summaries

(density, adjacency, etc.) as well as an area’s spatial relationship to land cover types and infra-

structure such as railway stations or major roads.

Results

The building footprint dataset contains over 13.8 million features. The processing steps with

the foot package created forty-six separate gridded layers for each metric at a 100 m x 100 m

spatial resolution in GeoTiff format (23 layers using the focal radius and 23 layers without). In

addition to the summary measures, there is also a binary layer indicating pixels with one or

more building footprints present and a raster with the counts of footprints present. An exam-

ple of one of the gridded layers for the count of buildings within the 250 m focal window is

shown in Fig 4. All the resulting output data are provided in the University of Southampton

data repository at https://doi.org/10.5258/SOTON/D1674, and the script showing the foot
commands is provided in the supplemental materials (S1 Code).

Fig 5 presents the result of the cluster analysis for three example locations. A full map and

the classified raster dataset are included in the supplemental materials (S1 File). Minimising

the BIC suggested 6 groups as the optimal number of clusters in the data. The labels on the

classes are assigned randomly by the algorithm. This analysis highlights regions with similar

morphology and patterns in the building footprints. Despite not using any explicitly spatial

information on the location of the observations in the clustering approach, clear geographic

patterns emerge during visual inspection of the results. Major urban areas, such as London

and Manchester, emerge in class 4 with the core areas in class 5, though these classes are also

found in some outlying city areas suggesting some similarity in settlement patterns. Types 3

and 6 appear to highlight the fringe of urban agglomerations, which could be useful for

highlighting areas of potential growth or landscape change. Types 1 and 2 appear predomi-

nantly in sparsely settled and rural areas.

In order to compare the footprint-derived classes with existing classification systems, we

aggregated the grids to the 2011 Census Output Areas by their majority type and created con-

tingency tables with the RUC and MODUM datasets. Table 2 shows the percent of output
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areas in each of the RUC groups. Overall the footprint-derived classes seem to capture some

of the urban-rural transition and gradient of different settlement types defined from the RUC

data. Overall, the majority of OAs are split among classes 3, 4, and 6 with a much lower per-

centage of OA units classified as 1, 2, or 5 based on footprint-derived classes. In major conur-

bations defined by RUC, class 4 is most represented, in 41% of OAs. This settlement pattern

type becomes gradually less common and is largely unobserved in isolated and sparse rural

areas. In contrast, classes 1 and 2 gradually increase in prevalence in rural areas and seem to

identify villages, hamlets, and sparse settings consistent with RUC data. Other notable patterns

Fig 4. Overview of gridded count of buildings calculated within a 250 m focal window using the R package foot. Results shown are

100 m x 100 m spatial resolution gridded data. Examples of the results are shown for areas around Edinburgh (A), London (B), and

Liverpool (C). Full datasets are provided in the supplemental materials. Data shown are the authors’ calculations using building

footprints and boundaries released by Ordnance Survey under the Open Government Licence (OGL) v3.0 (Contains OS data © Crown

copyright and database right 2018, 2020).

https://doi.org/10.1371/journal.pone.0247535.g004
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include class 5 which is predominantly found in urban OAs, and as noted previously, is mainly

observed as the core of these urban regions.

Table 3 shows the second Output Area comparison using the same footprint derived classes

but compared the eight MODUM classes [46]. The first RUC comparison (Table 2) highlights

the urban gradient and the transition to rural areas, while the MODUM clusters highlight

more descriptive, functional areas within cities. Overall, the unsupervised footprint pattern-

derived classes are less able to differentiate among the MODUM clusters, although the foot-

print classes do appear to differentiate between urban, suburban, and countryside which is

consistent with the RUC comparison. For instance, while class 4 identifies central business dis-

trict OAs in MODUM, it is also prevalent in highstreet and “railway buzz” areas suggesting

Fig 5. Example of gridded settlement patterns. The settlement types were created using unsupervised clustering methods to identify

potential typologies based on morphology measurements of building footprint polygons. Full dataset provided in the supplemental

materials. Data shown are the authors’ calculations using building footprints and boundaries released by Ordnance Survey under the

Open Government Licence (OGL) v3.0 (Contains OS data © Crown copyright and database right 2018, 2020).

https://doi.org/10.1371/journal.pone.0247535.g005
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that the footprint class is primarily highlighting a more general urban commercial district.

Class 3, seen in Fig 5 (and S1 File) on the periphery of urban areas is the majority class in

MODUM’s definition of suburban landscapes.

Discussion

This present work introduced foot, a new R package designed to help researchers to extract

new information on settlement patterns and summarise building footprint datasets. The foot
package provides building block functions for consistently calculating morphology measures

at the building-level and summary measures in user-defined zones. It also provides a conve-

nient set of functions to support common workflows. A basic set of morphology characteristics

are currently available, and the package is open-source and it can incorporate additional

Table 2. Comparison of footprint pattern classes and the 2011 census rural-urban classification for output areas in England and Wales.

Rural Urban Classification of Output Areas (2011)

Urban Rural

Major

conurbation

Minor

conurbation

City

and

town

City and

town in a

sparse

setting

Rural

town and

fringe

Town and

fringe in a

sparse

setting

Village Village in a

sparse

setting

Hamlets and

isolated

dwellings

Hamlets and

isolated

dwellings in a

sparse setting

Footprint

Classes

A1

(%)

B1

(%)

C1

(%)

C2

(%)

D1

(%)

D2

(%)

E1

(%)

E2

(%)

F1

(%)

F2

(%)

Sum (%)

1 0.1 0.2 0.4 1.6 2.1 2.2 19.8 24.1 46.1 63.4 6248 3.4

2 0.2 0.1 0.8 1.6 2.9 3.5 25.6 34.3 43.0 34.0 6967 3.8

3 20.1 42.2 37.8 31.8 57.0 36.0 32.8 21.2 4.0 0.7 58366 32.2

4 41.0 23.9 27.6 33.5 14.3 24.2 8.4 6.3 3.5 0.7 51917 28.6

5 7.7 3.2 3.4 4.7 1.0 0.6 1.5 0.4 1.3 0.1 7953 4.4

6 30.9 30.3 30.0 26.7 22.6 33.4 11.8 13.9 2.0 1.1 49948 27.5

Sum (%) 100 100 100 100 100 100 100 100 100 100 181399 100

Values are the percent of the Output Areas in each category. The gridded footprint classes were summarised to the Output Area polygons based on the majority type.

https://doi.org/10.1371/journal.pone.0247535.t002

Table 3. Comparison of footprint pattern classes and MODUM clusters for output areas in England Wales.

MODUM Clusters (2016)

Central

Business

District

Countryside

Sceneries

High Street and

Promenades

Railway

Buzz

Suburban

Landscapes

The Old

Town

Victorian

Terraces

Waterside

Settings

Footprint

classes

(%) (%) (%) (%) (%) (%) (%) (%) Sum (%)

1 0.0 13.2 0.4 0.1 0.2 0.0 0.2 2.0 6248 3.4

2 0.0 13.9 1.0 0.4 0.5 0.0 0.2 3.4 6967 3.8

3 2.3 45.7 18.3 18.9 50.4 3.8 15.7 31.6 58366 32.2

4 64.1 11.2 40.2 42.7 17.1 51.8 40.5 27.9 51917 28.6

5 14.4 2.6 14.7 6.8 0.8 25.5 2.5 4.2 7953 4.4

6 19.2 13.5 25.4 31.1 31.0 18.9 40.9 31.0 49948 27.5

Sum (%) 100 100 100 100 100 100 100 100 181399 100

Values are the percent of the Output Areas in each category. The gridded footprint classes were summarised to the Output Area polygons based on the majority type.

https://doi.org/10.1371/journal.pone.0247535.t003
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measures in the future. Development is ongoing and additional features of the package can be

found in the online documentation: https://wpgp.github.io/foot/. At a minimum, a user of the

package must be somewhat familiar with R, but our package removes the need for detailed

programming and minimal spatial data management. More advanced users may find it useful

to integrate the provided functions into their specialised models or workflows.

In particular, foot can create gridded representations of building morphology measures

which have not been widely supported previously. As noted by Heris, Foks [39], utilising large

vector databases of building shapes is computationally challenging for many applications.

Grids, or raster datasets, provide a simplified representation of building datasets and are func-

tionally similar to remote sensing data. Conceptually, gridded measures can help to develop a

landscape perspective of the built environment with gradients in settlement types and patterns

rather than in bounded, arbitrary units. From an analytical perspective, grids have advantages

for more easily integrating with other data sets for spatial models.

To our knowledge, there are presently no other R packages to support building morphology

calculations. The R language is growing in popularity and the foot package makes morphologi-

cal calculations accessible to more users. It also avoids an alternative to complicated GIS work-

flows in (potentially proprietary) GIS software. In the Python programming language the

momepy package provides another toolkit for urban form analysis [47]. However, momepy is

primarily designed for summary calculations within morphological tessellations [40] or similar

areas such as cadastral plots and does not currently support gridded output datasets. Heris,

Foks [39] provide gridded output layers calculated from the Microsoft building footprints for

the United States. However, their summary metrics are limited to the total coverage, counts

of buildings, the average, minimum and maximum areas in each grid cell. While they provide

Python scripts to carry out their specific processing, they do not provide a package of general

purpose tools.

We demonstrated the use of the foot package by efficiently calculating a variety of gridded

morphology metrics using all building footprints from Great Britain. We then used the

gridded layers in a simple analysis to derive a settlement typology, and we compared out pre-

diction to census-derived and machine learning settlement classifications [46] for England and

Wales. Deriving building uses [48], settlement types or neighbourhoods [49, 50] is one area of

application using morphometric patterns. We used a Gaussian mixture model (GMM) as an

unsupervised classification method to explore the patterns in the building morphology grids.

Our analyses suggested six groupings best clustered the data. The results of the comparison

between our six classes from the unsupervised clustering with census rural-urban classification

do suggest that morphological patterns of building footprints can help to differentiate the

urban gradient in this study region (from sparse settings to the urban core). The prevalence

of the footprint-derived settlement classes varied across the rural-urban classification. For

instance, two classes clearly identified hamlets and other sparse rural areas and were largely

absent from urban areas. Conversely, major conurbations and cities and towns were

predominately made up of three of the footprint-derived classes. There were also distinct

visual patterns to the footprint classes as core urban areas were distinct from urban fringes.

The similarities of our footprint-derived classifications to the 2011 RUC data is less surprising

given that physical form is the focus of both datasets. Expanding the focal window used to

calculate the building footprint metrics beyond 250 m, or using layers calculated at multiple

buffer distances, may improve the classification further by identifying more of the broader

context of sparse settings (e.g. small clusters of structures in close proximity to relatively larger

settlements). Regardless, the result is promising for developing settlement maps based on

footprint data in settings which lack detailed urban planning or census data. However, the

comparison of our footprint derived classes with MODUM data suggests that, on their own,
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the simple morphology metrics used are insufficient to differentiate certain intra-urban areas,

such as activity centres associated with railway access. In our comparison, the footprint-

derived classes differentiated rural-urban differences again, but showed considerable overlap

with the intra-urban MODUM classes. For example, class 4 of the footprint patterns was the

predominant type in MODUM’s central business districts, high streets, railway buzz, and Vic-

torian terrace classes suggesting that it is representing a more general “urban” pattern. The

MODUM classification uses additional data on points of interest, amenities, road networks

and population to derive eight classes. This approach provides a fuller picture of the local area,

but it has higher data requirements which might limit where the approach can be applied. Our

case study was primarily a demonstration of programming tools and not meant to replace

more focused analyses such as MODUM, but it is important to highlight the potential limita-

tions of using morphology-derived settlement classes.

Future research should continue to explore the key metrics, spatial scales, and representa-

tions needed to accurately identify key patterns in urban form for different contexts. The func-

tionality of the foot package can support such work. We noted above that the foot package is

continuing development and will be expanded to include additional metrics. We have limited

our discussion to two-dimensional representations of buildings. These are the most common;

however, 3D shapes are becoming available from LIDAR and radar data [51, 52]. Morphology

measures may soon need to account for volumetric differences.

Conclusion

Building footprint datasets are becoming more widely and openly available, covering entire

countries. These data can be particularly valuable in low- and middle-income country settings

which are experiencing rapid urban growth and change [53] and may lack other information

on urban areas. Spatially-detailed polygon representations of structures are proving to be use-

ful in a range of disciplines and applications; however, applied researchers and practitioners

can benefit from having new tools such as the R package foot to effectively and efficiently work

with building footprint datasets and extract morphological information.
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