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Abstract: Once believed to solely function as a cyclin-dependent kinase inhibitor, p27Kip1 is now
emerging as a critical mediator of autophagy, cytoskeletal dynamics, cell migration and apoptosis.
During periods of metabolic stress, the subcellular location of p27Kip1 largely dictates its function.
Cytoplasmic p27Kip1 has been found to be promote cellular resilience through autophagy and anti-
apoptotic mechanisms. Nuclear p27Kip1, however, inhibits cell cycle progression and makes the cell
susceptible to quiescence, apoptosis, and/or senescence. Cellular location of p27Kip1 is regulated,
in part, by phosphorylation by various kinases, including Akt and AMPK. Aging promotes nuclear
localization of p27Kip1 and a predisposition to senescence or apoptosis. Here, we will review the role
of p27Kip1 in healthy and aging cells with a particular emphasis on the interplay between autophagy
and apoptosis.
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1. Introduction

The kinase inhibitory protein p27 (p27Kip1) is widely known for its canonical role
as a cyclin-dependent kinase (CDK) inhibitor. Specifically, p27Kip1 binds to and inhibits
the protein cyclin E/CDK2, resulting in G0/G1 cell cycle arrest, ultimately blocking cell
proliferation and inducing cell quiescence [1–3]. Due to its ability to promote cell cycle
arrest and inhibit proliferation, p27Kip1 has been extensively studied for its role in cancer
as a tumor suppressor; however, several novel functions of p27Kip1 have been recently
discovered that are independent of its role in CDK inhibition and cell cycle control. These
functions include mediating cytoskeletal dynamics, cell migration, and apoptosis and
autophagy [4,5]. Such diverse roles of p27Kip1 are regulated by transcription [6], phos-
phorylation [5,7,8], degradation [7–9], and subcellular location [5,7,8]. As an intrinsically
disordered protein (IDP), various phosphorylations most frequently dictate the specific
function of p27Kip1. Sites of modification include threonine 187 (Thr187), serine 10 (Ser10),
and threonine 198 (Thr198)s. The phosphorylation of Thr187 by CDK2 results in cell
cycle progression through degradation of p27Kip1 inside the nucleus [10,11], while Ser10
phosphorylation by hKIS promotes transport of p27Kip1 out of the nucleus, allowing for
cell cycle progression [12]. Additionally, Ser10 phosphorylation by CDK5 contributes to
actin organization and cortical neuronal migration via cytoplasmic stabilization of p27 [4].
Akt will phosphorylate p27Kip1 at Thr157 to promote cytoplasmic localization, stability,
and cell cycle progression [7,13,14]. Most pertinent to this review is 5′ AMP-activated
protein kinase (AMPK)-dependent phosphorylation of p27Kip1 on Thr198, which promotes
sequestration of p27Kip1 to the cytosol, resulting in a reduction of apoptosis and activation
of autophagy [5]. A summary of upstream p27Kip1 signaling is illustrated in Figure 1.

Cells 2021, 10, 1430. https://doi.org/10.3390/cells10061430 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://doi.org/10.3390/cells10061430
https://doi.org/10.3390/cells10061430
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10061430
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10061430?type=check_update&version=1


Cells 2021, 10, 1430 2 of 13

Based on the aforementioned functions, it is evident that subcellular location of p27Kip1 is
integral to its function. In the context of apoptosis and autophagy, it has been observed that
nuclear p27Kip1 promotes quiescence, apoptosis, and senescence, while cytoplasmic p27Kip1

enhances cell survival and autophagy [15]. Furthermore, there is evidence that aging
affects the dynamic between autophagy and apoptosis, with a reduction in autophagy
and an increase in cell death in older cells as a result of greater expression of nuclear
p27Kip1 [13,15,16]. Here, we will review the diverse functions of p27Kip1 in the context
of autophagy and apoptosis with a focus on age-related changes in p27Kip1 expression,
location, and function.
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Figure 1. Cell cycle regulation of p27Kip1 and related signaling pathways. p27Kip1 can promote cell
cycle arrest or proliferation, depending on the cellular location. Nuclear p27Kip1 will bind cyclin E
and CDK2, inhibiting its kinase activity and leaving the retinoblastoma protein (Rb) protein unphos-
phorylated. In this state, the E2F transcription factor is inhibited from transcribing genes necessary to
enter the cell cycle. With proper stimuli and/or growth factors, p27Kip1 is phosphorylated by CDK2
at Thr187, and is quickly ubiquitinated by SKP for subsequent proteasomal degradation. Without
the inhibitor effects of p27Kip1, the cyclin E/CDK2 complex can phosphorylate, and inactivate Rb,
allowing E2F to transcribe cell cycle genes. p27Kip1 can also be phosphorylated by hKIS at Ser10,
which promotes sequestration to the cytosol. Cytosolic p27Kip1 can promote cell proliferation by
importing cyclin D/CDK4/6 into the nuclei to further target Rb inhibition. Both Akt and AMPK will
phosphorylate p27Kip1 on Thr157 and Thr198, respectively, to stabilize p27Kip1 in the cytosol and
prevent reentry into the nucleus.

2. Apoptosis and Autophagy

Activation of the autophagy pathway was first discovered under nutrient deprivation
to provide substrates for protein synthesis and TCA intermediates during periods of
negative nutritional stress [14]. Such substrates are generated through degradation of
organelles and proteins. Damaged organelles and misfolded proteins are engulfed by
autophagosomes and delivered to lysosomes for degradation. The released products are
then recycled as an alternate energy source and substrates for protein synthesis. While
autophagy is an ongoing cellular process, we now know that it is significantly upregulated
during various cell stresses including exercise, ER stress, infection, hypoxia, and oxidative
damage [17,18].
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If cells are unable to recover from the respective stress, apoptosis, or programmed
cell death is a common fate. Multicellular organisms undergo the physiological process of
apoptosis as a way to eliminate damaged cells and maintain tissue integrity. Apoptosis
can result from cell cycle arrest in the late G1 or S phase [19–21]. p27Kip1 is known to
function by blocking the transition from G1 to S phase and therefore plays an important
role in apoptosis. When p27Kip1 was overexpressed in lung cancer cell lines, apoptosis
was induced through downregulation of pRb expression [22]. Additionally, spontaneous
apoptosis was significantly higher in p27-positive tumors from individuals with oral and
oropharyngeal squamous cell carcinoma compared to p27-negative tumors. p27-positive
tumors were also associated with higher levels of Bax expression, an apoptosis-related
protein [23].

While p27Kip1 is considered to be pro-apoptotic in carcinogenesis [24], there is evidence
that p27Kip1 protects cells from apoptosis during conditions of cellular stress. Apoptosis
can be induced via the activation of CDKs [20,25–29]. As a Cdk inhibitor, p27Kip1 has
the ability to prevent apoptosis by directly regulating CDK-2 activation [30,31]. Using
p27Kip1-deficient cells, Hiromura et al. demonstrated that both CDK-2 activity and rates
of apoptosis were elevated during serum deprivation-induced cell stress. Apoptosis was
prevented by either restoring p27Kip1 expression or decreasing the activity of CDK-2 [31].
In connection with protecting cells from apoptosis, p27Kip1 has also been shown to promote
autophagy during periods of metabolic stress.

The interplay between apoptosis and autophagy can be seen across many cell types [32].
The relationship between cell death and survival is vital to maintaining cellular homeosta-
sis. Disruption of this balance results in pathophysiological consequences including cancer
and autoimmune disease. Furthermore, it has been found that there are age-associated al-
terations affecting the interchange between these two pathways, which will be discussed in
detail later in the review. In response to stress, a cell will adapt to the stress (autophagy) or
undergo programmed cell death (apoptosis). Generally, autophagy precedes apoptosis [33].
A cell will initially activate autophagy in an attempt to survive stress, but will undergo
apoptosis if this mechanism fails. These two processes cross-regulate each other, in that
the activation of autophagy blocks the apoptotic program, while apoptosis suppresses
the induction of autophagy [34]. The interplay between these two mechanisms primarily
occurs through Bcl-2, an inhibitor of cell death. Cell survival is promoted when Bcl-2
interacts with the PI3K complex of the autophagy pathway. Additionally, Bcl-2 prevents
apoptosis by inhibiting the pro-apoptotic member Bax; however, when the JNK pathway is
activated, Bcl-2 will become phosphorylated and lose its ability to bind Bax, resulting in
apoptosis [32].

During times of prolonged nutrient deprivation, cell fate is determined by the interplay
between apoptosis and autophagy. Despite being characterized as a cyclin inhibitor, p27Kip1

is now known to play a critical role in the mediation of cell fate during metabolic stress
conditions [5]. The induction of autophagy or apoptosis programs are two common
responses to cellular stress. As p27Kip1 can be involved in both processes, this review will
dissect mechanism pertaining to each process.

3. AMPK and Cellular Energy Homeostasis

AMPK is a serine/threonine kinase existing as a heterotrimer. It is composed of a
63 kDa catalytic (α) subunit, and two non-catalytic regulatory subunits, β (30 kDa) and γ

(38–63 kDa), in a ratio of 1α:1β:1γ [35,36]. The stability and function of the AMPK complex
requires all three subunits [37,38]. Each subunit has slight alterations in structure to allow
for different functions to regulate AMPK activity. The α subunit is composed of a highly
conserved N-terminal catalytic domain containing the phosphorylation site at Thr172, an
auto inhibitory domain [39,40] and a C-terminus containing binding sites for the β and
γ subunits [39,41]. AMPKα1 is ubiquitously expressed through tissues while AMPKα2
is dominant in skeletal muscle, heart, and liver [42,43]. Although still indecisive, the α1
and α2 subunits appear to have different functions and localization. AMPKα1 is primarily
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localized in the cytoplasm, while AMPKα2 is localized in the cytoplasm and nucleus [44].
Furthermore, it has been theorized that the AMPKα2 subunit may be involved in regulating
gene expression. In human skeletal muscle, 60 min of exercise resulted in an increase in
nuclear translocation of AMPKα2 [45]. These results support the notion of AMPK α

subunits regulating cell signaling along with gene expression. The β subunit serves as
scaffolding for the AMPK complex containing an N-terminal myristoylation site that can
target AMPK to transmembranes [46,47], a glycogen binding domain [48], and a C-terminal
binding domain for α and γ subunits. The α and γ bind domains appear to be sufficient
to stabilize the AMPK heterotrimers [37]. The β subunit also contains phosphorylation
sites for the regulation of catalytic activity (Ser182) and nuclear localization (Ser24 and
Ser25) [46]. The intracellular localization of the different AMPK subunits has suggested
that AMPK can regulate gene expression and/or cytosolic signaling.

AMPK activation is regulated by several mediators. AMP can allosterically activate
AMPK or by phosphorylation by one or more upstream kinases at a threonine residue
within the activation loop of the α subunit [49,50]. The phosphorylation state of AMPK is
increased by a combination of AMP-induced increases in upstream kinases and a reduction
of phosphatases [51,52]. The multiple targets that AMP can activate will induce a large
activation in the activity of AMPK with relatively small changes in AMP. The energy state
of the cell is not solely monitored by AMP concentrations. High ATP concentrations will
serve as an antagonist of processes activated by high AMP levels. Thus, the AMP:ATP ratio
appears to the critical regulator of AMPK activity.

AMPK plays a key role in cellular energy homeostasis. AMPK is important to promote
energy availability while ensuring cell survival [53]. AMPK has numerous downstream
targets [54], several of which regulate autophagy and apoptosis. In the setting of energy
deficiency, AMPK can promote autophagy directly through phosphorylation of ULK1
to initiate the formation of autophagosomes [55]. AMPK also has the ability to regulate
autophagy indirectly by inhibition of mTORC1 through phosphorylation of the tuberous
sclerosis complex 2 (Tsc2) [56–60] and/or through phosphorylation of raptor [61].

4. AMPK/p27Kip1 Signaling Promotes Cell Survival and Autophagy

Mediation of cell fate during states of metabolic stress is an established function of
p27Kip1. Of particular interest is that the subcellular location of p27Kip1 largely dictates its
function in the apoptosis and autophagy pathways [5,15,62–64]. The cellular location of
p27Kip1 has been described as dynamic, localizing between the nucleus and the cytoplasm.
When p27Kip1 is sequestered to the cytosol, its nuclear activities are limited, with the
opposite being true when localized to the nucleus. This shift in cellular location is primarily
regulated by phosphorylation [65–70] by various kinases, which are discussed throughout
the review.

AMPK-mediated phosphorylation of p27Kip1 on Thr170, Ser83 and Thr198 plays a
role in cytoplasmic localization of p27Kip1 and promotion of cell survival [63]. Liang et al.
reports AMPK-dependent p27Kip1 Thr198 phosphorylation promotes its sequestration to
the cytosol, resulting in an increase in autophagy [5]. Under serum deprivation, it was
found that both phosphorylation of p27Kip1 on Thr198 and p27Kip1 stability increased along
with a concomitant induction of autophagy. It was determined that Thr198 phosphorylation
and subsequent p27Kip1 stabilization is regulated by the AMPK pathway. In immortalized
mouse embryo fibroblasts (MEFs), AMPK activation using AICAR resulted in a dose-
dependent increase in p27Kip1 Thr198 phosphorylation. Additionally, an acute increase
in p-Thr198 p27Kip1 was also seen in glucose-deprived 3T3L1 preadipocytes. Under both
conditions, there was an increase in pAMPK, indicating that AMPK activation mediates
p27Kip1 Thr198 phosphorylation and induction of autophagy [5].

The importance of AMPK-dependent p27Kip1 Thr198 phosphorylation on autophagy
was further investigated using lentiviral mutants of p27Kip1 in muscle stem cells (MuSCs) [15].
Overexpression of the p27Kip1(198A) mutant, which cannot be phosphorylated at the AMPK-
specific Thr 198, resulted in increased cell death, even when treated with AICAR. Addition-
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ally, treating MuSCs with an AMPK inhibitor increased cell death; however, overexpression
of p27Kip1(198D), a Thr 198 phosphomimetic, rescued p27Kip1 and increased cell survival,
further demonstrating the importance of AMPK-mediated p27Kip1 phosphorylation on
autophagy [15].

As discussed previously, AMPK-mediated phosphorylation of p27Kip1 on Thr198
mediates its localization to the cytoplasm [5]. During times of metabolic stress, cytoplasmic
p27Kip1 has been found to be pro-autophagic, enhancing cell survival, as well as anti-
apoptotic, providing protection from cell death. Nuclear p27Kip1, however, inhibits cell
cycle progression and makes the cell susceptible to quiescence, apoptosis, and senescence.
Both Hiromura et al. and Liang et al. found that depletion of p27Kip1 in serum-deprived
cells promotes apoptosis as indicated by rapid cell shrinkage, membrane dysfunction, and
loss of cellular integrity [5,31]. To further demonstrate the relationship of p27Kip1 in apop-
tosis and autophagy, activation of the AMPK pathway led to the formation of autophagic
vacuoles in p27Kip1+/+ MEFs, whereas it induced apoptosis in p27−/− cells. The findings
were similar in glucose-starved cells, in which autophagy occurred in p27+/+ MEFs, but
failed to be induced in p27−/− cells as indicated by lack of autophagic vacuoles [5]. These
data indicate that AMPK-dependent phosphorylation of p27Kip1 mediates the interplay
between apoptosis and autophagy based on subcellular location.

AMPK activity has been found to be hyperactivated in Tsc2-null tumors and cells [71],
implicating them in the investigation of AMPK-mediated phosphorylation of p27Kip1

and cellular location. A study by Short et al. used a rat model for Tsc2 deficiency and
Tsc2−/− cells to demonstrate AMPK-dependent localization of p27Kip1 to the cytoplasm
provides resistance to apoptosis [63]. Tsc2+/+ MEFs were found to have low levels of
activated AMPK and nuclear localization of p27Kip1, whereas Tsc2−/− MEFS had high
levels of p-AMPK and sequestration of p27Kip1 to the cytoplasm. Under serum deprivation,
Tsc2+/+ MEFS demonstrated an increase in apoptosis, while the percentage of nuclei with
apoptotic features decreased in Tsc2−/− MEFs [63]. While these findings linked cytoplasmic
localization of p27Kip1 with resistance to apoptosis, Campos et al. utilized p27Kip1 mutants
and Tsc2-null cells to provide evidence that cytosolic p27Kip1 promotes rapamycin-induced
autophagy and cell survival through AMPK signaling [62]. Together, these data further
support the idea of AMPK-dependent sequestration of p27Kip1 to the cytoplasm provides
resistance to apoptosis as well as enhances the autophagic process during periods of
metabolic stress.

Interestingly, p27Kip1 has a role in cytoskeletal remodeling, including actin polymer-
ization and microtubule assembly [4,72]. The majority of this research is from neurons and
neuronal outgrowth [4]. However, the association between cytoskeletal remodeling and
cellular autophagy could be related. Autophagy is often induced from a stress response
resulting in cellular remodeling in an energetic and anatomical, i.e., cytoarchitectural sense.
Although this is speculative, it would be conceivable that these two processes linked
together to facilitate p27Kip1 to promote autophagy through downstream signaling and
cellular remodeling through cytoskeletal reorganization.

5. p27Kip1 Function in Muscle Tissue

The cellular localization pattern of p27Kip1 has also proven to be important in regu-
lating apoptosis and autophagy in stem cells. Stem cells use autophagy to renew cellular
components to maintain normal cellular function [73]. Our group identified that transloca-
tion of p27Kip1 from the nucleus to the cytoplasm occurs in young activating muscle stem
cells (MuSCs) [15]. Directly after isolation from the sedentary/unchallenged muscle, it was
determined that p27Kip1 was localized to the nucleus; however, after 48 h of activation in
culture, cytoplasmic p27Kip1 was dominant in young MuSCs. p27Kip1 mutants were used
to demonstrate the importance of AMPK signaling and p27Kip1 localization. Overexpres-
sion of the p27Kip1(198A) mutant, which cannot be phosphorylated at the AMPK-specific
Thr198, was localized mainly to the nuclei, whereas the p27Kip1(198D) mutant, a Thr198
phosphomimetic, was sequestered to the cytoplasm. Additionally, overexpression of the



Cells 2021, 10, 1430 6 of 13

p27Kip1(198D) mutant in young MuSCs increased autophagy, represented by double the
number of LC3B puncta and a 2-fold increase in the ratio of LC3BII:I. There was no effect
on MuSC autophagy from overexpression of the p27Kip1(198A) mutant [15].

In cardiac tissue, p27Kip1 was found to protect metabolically stressed cardiomyocytes
from apoptosis by promoting autophagy [74]. In addition, p27Kip1 gain-of-function studies
showed increased cardiomyocyte autophagy, inhibition of apoptosis, improved cardiac
function, and reduced infarct size following myocardial infarction [74]. To confirm au-
tophagy as the mechanism of action, treatment with chloroquine, a small molecule inhibitor
of autophagy, was able to negate these effects [74]. In cardiomyocytes, p27Kip1 is a direct
target of miR-221, a microRNA that impairs autophagy and cardiac remodeling through
suppression of p27Kip1 and activation of mTOR [75,76]. Overexpression of p27Kip1 was
able to rescue autophagy in hearts from mice with cardiac-specific overexpression of miR-
221 [75]. Similar findings were observed for miR-222 which also inhibits p27Kip1-induced
autophagy in heart tissue and leads to cardiomyocyte inflammation and apoptosis [77].
Other investigations have determined that the location of p27Kip1 within cardiac tissue
plays an important role in its function. Interestingly, cytosolic p27Kip1 located in mito-
chondria regulated beneficial effects on cell survival and apoptosis [78]. Moreover, mito-
chondrial p27Kip1 was shown to be both necessary and sufficient for cardiac myofibroblast
differentiation [78]. Together, these findings demonstrate the importance of cytoplasmic
p27Kip1 for cell survival and autophagy across various cell types, including those within
muscle tissue.

6. Cytoplasmic p27Kip1 Regulates Autophagy and Cell Survival through mTORC1

Although the mechanism(s) by which p27Kip1 induces autophagy and cell survival are
still not understood, evidence points to mTORC1 as a possible focal point. The mechanistic
target of rapamycin (mTORC1) is the central mediator of basic cellular processes including
cell metabolism, growth, proliferation, and survival in response to such factors as nutrients,
growth factors, cellular energy, and stress. mTORC1 consists of raptor (regulated associated
protein of mTOR), mLST8, DEPTOR, PRAS40 and mTOR [79]. As a key regulator of cell
metabolism, mTORC1 controls the process of autophagy by regulating autophagosome
formation. During times of nutrient availability, mTORC1 inactivates ULK1 and other pro-
teins involved in autophagosome formation, which in turns prevents autophagy [80–82].
However, when cells undergo nutrient deprivation, mTORC1 is inactivated and autophagy
can occur. The mechanism for p27Kip1 regulation of autophagy has been recently suggested
to work through mTORC1 inhibition via interaction with LAMTOR1 [83,84], a protein
in the Ragulator complex (Figure 2). p18/LAMTOR1 regulates the mTOR pathway in
lysosomes as it is required for mTORC1 activation. Zada et al. demonstrated a connection
between p18/LAMTOR1 and p27Kip1 during periods of nutrient shortage. MEFs in which
p18/LAMTOR1 was ablated (p18−/−) were less susceptible to cell death and showed
increased phosphorylation of p27Kip1 compared to p18+/+ cells under starvation condi-
tions [83]. These data suggest that when LAMTOR1 is ablated, an increase in p27Kip1 is
able to promote autophagy and cell survival in nutrient-deprived cells.

Nowosad et al. further defined the role of p27Kip1 in modulating autophagy via the
mTORC1 signaling pathway during periods of metabolic stress [84]. The study utilized
amino acid-starved p27−/− MEFs to investigate the effect of p27Kip1 on autophagy under
starvation conditions. It was found that mTORC1 signaling was higher in p27 −/− cells
with a concomitant decrease in lysosomal activity and autophagy as a result of cytoplasmic
sequestration of TFEB, a transcription factor that controls expression of lysosome-related
genes. Following prolonged amino acid deprivation, it was discovered that a fraction
of p27Kip1 localizes to lysosomes. Here, it binds to LAMTOR1 and prevents Ragulator
assembly which is necessary for mTORC1 activation. Inactivation of mTORC1 in turn pro-
motes autophagy via nuclear translocation of TFEB and subsequent induction of lysosome
function [84]. Although cytoplasmic p27Kip1 inhibits mTORC1 activity, mTORC1 can indi-
rectly phosphorylate p27Kip1 on Thr157 through the serum and glucocorticoid-inducible
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kinase (SGK1), resulting in cytosolic localization of p27Kip1 and promotion of cell cycle
progression [70]. This supports the idea that multiple kinases target p27Kip1 for nuclear
export for various functions including cell survival, autophagy and proliferation.
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Figure 2. Age-related changes in p27Kip1 regulation and cellular function. In young cells, pro-survival and autophagy
mechanisms are able to activate during cell stress and promote survival and proliferation. The balance between cell
anabolism and catabolism is regulated, in part, by the AMPK/mTORC1 pathway. Under nutrient/energy stress, AMPK
is phosphorylated, and activated from upstream signaling. This initiates a series of downstream signaling to ULK1 and
p27Kip1 to promote autophagy and prevent apoptosis. AMPK-mediated phosphorylation of ULK1 with start the first step of
the autophagy pathway, which is phagosome formation. Phosphorylated p27Kip1 will inhibit the pro apoptotic protein, Bax
while inducing autophagy through inhibition of mTORC1. This is achieved by inhibition of ragulator, a key protein involved
in docking mTORC1 regulatory proteins to the lysosome. In addition to the downstream effects, AMPK can directly inhibit
mTORC1 by inhibition of mTOR kinase activity and through phosphorylation and inhibition of raptor protein. With proper
AMPK activity, p27Kip1 will accumulate in the cytosol, stimulate autophagy and inhibit apoptosis. In addition, cytoplasmic
p27Kip1 will recruit and import cyclin D/CDK4/6 into the nuclei so it can inhibit Rb and promote entry into the cell cycle.
In aged cells, AMPK activation is suppressed during cellular stress. This results in hypophosphorylation of AMPK and loss
of kinase activity. The inability to phosphorylate and stabilize cytosolic p27Kip1 will promote its sequestering in the nuclei
and/or degradation of cytoplasmic p27Kip1. In the nuclei, p27Kip1 will inhibit cyclin E/CDK2 and suppress gene expression
of cell cycle proteins. Furthermore, the lack of phosphorylated ULK1 and p27Kip1 leads to a reduction in autophagy and
susceptibility to apoptosis. The lack of mTORC1 inhibition will further inhibit ULK1 and autophagy.

7. p27Kip1 and Aging

Delineating the effects of age on cell cycle inhibitors such as p27Kip1 is difficult due
to their respective role in cell cycle control. This is evident in the p27Kip1 KO mice, as
they show increased body size, multiple organ hyperplasia, and tumorigenesis [85,86]. In
contrast, transgenic mice overexpressing p27Kip1 have decreased cell proliferation across
many tissues and an associated progeroid phenotype, including loss of muscle mass.
Interestingly, this phenotype was observed independent of increased markers of DNA
damage response or cellular senescence [87]. Gene expression across tissues does not seem
to increase with age in the mouse [87]. However, this particular study did not investigate
cellular location of p27Kip1. It would be interesting if the “default” location of excess
p27Kip1 is nuclear, as opposed to cytoplasmic.

Currently, the best-known regulator of p27Kip1 localization is AMPK, which phospho-
rylates and sequesters p27Kip1 to the cytoplasm. Aging reduces AMPK sensitivity with
a subsequent impairment of downstream targets that regulate cellular energy homeosta-
sis [88]. In particular, studies demonstrate that the ability to undergo autophagy declines
with aging [89,90], resulting in an increase in cellular senescence. This phenomenon has
been observed in various cell types including fibroblasts [91] and MuSCs, also known as
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muscle satellite cells [17,92,93]. We have summarized the impact of AMPK dysfunction
on p27Kip1 signaling and autophagy in Figure 2. Satellite cell loss and/or dysfunction is
correlated with impaired muscle regeneration during aging [92,94–96]. Moreover, aged
MuSCs become susceptible to apoptosis, which could contribute to the reduction in satel-
lite cell number with age [93]. In addition to the decrease in the number of satellite cells
with aging, the diminished capacity to activate satellite cells appears to play a key role in
development of age-related muscle loss, also known as sarcopenia [97]. It has been demon-
strated that autophagy is required to provide energy to satellite cells for activation [98].
Garcia-Prat et al. observed that autophagic flux is decreased in quiescent satellite cells from
aged mice, resulting in entry into senescence and decreased cell function [99]. It was shown
that satellite cells from young mice contained an abundance of mature autophagosomes,
whereas there was a complete absence of autolysosomes in old cells. When satellite cells
were treated with bafilomycin, an autophagy inhibitor, blockage of autophagic flux was
higher for old satellite cells compared to young. It was discovered that rescuing autophagy
could reverse stem cell senescence and restore myogenic capacity in aged satellite cells as
indicated by treatment with rapamycin, a potent inducer of autophagy [99].

As discussed previously, the protein Bcl-2 plays a significant role in the regulation of
apoptosis and autophagy. Apoptosis involves the activation of intracellular proteolytic cas-
pases with subsequent DNA fragmentation and breakdown of the cell, eventually leading
to cell death. Bcl-2 is considered anti-apoptotic as it inhibits caspase activation, allowing
for cell survival under prolonged periods of cellular stress. Jejurikar et al. observed that
aged satellite cells express 40% less Bcl-2 than young and adult cells [100]. This finding
was consistent with increased levels of programmed cell death in aged muscle stem cells.
Satellite cells from the old group had a significantly higher quantity of activated caspases
and fragmented DNA compared to young muscle stem cells. When treated with the pro-
apoptotic factors TNF-α and Actinomycin D, a greater percentage of aged satellite cells
underwent apoptosis compared to those from young muscle as indicated by increased pres-
ence of small, condensed nuclei and cellular membrane blebbing. Together, these findings
demonstrate that satellite cells from aged muscle are more susceptible to apoptosis than
young cells, which may contribute to impaired muscle regeneration during aging [100].

Studies investigating the effects of aging on the dynamics between autophagy and
apoptosis have revealed that p27Kip1 plays a significant role in this interchange. In particu-
lar, subcellular location comes into play as a major regulator of p27Kip1′s function in the
context of aging. It has been demonstrated that ectopic expression of p27Kip1 in satellite
cells reduces proliferative capacity [101] and that satellite cells isolated from old muscle
proliferate significantly less than cells from young growing muscles [16]. Although mRNA
expression of p27Kip1 is lower in aged satellite cells [95], there is higher accumulation
of p27Kip1 protein in the nucleus [16], where its ability to promote cell survival is lim-
ited indicating that nuclear p27Kip1 may play a role in decreased satellite cell function in
old muscles.

Our group recently provided evidence linking age-related dysfunctional AMPK/p27Kip1

signaling with the propensity to undergo apoptosis over autophagy [15]. An inverse re-
lationship between autophagy and apoptosis was observed in aged MuSCs. As seen
previously, there was a decrease in proliferative ability as well as autophagy in aged
MuSCs as represented by less LC3B puncta formation compared to young cells after a time
course of physiological aging in culture. Apoptotic markers, including cleaved poly(ADP-
ribose) polymerase (PARP), were significantly upregulated in aged cells. Furthermore,
when autophagy was inhibited using lentivirus, apoptosis in old MuSCs increased 2-fold.
This apoptosis-induction effect was not observed in young MuSCs following inhibition of
autophagy. Across age groups, AMPK/p27Kip1 phosphorylation was reduced in old and
geriatric MuSCs. When AMPK activation was rescued with AICAR, apoptosis could be
prevented in aged cells. After determining the significance of AMPK signaling in the aged
MuSC, downstream regulation of p27Kip1 was studied using p27Kip1 mutants. Overexpres-
sion of p27Kip1(198D), a Thr198 phosphomimetic, was able to rescue the induction of cell
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death upon inhibition of autophagy, whereas overexpression of the p27Kip1(198A) mutant,
which cannot be phosphorylated at the AMPK-specific Thr198, could not produce the same
effect. Interestingly, after 48 h in culture, p27Kip1 was located primarily in the nuclei in
geriatric MuSCs compared to young MuSCs, in which the protein had translocated purely
to the cytoplasm. Activation of AMPK signaling with AICAR allowed for translocation of
p27Kip1 to the cytosol in geriatric MuSCs. These data indicate that aging may be respon-
sible for attenuated AMPK signaling through preferential nuclear localization of p27Kip1

and promotion of apoptosis and senescence over autophagy and cell survival, which is
promoted through cytosolic translocation of p27Kip1.

8. Conclusions

Once thought to only function as a cyclin-dependent kinase inhibitor, p27Kip1 is now
regarded as a multifaceted protein, with roles in cytoskeleton rearrangement and dynamics,
cell migration and motility, and apoptosis and autophagy. Evidence has shown that the
aforementioned functions are highly dependent on the subcellular location of p27Kip1,
whether it is nuclear or cytoplasmic. In cancer biology, for instance, p27Kip1 is considered a
tumor suppressor in the nucleus, where it acts as a CDK inhibitor and has the ability to
induce cell cycle arrest and inhibit cell proliferation. When sequestered to the cytoplasm,
however, p27Kip1 is thought of as pro-oncogenic and promotes tumorigenesis [102,103].
Thus, inhibiting p27Kip1 localization to the cytoplasm may serve as a popular pharmaco-
logical target to prevent tumor progression [64]. Conversely, in the context of metabolic
stress, cytoplasmic p27Kip1 is favored over nuclear p27Kip1 due to its capacity to promote
autophagy and cell survival while in the cytoplasm. It is known that the cellular location of
p27Kip1 is not static; it has the capacity to shift from the nucleus to the cytoplasm. When this
ability to translocate to becomes diminished, such as during aging, cells become susceptible
to apoptosis or senescence during conditions of stress (metabolic or other) due to nuclear
sequestration. While strong evidence suggests that this process is regulated by the AMPK
pathway, the mechanism(s) is not fully understood. Additional studies are needed to
fully understand how aging affects the AMPK/p27Kip1 pathway and to identify potential
therapeutic targets to promote autophagy and cell survival during the aging process.
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