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ABSTRACT

Rapid advances in high-throughput sequencing tech-
nologies have led to the discovery of thousands of
extrachromosomal circular DNAs (eccDNAs) in the
human genome. Loss-of-function experiments are
difficult to conduct on circular and linear chromo-
somes, as they usually overlap. Hence, it is chal-
lenging to interpret the molecular functions of eccD-
NAs. Here, we present CircleBase (http://circlebase.
maolab.org), an integrated resource and analysis
platform used to curate and interpret eccDNAs in
multiple cell types. CircleBase identifies putative
functional eccDNAs by incorporating sequencing
datasets, computational predictions, and manual an-
notations. It classifies them into six sections includ-
ing targeting genes, epigenetic regulations, regula-
tory elements, chromatin accessibility, chromatin in-
teractions, and genetic variants. The eccDNA target-
ing and regulatory networks are displayed by infor-
mative visualization tools and then prioritized. Func-
tional enrichment analyses revealed that the top-

ranked cancer cell eccDNAs were enriched in onco-
genic pathways such as the Ras and PI3K-Akt sig-
naling pathways. In contrast, eccDNAs from healthy
individuals were not significantly enriched. Circle-
Base provides a user-friendly interface for search-
ing, browsing, and analyzing eccDNAs in various
cell/tissue types. Thus, it is useful to screen for po-
tential functional eccDNAs and interpret their molec-
ular mechanisms in human cancers and other dis-
eases.

INTRODUCTION

Extrachromosomal circular DNA (eccDNA) originates
from chromosomal DNA but is independent of it. Ec-
cDNA is ubiquitous in various eukaryotes and plays multi-
ple biological roles in different cell types (1). Researchers
have known for decades that eccDNA occurs in tumor
cells. However, comprehensive studies on their structure
and function have returned relatively little useful informa-
tion because of the limitations of available detection and
analysis technology (2,3). Other researchers have exploited
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recently developed high-throughput sequencing technol-
ogy and eccDNA identification methods (4), revealing
strong associations between eccDNA and cancers: (i) the
eccDNA mediates oncogene over-expression by increas-
ing gene copy numbers and transcript levels which lead
to tumor deterioration (5–9). Tumor cells contain abun-
dant oncogene-harboring eccDNA that is often amplified
by co-amplification with adjacent enhancers. This mecha-
nism leads to oncogene over-expression (6–8). Oncogene-
harboring eccDNAs are mobile enhancers that globally am-
plify chromosomal transcription (5). Moreover, they have
loose, open chromatin and a circular topology. Thus, multi-
ple regulatory elements may remotely regulate transcription
and enable the oncogenes on the eccDNAs to be transcribed
efficiently (9); (ii) the eccDNA mediates drug resistance in
cancer cells either by amplifying the drug resistance gene
on eccDNA, or by using the reversible loss of the gain-of-
function mutation of the drug resistance gene carried by
eccDNA (10,11); (iii) the eccDNA can drive tumor gene
heterogeneity and accelerate tumor genome evolution (12).
Oncogene-derived eccDNAs, which lack centromeres, may
be asymmetrically delivered to progeny cells via amitosis.
Cells with relatively more oncogene-derived eccDNAs have
a growth advantage and are enriched in rapidly proliferating
tumor cells. Computational simulation has confirmed this
phenomenon (13). Neuroblastoma eccDNAs accelerate so-
matic genome rearrangement and oncogene remodeling via
chimeric circularization and reintegration into linear chro-
mosomes (14).

The foregoing studies indicated that eccDNAs are
promising biomarkers for cancer diagnosis and prognosis
and are, therefore, research hotspots (15). Meanwhile, the
number of human eccDNAs generated by the computa-
tional analysis of sequencing data has increased. Therefore,
it has been challenging for researchers to compile available
data to investigate their functions. In fact, the biological
functions of most eccDNAs remain unknown and loss-of-
function experiments are difficult to perform, as circular
and linear chromosomes overlap in most cases. Moreover,
the formation and regulation of most eccDNAs remain un-
clear and their targeting genes, genetic variants and chro-
matin characteristics in various cell types have seldom been
explored. Therefore, an integrated database and analysis
platform is required for human eccDNAs.

In the present study, we developed the novel platform Cir-
cleBase (http://circlebase.maolab.org) that compiles and in-
terprets human eccDNAs from available public resources
and predicts the regulatory networks between eccDNAs
and genetic/epigenomic factors by integrating relevant
databases (Figure 1). CircleBase is a powerful, convenient
tool that explains the generation mechanisms underlying
various eccDNA functions and facilitates the exploration of
cancer cell heterogeneity and genome diversity. We are ded-
icated to maintaining CircleBase and extending the range
of organisms and cell types to keep the resource updated.

MATERIALS AND METHODS

eccDNA collection

CircleBase comprises 601 036 eccDNAs (candidates larger
than 50M were removed) gleaned from 13 published pa-

pers on PubMed (https://pubmed.ncbi.nlm.nih.gov/) and
includes the following information: (i) chromosomal local-
izations of eccDNAs based on reference genomes hg19 and
hg38; (ii) conditions or treatments; (iii) sample types; (iv)
sequencing library types and (v) validation strategies. The
eccDNA localizations were collected from the Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
(16,17) and Genome Sequence Archive (GSA, https://ngdc.
cncb.ac.cn/gsa/) (18).

Gene annotation

AnnotatePeaks.pl in the HOMER package (v. 4.11.1, http:
//homer.salk.edu) (19) was used with its default parameters
for eccDNA gene annotation based on the genomic posi-
tion. The annotation results included element annotation,
distance to TSS, nearest promoter ID, NCBI gene ID, near-
est Refseq ID, nearest Ensembl ID, gene name, gene alias,
gene description and gene type.

Targeting genes

3 049 674 enhancer-target pairs from human variation an-
notation database (VARAdb) (20) were collected to de-
termine the target genes of the eccDNAs located in the
enhancers and super-enhancers. There were 9 879 737
enhancer-target networks in 935 samples determined us-
ing the JEME algorithm (https://github.com/yiplabcuhk/
JEME) (21) and 284,834 enhancer-gene links identified us-
ing the GeneHancer database (22).

Regulatory elements

Regulatory elements are anchored by chromatin looping to
gene promoter regions to regulate gene transcription. En-
hancers and super-enhancers are positive regulatory ele-
ments that maintain cell type-specific gene expression and
control cell fate during development (23). There were 65 950
super-enhancers from dbSUPER (24), 2 839 656 enhancers
from EnhancerAtlas (25), 22 60 114 enhancers/super-
enhancers from SEA (26) and 331 146 super-enhancers
from SEdb (27). They were collected in CircleBase, and
their target genes were annotated according to their source
databases. Additionally, 98 274 452 chromatin states were
predicted using the core 25-state ChromHMM model (28).
ChromHMM was trained using the data imputed for 12 epi-
genetic marks across all 127 reference epigenomes in the
ENCODE project (29).

Chromatin interactions

Chromatin loops mediated by the CTCF/cohesin complex
connect regulatory elements to their target genes. In Cir-
cleBase, 28 442 796 chromatin interaction records were col-
lected from three databases: (i) 25 222 085 pairs of chro-
matin interactions were identified using the EpiTensor algo-
rithm in OncoBase (30). These included 2 847 794, 5 691 699
and 16 682 592 promoter–promoter, enhancer–promoter
and enhancer–enhancer interactions, respectively. (ii) 3 095
881 pairs of chromatin interactions were collected from the
4DGenome database (31). They were experimentally deter-
mined via Hi-C, ChIA-PET, IM-PET, 3C, 4C and 5C. (iii)
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Figure 1. Workflow of CircleBase construction.

124 830 ChIA-PET narrow peaks were detected from EN-
CODE (29) in MCF-7, HeLa-S3, K562, NB4 and HCT116
cancer cells.

Logistic function for score normalization

The scores were differently defined in the various annota-
tion databases. Therefore, they were transformed to harmo-
nize their ranges within [0,1]. The Z-score for each record
in each dataset was calculated as follows:

Z(x) = x − x̄
SD(x)

(1)

where x̄ and SD(x) are the mean and standard deviation for
all samples, respectively. A logistic function was then used
to convert the Z-score as follows:

f (Z) = 1
1 + e−z

(2)

where Z is the Z-score of each sample, e is the base of nat-
ural logarithm.

Diffusion system for prioritizing target genes

The network-based diffusion algorithm PageRank was used
to prioritize the target genes for each eccDNA (30). An im-
proved version of PageRank was applied as follows:

PR(u) = (1 − d) + d ×
∑

v∈B(u)
PR(v) × weightv→u (3)

where Weightv→u is used to measure the weight of the edge.
Weight = 1 for the edge derived from the enhancer/super-
enhancer interactions determined by the regulatory ele-
ments section. Weight = 0.5 for the edge derived from the
chromatin connections determined by the chromatin inter-
actions section. In the targeting genes section, the original

enhancer-target scores derived from VARAdb and JEME
were used as the weight values, and the enhancer-target
scores from GeneHancer were normalized to [0, 1] via the
foregoing logistic function. The mean weight scores were
used as ultimate edge scores when a single eccDNA was im-
plicated in >1 connection record.

Regulatory networks

Regulatory networks were constructed by combining the
enhancer-gene pairs from the targeting genes, regulatory el-
ements and chromatin interactions sections. Regulatory el-
ement targets overlapping with eccDNA were defined as
eccDNA targets. Redundant eccDNA–gene pairs were re-
moved. Genes interacting with eccDNA were ranked us-
ing Google PageRank and circle sizes were positively cor-
related with PageRank scores (32). An interactive view was
prepared for the gene prioritization related to certain eccD-
NAs in a two-layer network ranked by PageRank score in
the regulatory network section (30). PageRank ranking was
applied to all genes regulated by certain eccDNA and all
other eccDNAs regulating them. The network view showed
the two-layer networks. The eccDNAs or genes related to
the sub-networks were listed in the table following the in-
teractive view.

Functional enrichment

A functional enrichment analysis was performed using the
R package clusterProfiler version 4.0.2 (33). A gene on-
tology analysis was performed with the clusterProfiler en-
richGO function (34). Kyoto Encyclopedia of Genes and
Genomes pathways were analyzed with the clusterProfiler
enrichKEGG function (35). Terms were considered signif-
icantly enriched when their Benjamini–Hochberg-adjusted
P-values were <0.05 (36).
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Chromatin accessibility

Chromatin accessibility reflected both aggregate TF bind-
ing and the regulatory potential of a genetic locus (37). In
CircleBase, (i) 52 078 883 accessible regions were detected
by ATAC-seq in over 1400 samples from ATACdb (38); (ii)
3 181 274 accessible regions were detected by ATAC-seq in
Cistrome (39); (iii) 1 051 532 accessible regions were de-
tected by ATAC-seq in 23 cancer types from The Cancer
Genome Atlas (TCGA) (40) and (iv) 62 154 007 accessible
regions were detected by DNase-seq in 243 samples from
ENCODE (29).

Epigenetic regulations

There were 156 379 641 peaks collected from 7734 ChIP-
seq samples of 952 TFs in ChIP-Atlas (41), Cistrome (39),
ENCODE (29), GTRD (42) and ReMap (43). Moreover,
5 911 338 and 64 669 729 histone modification peaks
were obtained from 185 and 979 ChIP-seq samples from
ENCODE (29) and Roadmap (44), respectively. The targets
of ChIP-seq experiments from ENCODE (29) included
H2A.Z, H3K27ac, H3K27me3, H3K36me3, H3K4me1,
H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me1,
H3K9me3 and H4K20me1. The targets of ChIP-seq ex-
periments from Roadmap included H2A, H2AK5ac,
H2AK9ac, H2BK120ac, H2BK12ac, H2BK15ac,
H2BK20ac, H2BK5ac, H3K14ac, H3K18ac, H3K23ac,
H3K23me2, H3K27ac, H3K27me3, H3K36me3, H3K4ac,
H3K4me1, H3K4me2, H3K4me3, H3K56ac, H3K79me1,
H3K79me2, H3K9ac, H3K9me1, H3K9me3, H3T11ph,
H4K12ac, H4K20me1, H4K5ac, H4K8ac and H4K91ac.

Genetic variants

Genetic variants were collected from 1 245 959 177 hu-
man single-nucleotide variants (SNVs) in dbSNP release
155 (45), 8 775 948 common single-nucleotide polymor-
phisms (SNPs) from the Genome Aggregation Database
(gnomAD) Project v. 2.1 (46), 272 607 risk SNPs from the
genome-wide association study (GWAS) catalog (47) and
314 238 risk SNPs from GWASdb v. 2.0 (48). Disease-
related genetic variants including 81 666 495 somatic muta-
tions of human cancers from OncoBase (30) and 670 082 de
novo mutations from the Gene4Denovo database (49), were
also collected.

Expression quantitative trait locus (eQTL)

The eQTL are genomic loci that regulate gene expression
levels and play vital roles in deciphering gene regulation and
spatiotemporal specificity (50). Correlation between geno-
type and tissue-specific gene expression level may be used
to interpret the effect of gene variant on gene expression in
human tissues or cancers. Here, 71 478 479 significant SNP–
gene pairs (false discovery rate (FDR) < 0.05) in 49 human
tissues were compiled from the GTEx Project v. 8.0 (51).
Additionally, 1 412 029 significant cis-eQTL-gene and trans-
eQTL-gene pairs in 33 cancer types were collected from the
PancanQTL database (52).

Interactive circular visualization

High-resolution chromatin interactions, TF binding clus-
ters, somatic mutations, enhancers, super-enhancers, and
their predicted targets were illustrated in a circular
ideogram layout plotted with BioCircos (http://bioinfo.ibp.
ac.cn/biocircos/index.php) (53). The ideogram was then im-
plemented for circular visualization of various biological
data such as genomic features, genetic variants, gene expres-
sion, and biomolecular interactions.

eccDNA prioritization scoring system

The number of annotated hits (records) assigning a score to
each corresponding eccDNA was used for each regulatory
category. Considering that eccDNA has k hits per regula-
tory category (F), and � and � are the fitted parameters of
the corresponding Gaussian model, the eccDNA score in
this category was calculated as follows:

ScoreF = −log10

(∫ +∞

k

1√
2πσ 2

e− (x−μ)2

2σ2

)
(4)

The score of each category was normalized to [0, 1] using
the foregoing logistic function. The final score S of each ec-
cDNA would be the average of normalized scores for all six
regulatory categories (Equation 5) since normalized scores
between some categories are not independent (Supplemen-
tal Figure S1). The calculation of the scoring system was im-
plemented using the SciPy package v1.6.3 in Python v3.7.6
(54).

S = 1
6

∑6

F=1
ScoreF (5)

System design and database construction

CircleBase (http://circlebase.maolab.org) was developed by
combining jQuery with the PHP-based web framework
CodeIgniter (https://codeigniter.com). It was based on pre-
viously reported databases and platforms (30,50,55,56).
All datasets in CircleBase were stored either in MySQL
database or as flat files. Academic users may freely access
related data and analytical results through the web inter-
face. The liftOver module in the UCSC toolkit (https://
genome.ucsc.edu/cgi-bin/hgLiftOver) (57) was used to con-
vert genomic coordinates among various versions of the hu-
man genome. In details, eccDNA locations from the paper
PMID 34193237 were lifted over from hg38 to hg19 while
the rest were lifted over from hg19 to hg38. In addition,
super-enhancer locations from the SEA database were lifted
over from hg38 to hg19.

Data and code availability

The accession, DOI, version and permalink information of
the foregoing databases was listed in Supplementary Ta-
ble S1. To make the codes open-access, we deposited the
source codes of CircleBase in GitHub (https://github.com/
leishenggit/CircleBase). The full tables of human eccDNAs
are available in the Download module of CircleBase (http:
//circlebase.maolab.org/welcome/download).
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Figure 2. Percentage of eccDNAs in each category and distribution of ranking scores. (A) Percentage of eccDNAs in three cell groups including cancer cell
line, cancer tissue, and healthy individual. (B) Percentage of eccDNAs in different library types such as WGS, Circle-Seq, ATAC-seq, WES and ChIA-PET.
(C) Percentage of eccDNAs in different cell lines such as ES2, LnCap, U937, OVCAR8, C4-2, HeLaS3, PC-3 and C4-2B. (D) Percentage of eccDNAs in
different human tissues such as muscle, plasma, connective tissue, brain, breast, esophagus and lung. (E) Density distribution of eccDNAs in different
ranking scores.
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Figure 3. Web interface of the Search module in CircleBase.

Figure 4. Functional enrichment analysis of the top 1000 eccDNAs. (A) Functional enrichment analysis of 791 eccDNAs from cancer cells. (B) Functional
enrichment analysis of 209 eccDNAs from normal tissues.
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Figure 5. Illustration of the eccDNA ecc595499 in gastric cancer. (A). BioCircos view of targeting genes. (B) BioCircos view of chromatin interactions. (C)
Regulatory network. The interacting genes with the eccDNA are ranked by Google PageRank and the size of the circle is positively correlated with the
PageRank score. (D) Molecular function enrichment of eccDNA ecc595499 targeting genes.

DATABASE FEATURES AND APPLICATIONS

Statistics and features

CircleBase compiled available eccDNAs (n = 601 036) from
public resources and comprehensively interpreted those
in various cancer cell lines (n = 423 018), cancer tissues
(n = 6498), and healthy individuals (n = 171 596) (Figure
2A). These eccDNAs were detected by whole genome se-
quencing (WGS, n = 427 064), Circle-Seq (n = 145 588), cf-
eccDNA-seq (n = 25 995), ATAC-seq (n = 1783), whole ex-
ome sequencing (WES, n = 467) and others (Figure 2B). We
collected 114 611 eccDNAs from ES2, 84 629 from LnCap,
69 420 from U937, 57 780 from OVCAR8, 41 221 from C4-
2 and 38 876 from HeLaS3 cell lines (Figure 2C). We col-
lected 136 619 eccDNAs from the muscle, 34 977 from the
plasma, 939 from the connective tissue, 754 from the brain,
712 from the breast, 648 from the esophagus, 599 from the
lung, 435 from the skin, 427 from the stomach, 362 from the
bladder, 301 from the head and neck, 340 from the ovaries,
250 from the uterine corpus endometrial, 153 from the liver,
157 from the pancreas, 149 from the prostate, and others
(Figure 2D).

Unlike our previous study (55), the hits numbers of ec-
cDNAs per chromosome were not suitable for the Poisson
distribution (Supplemental Figures S2-S7). The parameter
lambda of the Poisson distribution is approximated by the
average value of the observed data, and then it is substituted
into the R function rpois to generate the theoretical values.
But the hits numbers per chromosome could be fitted to
a Gaussian distribution by using Box–Cox transformation
(Supplemental Figures S8-S13). The parameters of the nor-
mal distribution, that is, the mean and variance are approx-
imated by the mean and variance of the observed data, and
then they are substituted into the R function rnorm to gen-
erate the theoretical values. Importantly, the mean values
of six scores after logistic transformation conform to a nor-
mal distribution with range of [0, 1] (Figure 2E). Therefore,
CircleBase helps prioritize putative functional eccDNAs by
incorporating high-throughput experimental datasets from
ENCODE (29), computational predictions, and manual an-
notations. It classifies these genetic and epigenetic anno-
tations into targeting genes, epigenetic regulations, regula-
tory elements, chromatin accessibility, chromatin interac-
tions and genetic variants (Figure 1). It predicts regulatory
networks between eccDNAs and genetic/epigenomic fac-
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Figure 6. Illustration of the eccDNA ecc597923 in ovarian cancer. (A) BioCircos view of targeting genes. (B) Regulatory network. The interacting genes
with the eccDNA are ranked by Google PageRank and the size of the circle is positively correlated with the PageRank score. (C) BioCircos view of
chromatin interactions. (D) Biological process enrichment of eccDNA targeting genes.

tors by integrating relevant databases. These data sources
are combined to score eccDNAs and help interpret the po-
tential functions of the eccDNAs in the human genome.

Website interface

CircleBase comprises the Home, Search, Stats, Manual,
Download, Links and Contact modules. A brief introduc-
tion of CircleBase and the workflow are shown in the Home
module. Data are integrated in the Search module of Cir-
cleBase and can be searched by gene symbol, genomic
region, eccDNA ID, NCBI gene ID and Ensembl gene
ID. Moreover, examples are provided for new users. When
users search their target eccDNAs, the target genes, regula-
tory elements, chromatin interactions, regulatory networks,
functional enrichments, chromatin access, epigenetic regu-
lations, genetic variants and eQTL, and the summary are
displayed at the click of a mouse (Figure 3). In the Stats
module, eccDNA distributions under various criteria in-
cluding cell line and cell group, tissue, and library type are
exhibited in a pie chart. In the Manual module, steps of how

to use CircleBase are shown. In the Download module, all
eccDNA data used are available for user download. In the
Links Module, related databases such as TCGA (40), In-
ternational Cancer Genome Consortium (ICGC) (58), and
others are provided. In the Contact module, the e-mail ad-
dresses and research fields of related authors are described
in detail, enabling users to communicate with our team.

Significance and applications

The top 1000 eccDNAs scored by the ranking system
were used to perform functional enrichment analyses (59)
including 791 and 209 eccDNAs from cancer cells and
normal tissues, respectively. The top-ranked cancer cell
eccDNAs were enriched in oncogenic pathways (Figure
4A) including Rap1 signaling (hsa04015), Ras signal-
ing (hsa04014), Melanoma (hsa05218), MAPK signaling
(hsa04010), PI3K-Akt signaling (hsa04151), Regulation of
actin cytoskeleton (hsa04810), Phospholipase D signaling
(hsa04072), Gastric cancer (hsa05226), Pathways in cancer
(hsa05200) and Circadian entrainment (hsa04713). By con-
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trast, eccDNAs from normal tissues had no significant en-
richment (Figure 4B). The foregoing results validated the
ranking system used in CircleBase.

Here, we considered eccDNA ecc595499
(chr10:81044184–81134986) in gastric cancer and ec-
cDNA ecc597923 (chr2:176959007–177342179) in ovarian
cancer as examples (60). CircleBase showed the targeting
gengs, chromatin interactions in their loci and flanking
regions, and regulatory network (Figures 5A–C; Figures
6A–C). Our platform predicted several targeting genes
of ecc595499 enriched in multiple molecular functions
including carbohydrate binding, S100 protein binding,
MHC class II protein complex binding, translation elonga-
tion factor activity, cyclosporin A binding, MHC protein
complex binding, peptidyl-prolyl cis-trans isomerase
activity, cis-trans isomerase activity, calcium-dependent
phospholipid binding, nuclear receptor coactivator activ-
ity, ribosome binding, and drug binding (Figure 5D). Our
platform disclosed dozens of ecc597923 targeting genes en-
riched in multiple biological processes related to embryonic
organ development such as appendage morphogenesis,
limb morphogenesis, appendage development, limb devel-
opment, embryonic limb morphogenesis, and embryonic
appendage morphogenesis (Figure 6D). Experimental
validation of eccDNA function is currently in progress
and we believe that by using the regulatory networks and
functional predictions from CircleBase, researchers will be
able to elucidate the mechanisms underlying the functions
of eccDNAs in human cancers and other diseases in the
near future.

DISCUSSION AND PERSPECTIVES

Cancer cells can rapidly adapt to changes in the tumor
micro-environment by amplifying the oncogenes on their
eccDNA (61). Numerous experimental methods have been
developed to detect eccDNA including Circle-Seq based
on next-generation sequencing (62) and SMOOTH-seq
based on third-generation sequencing platforms (63). Sev-
eral computational methods have been developed to ana-
lyze eccDNAs including AmpliconArchitect (64), ECdetect
(6) to identify eccDNAs from whole-genome sequencing
data, and Circle-Map (65) and Circle finder (66) to detect
eccDNAs in Circle-seq and ATAC-seq data, respectively.
Integrated databases and annotation platforms are required
for human eccDNAs. However, none of these have been de-
veloped or published to date. As far as we know, CircleBase
is the first database for eccDNA and has several advantages.
It (i) is fitted with a highly interactive visualization func-
tion for eccDNAs and their related annotations; (ii) has a
ranking system based on a Gaussian distribution model for
better decision-making and (iii) provides comprehensive ec-
cDNA annotations as follows:

i) It furnishes annotations for eccDNA targeting genes
based on bioinformatics predictions by JEME (21) and
EpiTensor in the OncoBase platform (30).

ii) It incorporates epigenome information from ENCODE
(29) and the Roadmap (44) epigenomics project with
the chromatin status of the eccDNA locus in the linear
genome.

iii) It fine-maps the genetic basis of the eccDNA using
disease-related and common SNPs from TCGA (40),
gnomAD (46), dbSNP (45), GWASdb (48) and others.

iv) It annotates eccDNAs to regulatory elements, such
as promoters, enhancers, and super enhancers via
ChromHMM (28), EnhancerAtlas (25), dbSUPER
(24) and others.

v) It measures the chromatin accessibility of the eccDNA
locus with ATACdb (38), Cistrome (39) and others.

vi) It establishes chromatin interaction networks for
the eccDNA locus using Hi-C processed data from
4DGenome (31), OncoBase (30) and others.

In conclusion, CircleBase curates eccDNAs in the human
genome from various cell types and provides a scoring sys-
tem to prioritize the eccDNAs based on comprehensive an-
notations. Our aims are to extend the ranges of annotations
and cell types and continue updating CircleBase.
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