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Abstract

Background: Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain
patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel)
SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear
SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel
selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together
with voxel selection schemes on classification accuracy and time-consuming.

Methodology/Principal Findings: Six different voxel selection methods were employed to decide which voxels of fMRI data
would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall
performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an
important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM
outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its
counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more
voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time.

Conclusions/Significance: The present work provides the first empirical result of linear and RBF SVM in classification of fMRI
data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM
with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned
more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were
kept as features was a better choice.
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Introduction

It has long been a great interest of human being to make

tremendous efforts to explore the mysterious working of the

human brain, especially its possible coding schemes and

interactions with the real world. With the most recently advanced

neuroimaging techniques such as electroencephalogram (EEG)

and functional magnetic resonance imaging (fMRI), the somewhat

superstitious mind-reading is starting to convert to a real science.

EEG records the electrical potential by attaching a number of

electrodes to a person’s scalp. Numerous studies have demon-

strated correlations between EEG signals and mental tasks, such as

active counting, active attention work or movement imagination

[1–4]. Although advances in electrophysiological recording

methods nowadays employ intrusive technologies, providing

EEG with high topographical resolution, EEG has a poor spatial

(centimeter) resolution which makes it inappropriate for the study

of high-level cognitive activities involved with multiple cortices.

fMRI offers further option to look into the brain function over its

whole volume with reasonable spatial resolution (millimeter), and

to research the relationship between the sensory world and the

representation of complex objects in the brain. Using the

approaches reviewed in Norman et al. [5], the fMRI data

acquired were used to decode the neural representation of

different categories of objects [6,7], to discriminate the orientation

of a striped pattern being viewed by a study participant [8,9], or to

predict human brain activity associated with the meanings of

nouns [10].

The two basic and important procedural steps in analyzing

fMRI data to distinguish cognitive states are feature selection

(voxel selection) and feature based classification. Voxel selection is

widely used for efficient classifications and an issue to be discussed

in great depth in this study. Because of the information

redundancy, only a subset of the brain voxels determined by
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voxel-wise univariate approaches or few characteristic patterns

identified by multivariate techniques are needed [11–13]. For the

univariate approaches, there are some voxel selection methods

available to reduce the dimension [14–16]. For example, a

common approach was to choose voxels in the whole brain or

regions of interest (ROI) based on the discrimination ability or

activity of the voxels, and the number of voxels used for

discrimination has to be decided according to the discrimination

ability or the active intensity before classification. Apart from the

way of minimizing the average error rate across subjects [15],

multiple comparison criterions [14,16], such as false discovery rate

(FDR) or family wise error (FWE) correction, were used to set the

number of the voxels. In this way, all the significantly active voxels

can all be used for classification. However, in some conditions, the

multiple comparison correction method (e.g. FWE correction) may

be too strict and no significantly active voxels at a given level can

be found. To address this issue, voxels can be selected with a

threshold not corrected for multiple comparisons. The reliability of

this kind of voxel selection method, however, has yet to be

addressed. Until now, no study has given comparative empirical

results on selecting active voxels with or without multiple

comparison correction through the whole brain or ROIs.

The subsequent feature classification acts as the ‘‘decoding

function’’, which convert the feature vector assembled from

selected voxel set into a meaningful brain state. Different from the

traditional univariate analysis methods which treated each voxel as

a separate entity and were statistically inference oriented, the

multivariate statistical machine learning algorithms most com-

monly used in the mind-reading community were designed to

learn the statistical regularities of the data set, and then performed

the prediction or classification of brain states from observed fMRI

data based on the regularities [5,6,10,14–18]. For example, Cox

and Savoy [14] used linear discriminant analysis (LDA), linear

support vector machines (SVM) and cubic polynomial kernel

SVM to classify patterns of fMRI activation evoked by the visual

presentation of 10 categories of objects, and the average of scans in

a block (20s worth) was treated as a single example to perform the

discrimination. Carlson et al. [6] applied fisher linear discriminant

(FLD) method to discriminate patterns of activity in the categorical

representation of 3 objects (houses, faces and chairs) of single scan.

Mourão-Miranda et al. [17] compared the performance of FLD

and linear SVM in the classification of two attention-required

tasks: face matching and location matching with the single scan

data acquired over 3.6s. Among those machine learning methods,

SVM was demonstrated to be most effective, and the classifier can

predict the brain states using data of a single block lasted 20s, or

even a single scan, with TRs of only several seconds. Although

non-linear SVM extends the linear SVM by constructing a rich set

of non-linear decision functions and many conceivable sources of

nonlinearity in neural signals exist, the non-linear SVM did not

outperform linear one as demonstrated in previous study on fMRI

data [14]. The researcher pointed out two possible reasons: (1) the

fundamental linear separability characteristic existed in distributed

patterns itself of fMRI activity evoked by the visual presentation of

various categories of objects, or (2)the non-linear cubic polynomial

kernel used for classification did not capture the non-linear

character of the data. The second reason speaks for the need of an

effective classification model for neuroimaging data analysis. More

recent studies give implicit comparative study about the perfor-

mances of multivariate classifiers in decoding the category of visual

objects from fMRI data [18], in producing or evaluating

information maps [12,13], including two kernels SVM-linear

and radial basis function kernel SVM (RBF SVM), which are what

we are interested in the present study.

Although classification accuracy and the amounts of time

needed for classification have been extensively used in previous

studies to evaluate the performance of fMRI analysis methods, it is

rarely addressed the problem of how to design classifier combined

with voxel selection to reach the optimal overall performance.

Thus, this study focuses on the examination of the computational

effectiveness and computation time of linear and non-linear SVM

for fMRI classification together with voxel selection schemes. Data

used in this study are from a visual stimulus representation

experiment for which subjects did simple one-back repetition

detection task when objects from 4 categories (faces, houses, cars

and cats) were presented. We compared linear and RBF SVM

under each of six different voxel selection methods (see Voxel

selection schemes under Materials and methods). In addition, as a

commonly used approach to reduce the dimensions of the feature

space, the effect of principal component analysis (PCA) was also

investigated in classification accuracy and computation time. Our

results demonstrated that, (1) Voxel selection had an important

impact on the performance of the classifiers: in a relative low

dimensional feature space, RBF SVM outperformed linear SVM

significantly; in a relative high dimensional space, linear SVM

performed better than its counterpart; (2) Considering the

classification accuracy and the amounts of time needed together,

when all the selected voxels were treated as features, an effective

classification result could be achieved by linear SVM with large

number of voxels; when part of the principal components (PCs) of

the input voxel space were kept as features, the computational

efficiency was improved, and an effective classification result could

be achieved by non-linear RBF SVM with a small set of voxels.

These results may be informative to researchers to choose

classifiers with a specific voxel selection method to achieve the

desired accuracy or efficiency.

Results

The classification results for linear and RBF SVM under six

voxel selection schemes and two types of feature spaces (with PCA

and without PCA) were shown in Figures 1 and 2. The accuracy

was calculated as the ratio of the number of correctly classified

scans for each of all categories to the total number of the scans of

all categories. The classification accuracy was calculated for each

subject, and the results averaged across subjects were presented in

figures. The averaged time-consuming across subjects were shown

in Tables 1 to 3.

Comparison of classification accuracy of different masks
Case 1: original selected voxels were used as input

features for classifiers. The average number of voxels over

the 14 subjects for each voxel selection scheme was shown in

Figure 1 (A). The classification accuracy of the linear and RBF

SVM classifier was shown in Figure 1(B). In this case, the original

selected voxels for each mask were treated as features without any

further feature selection or extraction. For linear SVM, the mean

classification results across the 14 subjects were 66.52%, 66.48%,

66.82%, 70.87%, 63.69% and 67.56% for RN*, RF, RN,

WF,WN*and WN masks respectively. Friedman’s chi-square had

a value of 13.037(df = 5, N = 14) and showed significant difference

among the six voxel selection methods (p = 0.023). Clearly linear

SVM achieved the best classification accuracy under the voxel

selection scheme of WF (post-hoc test for the Friedman test [19],

0.05 level, Figure S1 (A)). Similarly, for RBF SVM, the mean

classification results across the 14 subjects were 71.02%, 69.83%,

69.61%, 70.20%, 64.10% and 60.49% for the corresponding

masks. Friedman’s chi-square had a value of 21.463 (df = 5,

Comparative Study of fMRI Classification
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N = 14) and also showed significant difference among the six voxel

selection methods (p = 0.001). In this situation, RN*, RF, RN and

WF voxel selection schemes achieved better results (post-hoc test,

0.05 level, Figure S1 (B)). All of the classification results were far

above the chance level (25%).

Case 2: 95% of the PCs were kept as input features for

classifiers. In this case, PCA was applied to reduce the

dimensionality of the data and filter out noise before

classification. We varied the number of PCs for each voxel

selection schemes to reserve 95% of the variance of the original

voxel space. The average number of PCs for each voxel selection

scheme was shown in Figure 2(A). The classification results of the

linear and RBF SVM classifier were shown in Figure 2(B). For

linear SVM, the mean classification results across the 14 subjects

were 64.14%, 62.54%, 63.02%, 67.67%, 64.40%, 67.11% for

RN*, RF, RN,WF, WN* and WN masks (see Figure 3 for one

representative subject of the six different brain masks) showing

again significant difference among these masks (Friedman’s chi-

square 16.043,df = 5, N = 14, and p = 0.007). It’s obvious that,

with PCA, linear SVM under WF and WN voxel selection

methods performed better than other brain masks (post-hoc test,

0.05 level, Figure S1(C)). Similarly, for RBF SVM, the mean

classification results across the 14 subjects were 68.12%,

68.49%,67.86%,70.09%,66.22%, and 68.27% for the corres-

ponding masks, no significant performance by this method

among different masks (Friedman’s chi-square 7.195,df = 5,

N = 14, p = 0.207). All of the classification results under different

masks were also far above the chance level (25%).

Figure 1. The number of voxels and classification accuracy of linear and RBF SVM without PCA. (A) The number of voxels under different
voxel selection methods. (B) The mean classification accuracy across 14 subjects of linear and non-linear (RBF) SVM under each of the six different
voxel selection methods when the features were the selected voxels: The Friedman test indicated significant difference among the six voxel selection
methods for linear SVM and RBF SVM. The Wilcoxon signed-rank test indicated RBF SVM outperformed linear SVM under RN*, RF and RN methods;
while linear SVM outperformed its counterpart under WN method; no significant difference existed between linear and RBF SVM under WF and WN*
voxel selection methods. Description of the six voxel selection methods can be found in the text. * represent significant difference exists between
linear and RBF SVM classification results.
doi:10.1371/journal.pone.0017191.g001
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Comparison of classification accuracy of linear and RBF
SVM

Case 1: original selected voxels were used as input

features for classifiers. The results indicated that RBF SVM

performed better than linear SVM under three of the six voxel

selection conditions as examined using Wilcoxon signed-rank test.

In fact, the classification accuracy of RBF SVM was significantly

better than linear SVM when using RN*, RF and RN masks

(z = 3.114, p = 0.002; z = 2.921, p = 0.003; z = 2.973, p = 0.003

respectively). On the other hand, when using WN mask, linear

SVM outperformed RBF SVM significantly (z = 3.235, p = 0.001)

(Figure 1(B)). No significant difference existed between linear and

RBF SVM under WF and WN* voxel selection schemes. In general,

the classification accuracy of RBF SVM declined with the

increasing of the number of voxels; it was superior to linear SVM

in the relative low dimensional feature space (voxel space), and

inferior to linear SVM in the relative high dimensional feature

space.

Case 2: 95% of the PCs were kept as input features for

classifiers. The average results showed that RBF SVM

performed better than linear SVM under all the voxel selection

conditions. Wilcoxon signed-rank test (one-tailed) was also performed

on the classification accuracy, and RBF SVM became significantly

better than linear SVM when used RN*, RF, RN, WF, and WN*

masks (z = 3.015,p = 0.001; z = 3.016,p = 0.001; z = 3.007,p = 0.001;

z = 1.923,p = 0.027; z = 1.890, p = 0.029 respectively), while for WN

mask, RBF SVM outperformed linear SVM but not signi-

ficantly(z = 1.354,p = 0.09) (Figure 2(B)).

Computational expenses of different classifiers
Since we aimed to find the best combination of the voxel

selection methods and the kernels of SVM classifiers, we compared

Figure 2. The number of PCs and classification accuracy of linear and RBF SVM with PCA. (A) The number of PCs when 95% variance of
the original data was kept for the subsequent classification. (B) The mean classification accuracy across 14 subjects of linear and non-linear (RBF) SVM
under each of the six different voxel selection methods when the features were PCs determined by the PCA procedure: The Friedman test indicated
significant difference among the six voxel selection methods for linear SVM and non-significant difference for RBF SVM. RBF SVM outperformed linear
SVM under all the voxel selection methods. Description of the six voxel selection methods can be found in the text. * represent significant difference
exists between linear and RBF SVM classification results.
doi:10.1371/journal.pone.0017191.g002

Comparative Study of fMRI Classification

PLoS ONE | www.plosone.org 4 February 2011 | Volume 6 | Issue 2 | e17191



the computational complexity measured with the amounts of time

needed (training time and testing time respectively) for linear and

RBF SVM classifiers here. Tables 1 and 2 listed the times in

second without and with PCA respectively. The preprocessing

time was not included here, e.g. the reading of the training and

testing data, the standardizing of the features. In Table 3, the total

computational cost (including the preprocessing time, the training

time and the test time) was reported. The time reported was the

average across 14 subjects (Windows XP, Intel Core 2 Duo CPU,

3.25G RAM, Matlab 7.0).

Case 1: original selected voxels were used as input

features for classifiers. For both linear and RBF SVM, the

training time was much longer than the testing time. RBF SVM

was more time consuming than linear SVM under the same voxel

selection schemes, the time cost difference mainly came from the

training phase. We could see that the classification accuracy of

linear SVM under WF mask was similar with RBF SVM under

RN*, RF, RN and WF masks. Considering the overall time cost as

shown in Table 3, linear SVM ran faster than its counterpart

significantly for comparable classification results.

Case 2: 95% of the PCs were kept as input features for

classifiers. Apparently, linear SVM was faster than RBF SVM

under the same voxel selection method, and when PCA was used

to reduce the dimensionality. It was very obvious and natural that

the PCA dimension reduction shortened the time significantly

compared to when all the voxels were used. In addition to the

reduced computational time, the use of PCA was also associated

with better performance of RBF SVM than linear SVM for 5 of

the 6 masks (except WN) (Figure 2(B)).

Discussion

The present study aimed to investigate the overall performance

of linear and RBF SVM for fMRI classification together with voxel

selection schemes on classification accuracy and the associated

computational cost. Objective and explicitly results about the

classification accuracy and the amounts of times needed for linear

and RBF SVM under six voxel selection schemes and two types of

feature spaces were given. In the following, we will discuss several

aspects of our findings.

Classification accuracy of linear SVM under different
masks

Our study explicitly investigated the influence of voxel selection

schemes for linear SVM on fMRI classification.

Firstly, linear SVM performed better when relative large

number of voxels were included as features. As shown in

Figure 1, linear SVM performed better on WF and WN masks

than the other four brain masks. WF and WN masks are the two

largest brain masks (except WN*) which select almost any useful

voxel (voxels were selected through the whole brain). Our results

also showcased the inability of the linear classifiers to identify the

different objects from a small set of voxels (e.g. RF).

Secondly, the inclusion of voxels that were not maximally activated

for one visual object when compared to others increased classification

accuracy. Intuitively, we would assume the voxels that are more

active for one category of object than the others may contain more

information for classification. Our linear SVM results, on the

contrary, showed that this kind of voxel selection methods (WN* and

RN*) were not superior to the other methods in terms of accuracy of

classification. This finding is similar with the study of Haxby et al.,

which reported that even the non-maximal responses carry category-

related information, and thus be useful for classification [7].

Table 1. The training and testing time for linear and RBF SVM
across the 14 subjects when all the selected voxels were
treated as features under different voxel selection methods
(standard deviations were given in parentheses).

Voxel
selection Computational expense (in seconds)

Linear SVM RBF SVM

train test train test

RN* 5.88(2.20) 0.08(0.03) 148.02(52.99) 0.11(0.05)

RF 8.32(2.43) 0.11(0.04) 207.22(56.67) 0.15(0.04)

RN 12.07(1.84) 0.17(0.03) 297.05(40.39) 0.23(0.04)

WF 55.10(4.04) 0.99(0.46) 1284.47(707.91) 1.28(0.59)

WN* 80.69(51.26) 1.34(0.83) 1883.94(1179.89) 1.76(1.05)

WN 143.69(43.03) 2.35(0.72) 3271.09(931.11) 2.95(0.84)

doi:10.1371/journal.pone.0017191.t001

Table 2. The training and testing time for linear and RBF SVM
across the 14 subjects when principal components
accumulatively accounting for 95% of the total variance of the
original selected voxels were treated as features under
different voxel selection methods (standard deviations were
given in parentheses).

Voxel
selection Computational expense (in seconds)

Linear SVM RBF SVM

train test train test

RN* 0.82(0.13) 0.016(0.010) 20.55(2.24) 0.012(0.009)

RF 0.82(0.11) 0.010(0.008) 20.52(2.00) 0.014(0.007)

RN 0.97(0.10) 0.006(0.008) 23.20(1.95) 0.017(0.008)

WF 1.36(0.15) 0.015(0.010) 30.56(2.72) 0.020(0.007)

WN* 1.45(0.18) 0.019(0.009) 32.21(3.29) 0.022(0.008)

WN 1.60(0.10) 0.021(0.008) 35.19(1.77) 0.028(0.007)

doi:10.1371/journal.pone.0017191.t002

Table 3. The averaged computational expense for linear and
RBF SVM across the 14 subjects when the preprocessing time,
the training and the testing time were reported together
(standard deviations were given in parentheses).

Voxel
selection Computational expense (in seconds)

PCA space Voxel space

Linear SVM RBF SVM Linear SVM RBF SVM

RN* 11.88 (0.68) 32.09 (2.85) 26.08 (4.47) 164.13(52.09)

RF 18.57 (1.03) 32.46 (2.60) 45.35(6.38) 233.46(52.33)

RN 20.65 (0.76) 37.79 (2.52) 50.42(6.32) 338.63(32.70)

WF 28.91 (4.92) 57.56 (6.51) 79.91(35.90) 1243.60(631.21)

WN* 27.25 (8.64) 61.37 (10.64) 113.73(58.67) 1939.00(1193.85)

WN 41.09 (8.02) 73.15 (10.16) 183.06(48.84) 3308.36(936.12)

doi:10.1371/journal.pone.0017191.t003
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Thirdly, FWE is a method that selects more relevant voxels for

classification while the one without multiple comparison correc-

tion may include voxels with somewhat redundant information or

noise. From Figure 3 we could see the spatial location and number

of voxels varied significantly with and without correction. Voxels

selected with FWE correction (RF, WF) were always a subset of

those selected without correction (RN, WN). The classification

accuracy under RF was not inferior to RN, indicative that

additional voxels selected without correction provided no new

information; the classification accuracy under WF was superior to

WN, implicative that some of the voxels chosen without correction

may actually provided no useful information for classification but

rather contributed noise. As for the reason, we could see from the

classification results of linear SVM with and without PCA (Figure1

(B), Figure2 (B)): when all the selected voxels were treated as

features, the classification results under RF, RN and WF voxel

selection schemes were significantly better than that when part of

the PCs were kept as features (z = 2.794, p = 0.005; z = 2.605,

p = 0.009; z = 2.417,p = 0.016 respectively by Wilcoxon signed-

rank test), which was suggestive that the discarded PCs by PCA

procedure may not be purely noise; while for WN voxel selection

method, PCA did not weaken the classification results. One

possible reason was that the unimportant features (noise, e.g.) were

discarded while the informative ones kept.

In addition, all the voxel selection methods discussed above

were designed to find out the active voxels during visual attention

tasks. However, negative blood oxygenation level-dependent

responses (deactivation) were also found in humans or animals

under different tasks [20–23], which suggested that the deactiva-

tion voxels may also contribute to the classification of different

cognitive tasks. The inclusion of deactivation voxels as features

may enhance the decoding performance of classifiers, but no

profound studies was conducted here.

Classification accuracy of RBF SVM under different masks
Similar as linear SVM, two conclusions could be drawn: (1)

Selection of voxels with FWE correction was shown to be adequate

for classification. (2) Voxels that were not maximally active for one

visual object stimulus in contrast to others were also useful for

classification. By Wilcoxon signed-rank test, we found that RN*

and WN* did not outperform RN and WN (z = 1.433, p = 0.152;

z = 0.874, p = 0.382 respectively). The results also supported that

those voxels that were not significantly more active for one

category of object than others should have a contribution to the

discrimination of brain states.

Different from linear SVM, the best classification results for

RBF SVM were achieved when relative smaller voxels were used

as features; with the number of voxels increased, the classification

accuracy became worse (Figure 1). For RF, RN and WF, PCA

procedure did not deteriorate the classification result significantly

just as when we used linear SVM. It can be explained by the

learning ability of RBF SVM, which is more powerful especially

when the classification information was not sufficient. Besides,

under WN voxel selection method, the classification result for RBF

SVM became better after PCA because the features dimension

became small.

Classification accuracy comparison between Linear SVM
and RBF SVM

We conducted the classification result comparison between the

linear and non-linear RBF SVM combined with voxels selection

when all the selected voxels were treated as features. Our findings

Figure 3. The masks for one representative subject (slices 28,20). (A) RF mask and RN mask. Green: RN mask only; yellow: RF mask, which is
also the overlap between RF and RN masks. (B) WF mask and WN mask. Green: WN mask only; yellow: WF mask, which is also the overlap between WF
and WN masks. (C) RN* mask and WN* mask. Green: WN* mask only; yellow: RN* mask, which is also the overlap between RN* and WN* masks.
doi:10.1371/journal.pone.0017191.g003

Comparative Study of fMRI Classification

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e17191



(Figure 1) indicated that RBF kernel SVM outperformed linear

SVM significantly in the relative low dimensional feature space

(i.e. when the voxels were selected under the schemes of RN*, RF

and RN), while linear SVM with enough input voxels (i.e. when

the voxels were selected under the schemes of WN) got better

classification accuracies than the RBF kernel SVM.

Logically, when the number of features is very large, there is a

high likelihood that the data are linearly separable in the original

space, and therefore no need to map the data in to a higher

dimensional space [24]. On the other hand, non-linear SVM

provides the possibility to map the linearly non-separable data in a

low dimensional space (low number of voxels) into a space of very

high dimension for better linear separability. Norman et al. [5]

pointed out that the key difference between non-linear and linear

classifiers was that non-linear classifiers could respond to high-level

feature conjunctions in a way that differed from their response to

individual features. That explains the better performance of RBF

SVM in the relative lower dimensional space.

The Vapnik-Chervonenkis dimension (VC-dimension) [25]

measures the capacity of classification for SVM algorithms. It is

an important tool to understand the capacity of different kernels of

SVM under different circumstances and is defined as the

cardinality of the largest set of points that the machine learning

algorithm can shatter. The VC-dimension for linear SVM in m-

dimensions feature space is m+1, for RBF kernel SVM is infinity.

Apparently, the VC-dimension for linear SVM increased with the

number of voxels when all the selected voxels were treated as

features. Under WF, WN* and WN voxel selection methods, the

learning capacity of linear SVM was possibly good enough, and

comparable to the RBF SVM, that is why linear SVM performed

equal or even better than RBF SVM with the increased number of

the voxels. In addition, the ratio of support vectors to training

vectors for RBF SVM under WF, WN* and WN were 92.30%,

95.13% and 99.26% respectively (averaged across all the subjects),

suggesting that RBF SVM may suffer from overfitting with the

increase of the number of voxels.

Multidimensional scaling (MDS) [26] is an algorithm for

dimensionality reduction. It preserves the original distances in

the original high dimensional space. For a better explanation of

our results, we used MDS to map the data to a 2-dimensional

space for visualization purpose. As the present study was a four-

class classification problem, we employed Pair-Wise approach to

compute separation space that discriminated every pair of classes

(according to LIBSVM, http://www.csie.ntu.edu.tw/,cjlin/

libsvm). Hence 4(4-1)/2 = 6 binary classifiers were required. So

the distributions of the training examples, the support vectors, and

the decision surface of the linear classifiers were shown for the six

two-class classifiers respectively under RN*, RF, RN, WF, WN*

and WN masks (Figure S2, S3, S4, S5, S6 and S7) (MDS was

accomplished by using the Matlab Toolbox for Dimensionality

Reduction. http://homepage.tudelft.nl/19j49/Matlab_Toolbox_

for_Dimensionality_Reduction.html, and the visualization work

was accomplished using the plot function written by Steve Gunn,

http://www.isis.ecs.soton.ac.uk/resources/svminfo/). Correspond-

ing results of RBF SVM classifiers were shown for the six two-class

classifiers respectively under RF mask (Figure S8). The results for

linear SVM under RN*, RF and RN are similar. From Figure S2,

S3 and S4, we can see the brain states when subjects viewed (A)

house and face, (C) house and cat, (D) face and car are

approximately linear separable, when subjects viewed (B) house

and car, (E) face and cat, (F) car and cat are linear non-separable.

It’s also interesting to notice (B) in Figure S8, the non-linear

classifier performed well in discriminating the house and car

which was shown to be linear non-separable in Figure S2. The

linear separability for some kind of cognitive tasks and linear non-

separablity for others in the relative low dimensional space may

explain the classification results shown in Figure 1. In the relative

lower dimensional space, RBF SVM outperformed linear SVM;

this is because linear non-separable cognitive states existed. In the

relative higher dimensional space (WF and WN), the brain states

when subjects viewed face and cat (Figure S5 (E), S7 (E)) became

approximately linear separable too, and the classification capacity

for linear SVM became strong while nonlinear SVM was

unnecessary. This could be reasons that the linear SVM and

RBF SVM performed almost equivalently under WF mask, and

linear SVM even outperformed its nonlinear counterpart in a

higher dimensional space (WN). From Figure S6 we could see

when using WN* voxel selection method, all the six two-class

cognitive brain states became linear non-separable, which may

explain why the classification results under WN* mask were the

worst among the six voxel selection methods (Figure 1). In short,

voxel selection did have an important impact on the classification

problem.

In the context of fMRI data classification, several studies have

compared the performance of linear and nonlinear SVM (with

different kernels) [14] [18] [27]. Although many conceivable

sources of non-linearity exist in neural signals, Cox and Savoy’s

study illustrated that non-linear SVM (polynomial kernel) did not

show a clear benefit versus linear SVM [14]. However, in concert

with the present result, Cox et al. found that in the relatively lower

dimensional feature space, non-linear SVM outperformed linear

SVM; with the increasing of the features, linear SVM achieved

better result suggesting that non-linear SVM possibly suffered

from overfitting. Linear and RBF SVM have been directly

compared in decoding the category of visual objects (three groups

of two-class classification problem) from response patterns in

human early visual cortex and inferior temporal cortex [18]. In the

relatively high dimensional feature space, RBF SVM performed

significantly worse than linear SVM. However, in the low

dimensional feature space, a significant difference was not found

between these two classifiers. That was possible since many

differences existed between their study and ours, e.g. the types of

visual stimuli, the ROIs, the feature selection rule, the number of

subjects, and the criterion for assessing significant differences,

which would influence the performances and the comparison

results of the classifiers.

Computational expense comparison between linear and
RBF SVM

Besides classification accuracy, the amounts of times needed for

classifier construction and for classification are also an important

factor for consideration. In this regard, a computational expenses

were compared between linear and RBF SVM (Table 1, 2 and 3).

Results showed that for both linear and RBF SVM, the training

time was much longer than the testing time. Regardless if the

feature space consisted of voxels or PCs, under the same voxel

selection method, linear SVM was significantly faster than non-

linear SVM. Overall, the time cost difference mainly came from

the training phase as the testing time for both linear and RBF

SVM was short and practically feasible. For researchers who are

interested primarily the real-time fMRI classifications (assuming

the classifier has already been trained, e.g.) their decision should

be based on the classification accuracy.

Time reported in Tables 1 and 2 did not include the image

preprocessing time as they are the same for any method. If the

preprocessing time was also considered (e.g. the reading of the

training and testing data, the standardizing of the data, the PCA if

necessary) (Table 3), we could see linear SVM under WF voxel
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selection method was a better choice when all the selected voxels

were treated as features. When the features were the PCs of the

original voxels, linear SVM could achieve almost the same

classification accuracy with RBF SVM only when the mask (WN)

contained the largest number of voxels among the six voxel

selection method. Considering the classification accuracy and the

computation time holistically (Table 3), RBF SVM classifier with

RN* or RF mask was a better choice for brain states classification.

On the other hand, although the classification result of linear

SVM using the WF mask was inferior to classification of RBF

SVM with the same mask, the results were still acceptable and may

be preferred in application due to their computationally less

expensive properties.

Beyond all the discussions above, one more thing should be

mentioned: as one of the commonly used preprocessing step for

fMRI data, space smoothing may destroy useful information for

classification. It has been shown that linear SVM was less sensitive

to smoothing compared with FLD and Canonical Variates

Analysis [17] [27]. What the impact of smoothing for linear and

RBF SVM when using PCA was also an interesting question

which we may investigate in the future.

To summarize, the present work provides the first empirical

result of linear and RBF SVM in classification of fMRI data,

combined with a variety of voxel selection schemes. Both linear

and RBF SVM can achieve good classification accuracy under

appropriate voxel selection method. RBF SVM performed better

than linear SVM in a relative lower dimensional space, while

linear SVM outperformed RBF SVM in a relative higher

dimensional space. Taking both the classification accuracy and

the amounts of time needed into consideration, linear SVM with

relative more voxels as features and RBF SVM with small set of

voxels (after PCA) could achieve the better accuracy with

reasonable computational expenses. These objective results may

be informative for researchers searching for desired classification

accuracy or computation expense.

Materials and Methods

Ethics Statement
The study was approved by the Institutional Review Board of

Beijing Normal University (BNU) Imaging Center for Brain

Research, National Key Laboratory of Cognitive Neuroscience

and Learning. All subjects gave written informed consent.

Subjects and fMRI data acquisition
Volunteers were recruited from BNU, Beijing, China. 14

healthy college participants were included in the study (6 males

and 8 female s).

A 3-T Siemens scanner equipped for echo planar imaging (EPI)

at the Brain Imaging Center of BNU was used for the image

acquisition. For each participant, functional images were collected

with the following parameters: repeat time (TR) = 2000 ms; echo

time (TE) = 30 ms; 32 slices; matrix size = 64664; acquisition

voxel size = 3.12563.12563.84 mm; flip angle (FA) = 90u; field of

view (FOV) = 190,200 cm. In addition, a high-resolution, three-

dimensional T1-weighted structural image was acquired

(TR = 2530 ms; TE = 3.39 ms; 128 slices; FA = 7u; matrix

size = 2566256; resolution = 16161.33 mm).

Stimuli and experimental procedure
The experiment was designed in a blocked fashion. All subjects

participated in 8 runs and each run consisted of 9 blocks, with 4

task blocks and 5 control blocks. Subjects viewed objects from four

categories (houses, faces, cars or cats) (Figure 4). During each task

block which lasted for 24 s, 12 stimuli belonging to one particular

category were presented, and subjects had to press a button with

their left or right thumb if any image repeated itself consecutively

to ensure that participants were paying attention while they viewed

the images [7]. Two identical images were displayed consecutively

2 times randomly during each block. Each stimulus was presented

for 500 ms followed by a 1500 ms blank screen. Control blocks

were 12-s fixation in the beginning of a run and at the end of every

task block. Each kind of objects were presented only one time

during each run, and the order of them were counterbalanced in

the whole session which lasted 20.8 minutes. Thus, 384 images

were acquired for the image attention tasks, 96 for each category.

The stimuli were gray-scale images for four categories of objects

with the same size. During each task block, the 12 pictures

presented were randomly chosen from 40 pictures of one

particular category. Although the same picture sets of objects

were used for both training and testing, the chance for the two sets

of 12 pictures to be identical was almost impossible (Probability is

5.9605610220).

Data preprocessing
We used SPM2 (http://www.fil.ion.ucl.ac.uk/spm/) to process

the imaging data. It mainly contains 3 steps: realignment,

normalization and smoothing. Subjects were preprocessed sepa-

rately. In the beginning, the first 3 volumes were discarded as the

initial images of each session showed some artifacts related to

signal stabilization (according to the SPM2 manual). Images were

realigned to the first image of the scan run and were normalized to

the Montreal Neurological Institute (MNI) template. The voxel

size of the normalized images was set to be 3*3*4 mm. At last,

images were smoothed with 8 mm full-width at half maximum

(FWHM) Gaussian kernel. The baseline and the low frequency

components were removed by applying a regression model for

each voxel [17]. The cut-off period chosen was 72 s.

Voxel selection schemes
Voxels were selected within the whole brain or ROIs defined by

using the WFU Pickatlas (http://www.fmri.wfubmc.edu). Previous

studies have shown selective activation for different kinds of objects

in the visual cortex [14,28,29]. Four ROIs were chosen here:

fusiform gyrus, inferior temporal gyrus, inferior occipital gyrus and

middle occipital gyrus. Two methods were used to determine the

thresholds when multiple comparisons were carried out through-

out the whole brain as well as within ROIs: one way the family-

wise error (FWE) correction to control the probability of false

rejection of un-active voxels among all hypotheses tested; the other

way was to set the threshold without the multiple comparison

correction. Both of them were implemented in SPM2. The P value

was set to be 0.05 for FWE and 0.001 for no correction method.

All the voxels above the thresholds were defined as active.

Voxels were selected in the following way for each subject

separately (this procedure was equal to the process of producing a

brain mask):

1. Whole brain and no correction (WN)

1. Any voxels activated for each of the 4 categories of stimuli in

the whole brain were selected, and the threshold was set

without correction. All the chosen voxels were set to be 1, while

the rest were set to be 0; thus, four masks were produced, one

for each of the four object categories separately. A new mask

was created that contained all the voxels activated for at least

one category of objects (logic OR).

2. Whole brain and no correction* (WN*)
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2. Similar to the WN method, voxels were also selected through

the whole brain and the threshold was set without correction.

However, considering voxels activated stronger for one

category than others may be more useful for classification;

voxels that were activated stronger for one specific object

category (such as houses) than the other three objects (such as

faces, cars and cats) were selected in the whole brain without

correction. A brain mask was produced, with all the selected

voxels set to be 1 and the rest 0. Again, four masks were

produced, one for each of the four object categories separately.

And the logic OR mask was formed.

3. Whole brain and FWE correction(WF)

3. Any voxels activated for at least one of the categories of stimuli

exceeding the FWE corrected thresholds in the whole brain

were selected.

4. ROIs and no correction (RN)

4. Any voxels activated for one kind of stimuli (e.g. house) within

all the ROIs above the threshold without correction were

selected.

5. ROIs and FWE correction (RF)

5. Any voxels activated for at least one of the categories of stimuli

within all the ROIs were selected (FWE correction).

6. ROIs and no correction* (RN*)

6. Like the WN* method described above, voxels that activated

for one specific object category (such as houses) stronger than

the other three objects (such as faces, cars and cats) were

selected in all the ROIs without correction. FWE correction

was too strict for selecting voxels for one category of stimuli

activated stronger than the other three, so it wasn’t used to set

the threshold in the WN* and RN* voxel selection methods.

Overall, six different brain masks (0/1 mask) were produced for

each single subject. Element by element multiplication operation

was done between the preprocessed images of a single subject and

each of the six brain masks. These fMRI series were then re-

organized in to a new matrix (M|N), where M was the number

of scans and N was the number of selected voxels (the voxels in a

3D volume image was re-arranged to a row vector). Here, selected

voxels were treated as features, and volumes were samples. Each

feature (a column in the M by N matrix) was standardized to have

mean 0 and standard deviation 1.

As we were only interested in the task data in this study, we

divided the fMRI data into two sets: the first 4 runs as the training

data, and the last 4 runs as the test data. Thus, we had 192 samples

(time series) for training and test respectively for each subject, 48

for each category. Note that the voxel selection schemes were

applied to the training data to decide which voxels will be included

for the training and for the testing datasets (i.e., voxel selection was

not performed for the testing dataset independently).

Besides, as a commonly used dimensionality reduction ap-

proach, the impact of PCA [6,17] was also investigated in this

study. In some situation, the dimensionality reduction is very

important, since when the number of input features is large, the

computational expense will increase, especially for non-linear

classifiers (Table 1). PCA procedure was conducted over the voxels

in each of the 6 masks and PCs accumulatively accounting for

95% of the total variance of the original data were kept for the

subsequent classification (Figure 2(A)). Again, like the voxel

selection procedure, the PCA was estimated based on the training

data and applied to the testing data. In other words, the test data

was directly projected to the direction of the PCs.

Support vector machine
Linear SVM is one method used in statistics and machine learning

to find a linear combination of features which characterize or separate

two or more classes of objects or events. Since the fMRI brain activity

patterns associated with the object recognition may not be linearly

separable [14], we also considered non-linear SVM. Non-linear SVM

applies the kernel trick to maximum-margin hyperplanes; it classifies

the fMRI feature mapped to the high-dimensional feature space

where the feature may be non-linear in the original input fMRI data

space become linearly separable. The adequacy of SVM relies on the

proper selection of kernels, the one with the best classification

accuracy is the classifier whose kernel function captures the

distribution pattern of fMRI data.

SVM [25] has been used for the classification of brain states in a

number of previous fMRI studies [14–18,27]. Cox and Savoy [14]

used linear kernel and polynomial kernel SVM to classify

multiclass patterns of brain activation, and no significantly better

performance was found for non-linear SVM. Here, we used

Figure 4. Examples of stimuli. Subjects had to press a button with their left or right thumb as long as images were repeated consecutively.
doi:10.1371/journal.pone.0017191.g004
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another basic non-linear kernel function, radial basis function

(RBF) kernel: K(~xxi,~xxj)~exp({c ~xxi{~xxj

�� ��2
),cw0. Suppose we

have a two-class training set: ~xxi[RN ,i~1, . . . ,M, and the

corresponding label set is y[f{1,1g, the purpose of SVM is to

find the optimized solution to the following problem(in the

mapped/projected space):

min1=2~ww
T~wwzC

Xn

i~1
ji, subject to yi(~ww

T w(~xxi)zb)§1{ji,ji§0

Here, ~ww is a weight vector and b is an offset. The hidden non-

linear function w maps the training data into a higher dimensional

feature space where the optimized hyperplane is calculated.

Although nonlinear transformation is essential in SVM, we do not

need to know this mapping explicitly, because only the dot product

of feature vectors is used, i.e. w(~xxi):w(~xxj), in both the training and

test. A kernel function is defined as a function that corresponds to

a dot production of two feature vectors in some expanded feature

space. The nonlinear projection is contained in the kernel

function: K(~xxi,~xxj)~w(~xxi):w(~xxj), then in the higher dimensional

feature space the inner production is accomplished by the

calculations in the original space. j is the slack variable introduced

for linearly un-separable training data which represents the

distance for the misclassified training data to the margin boundary.

C is the penalty parameter which makes a compromise between

the number of misclassified samples and the complexity of the

algorithm. For SVM, the kernel and the parameter C control

model complexity. There are three reasons why RBF is a better

choice [24]: First, RBF can handle the nonlinear relation between

class labels and attributes. In addition, the linear kernel is a special

case of RBF and the sigmoid kernel behaves like RBF for certain

parameters. Secondly, the polynomial kernel has more hyper-

parameters than the RBF kernel while the number of hyper-

parameters can influences the complexity of model selection.

Finally, compared with the polynomial kernel as well as the

sigmoid kernel, the RBF kernel has less numerical difficulties.

Multi-class libsvm [30] was used to perform the classifications, in

which k(k{1)=2 (k is the number of classes) two-class classifiers were

trained, each of them contributed to the final decision by a simple

voting mechanism. The procedure of classification is as follows [24]:

N Scale the attributes of training data to the range [-1, 1]

linearly; then scale the attributes of the test data using the same

scaling function of the training data. For example, suppose one

attribute of training data was scaled from [-10, 10] to [21, 1],

the same attribute of the test data was scaled from [29, 11] to

[20.9,1.1].

N Consider the RBF kernel K(~xx,~xxi)~e{c ~xx{~xxik k2

N Use 5 fold cross-validation to find the best parameter C and c.

The range of C and c was ½2{n,2n�, n = 1,2,…10.

N With the values of the parameters C and c determined, whole

training set was used to construct the SVM (i.e. to estimate the

weight vector w), then a model was created for the test data.

N Evaluate the constructed SVM in term of classification

accuracy based on the testing dataset.

Supporting Information

Figure S1 Comparison of each voxel selection methods
against each other under the situations of (A) Linear
SVM without PCA. (B) RBF SVM without PCA. (C)Linear
SVM with PCA. In each plot, entry (a,b) is positive (red) if the

classification accuracy under voxel selection method a is larger

than that of voxel selection method b significantly under the post-

hoc test (0.05 level), and negative (blue) if the reverse is true. The

critical values were 1.32, 1.21 and 1.28 for the three conditions

respectively. The code for post-hoc analysis of Friedman test was

provided by http://timo.gnambs.at/en/scripts/friedmanposthoc.

(TIF)

Figure S2 The distribution of the training examples and
the support vectors (marked in white circle) when using
linear SVM under RN* mask. (A) House vs. face, (B) House

vs. Car, (C) House vs. Cat, (D) Face vs. Car, (E) Face vs. Cat, (F)

Car vs. Cat.

(TIF)

Figure S3 The distribution of the training examples and
the support vectors (marked in white circle) when using
linear SVM under RF mask. (A) House vs. face, (B) House vs.

Car, (C) House vs. Cat, (D) Face vs. Car, (E) Face vs. Cat, (F) Car

vs. Cat.

(TIF)

Figure S4 The distribution of the training examples and
the support vectors (marked in white circle) when using
linear SVM under RN mask. (A) House vs. face, (B) House vs.

Car, (C) House vs. Cat, (D) Face vs. Car, (E) Face vs. Cat, (F) Car

vs. Cat.

(TIF)

Figure S5 The distribution of the training examples and
the support vectors (marked in white circle) when using
linear SVM under WF mask. (A) House vs. face, (B) House vs.

Car, (C) House vs. Cat, (D) Face vs. Car, (E) Face vs. Cat, (F) Car

vs. Cat.

(TIF)

Figure S6 The distribution of the training examples and
the support vectors (marked in white circle) when using
linear SVM under WN* mask. (A) House vs. face, (B) House

vs. Car, (C) House vs. Cat, (D) Face vs. Car, (E) Face vs. Cat, (F)

Car vs. Cat.

(TIF)

Figure S7 The distribution of the training examples and
the support vectors (marked in white circle) when using
linear SVM under WN mask. (A) House vs. face, (B) House vs.

Car, (C) House vs. Cat, (D) Face vs. Car, (E) Face vs. Cat, (F) Car

vs. Cat.

(TIF)

Figure S8 The distribution of the training examples and
the support vectors (marked in white circle) when using
RBF SVM under RF mask. (A) House vs. face, (B) House vs.

Car, (C) House vs. Cat, (D) Face vs. Car, (E) Face vs. Cat, (F) Car

vs. Cat.

(TIF)
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