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Abstract: Mosquito control is important as mosquitoes are extremely harmful pests that spread
various infectious diseases. In this research, we present the preliminary results of an automated system
that detects the presence of mosquitoes via image processing using multiple deep learning networks.
The Fully Convolutional Network (FCN) and neural network-based regression demonstrated an
accuracy of 84%. Meanwhile, the single image classifier demonstrated an accuracy of only 52%.
The overall processing time also decreased from 4.64 to 2.47 s compared to the conventional classifying
network. After detection, a larvicide made from toxic protein crystals of the Bacillus thuringiensis
serotype israclensis bacteria was injected into static water to stop the proliferation of mosquitoes.
This system demonstrates a higher efficiency than hunting adult mosquitos while avoiding damage
to other insects.

Keywords: mosquito; vector control; deep learning; urban habitat; drug spray

1. Introduction

Mosquitoes annually cause significant damage to mankind as they disseminate various deadly
infectious diseases including malaria, yellow fever, or encephalitis [1]. The recent outbreak of the
Zika virus [2] has again awakened the public to the dangers of mosquitoes and the necessity of vector
control. Classic mosquito control approaches are generally focused on the control of the adult mosquito
via thermal fogging trucks, pesticides, or even automated electrical mosquito traps [3]. However, the
mosquito is a small, flying insect which tends to hide near urban areas. Consequently, pesticides
and fogs have difficulty in permeating into these hideouts. Given the impact on the surrounding
ecosystem and the need to use these preventive measures near cities, the toxicity of the chemicals
is also limited. Mosquito nets represent a preventive measure, but not a fundamental solution, for
reducing the proliferation of mosquitoes.

Compared to the imago stage, mosquito larvae tend to proliferate and gather in static water such as
puddles. This feature makes the control of mosquito larvae much more efficient than controlling them at
the imago stage [4]. The well-known habitats of mosquito larvae are the puddles generated after rainfall.
However, recent research has shown that most mosquito habitats found in urban areas are located
near rainfall collection wells [5] and sewage tanks located under buildings [6]. These urban/indoor
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facilities enable mosquitoes to increase in number throughout the year, and not only in summer when
rain is frequent.

Many larvicides have been developed to kill mosquito larvae, and one of the most promising
larvicides is composed of toxic protein crystals extracted from the spores of the Bacillus thuringiensis
serotype israelensis (Bti) bacteria [4]. The toxicity is species specific and a low rate of tolerance was
observed. Although the Bti treatment is effective and eco-friendly, it does not affect a large area and is
washed away rapidly (in less than a month). Furthermore, it is impossible to spray Bti larvicide into
every candidate puddle or region where mosquito larvae can grow using human labor alone.

Instead of monitoring every water-related facility in a given urban area, we propose an
automated mosquito detection/larvicide spray system installed at the mosquito habitat candidate
points. Additionally, instead of passive traps (no detection) or a simple object detector [3], which
counts the presence of flying insects, we try to obtain static images of the mosquitoes with a camera for
image processing-based mosquito sensing.

Recent advances in deep neural network structures represented by the convolutional neural
network (CNN) have demonstrated a remarkable increase in performance compared to conventional
machine learning methods [7-9]. Many applications based on deep learning have been developed,
including vermin monitoring such as jellyfish swarm detection [10]. This research has also applied deep
learning based-architecture for the image processing. As the importance of the control of mosquitoes
has increased, some research on detecting mosquitoes from a single image using neural networks have
been conducted [11-13].

The proposed system is equipped with a clean, white mosquito observation pad that lures adult
mosquitoes. An attached camera records images of the mosquitoes on the pad, attracted by the lures.
If the mosquito larvae proliferate at the installed point (a constant or increasing number of mosquitoes
is observed), the attached robot activates and drops a Bti larvicide package into the water to exterminate
the growing mosquito larvae. Therefore, our proposed system is a novel approach to controlling
mosquitoes, which not only uses deep learning-based image classification, but also uses own hardware
equipped with a luring pad and Bti dropper. In addition, the whole control system is placed in an
indoor experimental site and verifies that it can exterminate the mosquito larvae.

2. Materials and Methods

2.1. Platform Overview

The system is equipped with a mosquito observation pad and a linked camera for mosquito image
acquisition. To lure the mosquitoes, an Ultra Violet (UV) Light-Emitting Diode (LED), a 39 °C heat
pad, and CO,-generating chemicals (sodium hydrogen carbonate and acetic acid) were used [14,15].
Fruit flavor was added to the acetic acid for a better luring effect. Mosquitoes tend to land on
nearby walls or structures before approaching the target (the CO, source in this case). The white
observation pad was designed to induce mosquito landing and block the background for easier image
processing. For the lighting of the observation pad, a white visible light LED lamp equipped with a
timer was attached. Streamed images from the webcam are sent to the computer for image processing.
The overall structure of the system is shown in Figure 1. The hardware system developed for this
purpose is shown in Figure 2.
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Figure 1. Overall procedure of the proposed mosquito detection and control system.
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Figure 2. (a) The mosquito control system developed. (b) Heat pad and Ultra Violet Light-Emitting
Diode (UV LED) attached to the mosquito observation pad. (c) Close-up view of the automatic Bti

larvicide dispenser.
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2.2. Mosquito Luring Experiments

The mosquito luring experiment was conducted in the basement of the W2 building at Korea
Advanced Institute of Science and Technology (KAIST). The indoor sewage tank was placed in the
basement of the building and the dissemination of the mosquitoes was reported. The developed sensor
node was placed in the room near the sewage tank. The sensor node was placed in the dark for 15 min
and the lamp was turned on and off in a 15 min cycle. The attached camera recorded the image of the
observation pad and was subsequently used for the image-based mosquito sensing. As a negative
control of the mosquito lure, an experiment with an empty observation pad without CO,-generating
chemicals was also performed for comparison.

2.3. Image Preparation and Deep Learning Architecture

The deep learning architecture-based pipeline was developed for image processing and mosquito
detection in the recorded videos. The observation pad attached to the sensor node blocks the background
noise and generates a plain background in the video. The grayscale conversion and thresholding were
performed to find black objects on the screen. As the distance between the observation pad where
the mosquitoes land and the camera is fixed, the size of the mosquitoes generally falls into a certain
boundary. The contour in the threshold images was filtered based on their size and saved as 60 x 60
color image patches. The collected patches were manually classified into mosquito and non-mosquito
images and the deep learning image classifier was trained to recognize them. AlexNet [7] was originally
designed for the ImageNet database [16] classification task with a learning rate of 0.001 and with a
step-down decay used for the classification. Of the collected image patches, 25% (approximately 2000
images in total) were used as a test dataset while the rest of the images were used for the training.

Classifying single image patches obtained by color filtering is a feasible design. However,
color is not a very robust method even though the observation pads block the background. Also,
classifying every dark object in the image requires multiple forward passes of a network, which requires
unnecessarily long computing time and resources. Instead, this research applied a fully convolutional
network (FCN) [17] and neural network-based regression to count the number of mosquitoes in the
image with the least network inference. The summary of the network is shown in Table 1. The total
number of parameters in the FCN is approximately 134.82 M.

Label image datasets were generated by changing all pixel values to black (0,0,0 in RGB) except
the mosquito regions detected by the pre-trained patch classifying network. The regions corresponding
to the mosquitoes were changed to purple (255,0,255 in RGB). The FCN network, which infers the
possibility that each pixel belongs to the given classes, was used for detecting the mosquito-like regions
in the image. After the training, the probability map before the final deconvolution layer is extracted
and passed to the regression network. The same AlexNet structure used in the patch classification was
leveraged but the loss layer was changed to the Euclidean distance loss from the softmax cross entropy
for regression purposes. The number of mosquitoes in the image was used as a label. Labels of 0 to 5
were prepared and numbers larger than 5 were considered as label 5. Approximately 60 images per
label were prepared. The overall pipeline process is shown in Figure 3. A Caffe framework [18] with
Python binding was used for the implementation of the system. The summary of the network is shown
in Table 2. The total number of parameters in AlexNet is approximately 60.97 M.
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Table 1. A summary of the proposed network architecture based on the Fully Convolutional Network

(FCN).
Name Type Input Size Output Size Kernel Size  Stride  # of Filters
data data 3 x 500 x 500 3 x 500 x 500
convl convolution 3 x 500 x 500 64 x 500 x 500 3 2
pooll max pooling 64 x 500 x 500 64 x 250 x 250 2 2 1
conv2 convolution 128 x 250 x 250 128 x 250 x 250 3 2
pool2 max pooling 128 x 250 x 250 128 x 125 x 125 2 2 1
conv3 convolution 256 x 125 x 125 256 x 125 x 125 3 3
pool3 max pooling 256 x 125 x 125 256 X 63 X 63 2 2 1
conv4 convolution 512 X 63 X 63 512 X 63 X 63 3 3
pool4 max pooling 512 X 63 X 63 512 x 32 x 32 2 2 1
convb convolution 512 x 32 x 32 512 x 32 x 32 3 3
pool5 max pooling 512 x 32 x 32 512 x 16 X 16 2 2 1
fc6 convolution 512 x 16 x 16 4096 x 10 x 10 7 1
drop6 dropout (rate 0.5) 4096 x 10 x 10 4096 x 10 x 10
fc7 convolution 4096 x 10 x 10 4096 x 10 x 10 1 1
drop?7 dropout (rate 0.5) 4096 x 10 x 10 4096 x 10 x 10
score convolution 4096 x 10 x 10 21 x 10 x 10 1 1
score2 deconvolution 21 x10x 10 21 x22 %22 4 2 1
score-pool4 convolution 512 x 32 x 32 21 x 32 x 32 1 1
score-pool4c crop 21 x 32 %32 21 x22x22
score-fuse eltwise 21 x22x22 21 x22x22
bigscore deconvolution 21 x 22 x 22 21 x 368 x 368 32 16 1
upscore crop 21 x 368 x 368 21 x 500 x 500
output softmax 21 x 500 x 500 21 x 500 x 500
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Figure 3. Flow diagram of the deep learning-based mosquito counting pipeline. The red arrows

indicate data transfer and the blue arrows indicate network input/output. (a) Patch classifier network:

mosquito colored-only image preparation using the pre-trained image patch classification network. (b)

Score map network: FCN training based on the generated label from the previous stage. (¢) Mosquito

counting network: regression using a score map extracted from the trained FCN.
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Table 2. A summary of the proposed network architecture based on AlexNet (LRN: Local Response

Normalization).
Name Type Input Size Output Size Kernel Size  Stride  # of Filters
data data 3 %227 x 227 3 x 227 x 227
convl convolution 3 %227 x 227 96 X 55 x 55 11 4 1
norm1 LRN 96 x 55 x 55 96 X 55 x 55
pooll max pooling 96 x 55 x 55 96 x 27 x 27 3 2
conv2 convolution 96 x 27 x 27 256 X 27 X 27 5 1
norm?2 LRN 256 X 27 x 27 256 X 27 x 27
pool2 max pooling 256 X 27 x 27 256 x 13 x 13 3 2 1
conv3 convolution 256 X 13 x 13 384 x13x13 3 1
conv4 convolution 384 x13x13 384 x13x13 3 1
convb convolution 384 x13x13 256 X 13 x 13 3 1
pool5 max pooling 256 x 13 x 13 256 X 6 X 6 3 2 1
fc6 InnerProduct 256 X 6 X 6 4096 x 1 x 1 1
drop6 dropout (rate 0.5) 4096 x 1 x1 4096 x 1 x1
fc7 InnerProduct 4096 x 1 x1 4096 x 1 x1 1
drop?7 dropout (rate 0.5) 4096 x 1 x1 4096 x 1 x1
fc8 InnerProduct 4096 x 1 x 1 1000 x 1 x 1 1
loss SoftmaxWithLoss 1000 x 1 x 1 1000 x 1 x 1

The score map before the final deconvolution layer was extracted and used as a final output as
shown in Figure 3b. The original purpose of the FCN was to obtain the outline of the target object in
the image by examining the pixel-wise associability of the image. However, the FCN was not used
in this research to detect the exact edge of the mosquitoes in the image; instead, it marked the rough
location of the mosquitoes in the image. By doing so, the number of images required to train the FCN
was decreased (the FCN requires a calculated probability over a certain threshold to generate a final
output edge and many training samples are required to increase pixel-wise certainty); however, a
probability map with rough accuracy is still obtainable.

3. Results and Discussion

3.1. Mosquito Luring Experiment

The experiment results demonstrated that the system successfully attracted mosquitoes during its
operation. A recorded video showed that the mosquitoes started to approach the trap approximately
14 min after its installation. The number of mosquitoes present at random moments during the
15 min video was manually calculated for statistical purposes. The image of the lured mosquitoes
and a boxplot generated with 10 data points from the 10 trials are shown in Figure 4. More than
three mosquitoes constantly (median value of three) approached the trap during its operation with a
maximum number of eight. The negative control (no luring mechanism used) showed zero or one
mosquito during multiple trials. Other insects were not attracted to the observation pad during the
luring experiment.

The system is not equipped with an adult mosquito killing or trapping mechanism. UV/visible
light-based mosquito traps attract not only mosquitoes, but also useful pollinating insects, thereby
causing collateral damage. Although the attracted insects may cause false positive image processing
results, only a larvicide drug package is released to avoid killing unwanted insects. Furthermore, the
elimination of active traps requiring actuators can help reduce power consumption.
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Figure 4. (a) Mosquitoes lured by the sensor nodes. (b) Boxplot showing the number of mosquitoes
observed in the recorded video. Ten random screenshots from 10 videos (trials) were used.

3.2. Deep Learning-Based Mosquito Detection

The intermediate deep neural networks required for the procedure introduced in Section 2.3 were
developed and trained. Firstly, the AlexNet classifier network for the mosquito/non-mosquito contour
classification shown in Figure 3a was trained and examined. The trained network showed an accuracy
of 95.25% at the test phase, at the 20th epoch after the training started. Training and test loss started
from a value of 0.6 and 0.5 and dropped to 0.15 and 0.2 after all iterations were completed.

As the training results demonstrated sufficient accuracy in detecting mosquitoes, the prepared
network was used to generate mosquito colored-only label images for the FCN training. Approximately
100 images with the corresponding label images were generated and used for the FCN training.
The stride size of 32 was used for faster inference time/low memory consumption compared to the
other stride size options (16 and 8). The input image and corresponding FCN processed output is
shown in Figure 5. The probability that the pixel falls into a region where a mosquito is present is
marked with dark blue, while the other less probable regions are colored with a red to green spectrum.
The blue dotted region is similarly located at the position where the mosquito exists in the input image.
If the system tries to detect the mosquitoes by color-based contour finding and classification, tuning
of the thresholding value is required, as it affects the final accuracy of the classifier. Also, multiple
inferences, although required, drop the accuracy of the total result and require a certain amount of
computation time for each image. By using the FCN, the proposed system can infer the possible
number of mosquitoes with a single network inference. However, the generated probability map does
not exactly correspond to the mosquito region. Counting the number of blue dots is not applicable as
closely-located mosquitoes fall into the same boundary and are marked as a larger single dot. Thus,
the generated score maps were passed to the regression network for neural network-based regression
to estimate the number of mosquitoes based on the probability map.
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(a)

Figure 5. Input images (left) for the FCN and generated score maps (right) showing the probability
of pixel matches to the presence of a mosquito. Each label indicates the number of mosquitoes in the
image. (a) label 0, (b) label 1, (c) label 2, (d) label 3, (e) label 4, (f) label 5 (this label includes > 5 images
as well).

3.3. Examination of the Mosquito Counting Pipeline

The generated score maps were trained to the modified AlexNet introduced in Section 2.3.
The number of mosquitoes in the image was used as a label for the regression and ground truth for
the performance measurement. As a comparison, the image classification network classifying the
contour obtained from the image was compared with the FCN and neural network-based regression.
The results are shown in Figure 6.
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Figure 6. Red circles indicate the ground truth value—the real number of mosquitoes in the image.
The green line represents the estimation results from the FCN and neural network-based regression.
The blue dotted line shows the number of mosquitoes detected by classifying every contour in the
image using the classification network. The example of the misclassification image patch which causes
the overestimate of the mosquito detection is represented on the left side.
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A total of 80 test images were processed and compared by the two networks. The label is limited
to 5 as most images have less than 5 mosquitoes. A few images containing more than 5 mosquitoes
were also referred to with a label of 5. If the network output exceeded 5 while processing the label 5
image, it was considered as a correct answer. The FCN and neural network-based regression result
demonstrated an accuracy of 84%. Meanwhile, the single image classifier demonstrated an accuracy
of only 52%. As shown in Figure 6, the blue line indicating the inference results from the classifier
network has more divergence from the ground truth (the red dotted line) compared to the results
from the regression network (the green line). As previously mentioned, though the trained classifier
shows good classification results when classifying a single image patch, giving perfect answers for
every image patch is a difficult task. Root mean square errors (RMSEs) of 1.37 (blue) and 0.42 (green)
were obtained, showing that the regression network with the FCN score map input has much better
performance in number estimation tasks. The proposed FCN and neural network-based regression
demonstrated an error of +1 most of the time, while the classification network had errors within a
much higher range.

Although it is possible to count each mosquito, it is necessary to measure a level exceeding a
certain number rather than an exact number of vermin when the government notifies alarms about
them, such as jellyfish counting in the South Korea [19]. Also, in order to obtain an accurate outline in
the FCN, it is necessary to have many training sets. It is possible to implement the desired function
with a relatively small amount of data if the FCN is only trained enough to generate a good probability
map instead of the outline proposal and combined with the regression network.

The processing time required for the inference was also decreased. For the processing of 80 images,
the proposed network required 2.47 s on a platform with an Intel i7-6700K CPU and 2 Nvidia GTX 1080
GPUs. The conventional classification network took 4.64 s to process approximately 200 mosquitoes in
the 80 images. Though the depth of the network is deeper with the FCN and neural network-based
regression, two inferences require much less time when compared to multiple AlexNet inferences.

The proposed system is aimed at optimizing network usage for operation in embedded systems.
Therefore, lighter network structures are preferred. The effort and human labor required to generate
training data are also decreased by using the proposed pipeline as compared to the object detection
network which requires the exact boxing of every mosquito in the image.

4. Conclusions and Future Work

This paper presents the development of an automated mosquito detection and control system
based on the image processing of lured mosquitoes. The system can detect mosquitoes and release a
Bti drug package into a target area, for example, sewage, if it is considered to be a mosquito larvae
habitat. Thus, control of the mosquito population is more efficient than only removing mosquitoes at
the imago stage. We expect that this system could be used not only in indoor urban areas, but also at
rainfall collection facilities found in the tropical regions of developing countries.

In the repeated experiment, we could not find insects other than mosquitoes in our experimental
site. However, for generality, we need to distinguish mosquitoes from any other kinds of insects which
can be found outdoors. This will be a future task of our research.

As part of future research, we are considering optimizing the multiple network stacked structure.
We are also considering benchmarking end-to-end structures and recent YOLO networks [20-22] to
increase the object detection performance. Replacing AlexNet with ResNet to make the system faster is
being considered. In addition, attaching the sensor node to a mobile system, such as a drone, is also
being considered.
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