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Abstract: The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of
the innate immune system shed new insights into the pathologies of various diseases. The initial
idea that NETs are a pivotal defense structure was gradually amended due to several deleterious
effects in consecutive investigations. NETs formation is now considered a double-edged sword.
The harmful effects are not limited to the induction of inflammation by NETs remnants but also
include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding
tubular structures like vessels or ducts and appear to be associated with the pathologies of various
diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone
formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone
to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others.
Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this
regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the
development of new therapeutic approaches. Therefore, the purpose of this review is to address
the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as
prospective treatment modalities.

Keywords: neutrophil extracellular traps; aggregation; occlusions; vessels; ducts

1. Introduction

Neutrophils are the most abundant white blood cell type, and their function in the
innate immune defense system is relatively well-defined. The formation and function of
neutrophil extracellular traps (NETs) have not been elucidated in detail, although several
studies related to NETs release have been conducted since the first report in 2004 [1].
NETs are web-like structures that consist of decondensed nuclear chromatin and granular
proteins like neutrophil elastase (NE), cathepsin G, myeloperoxidase (MPO), and others.
They are formed as the first defender of the immune system in a variety of pathological
conditions. NETs offer a physical and chemical barrier against pathogens. They adhere to
and clear the pathogens in the bloodstream and various ducts of the body [2]. Although
NETs formation was initially thought to be a beneficial defense weapon of the host, some
studies revealed deleterious effects of exaggerated NETs formation under certain conditions.
The balance between the production and degradation of NETs must, therefore, be strictly
regulated [3]. If the balance changes in favor of the persistence of NETs and cytotoxic
proteins are not eliminated, NETs can cause tissue damage and even be involved in the
development of various autoimmune diseases [4,5]. In addition, the excessive NETs
formation leads to aggregated NETs (aggNETs). Despite the major advantage of aggNETs
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degrading inflammatory mediators, thereby fostering the resolution of inflammation,
excessive NETs development carries the risk of occluding various tubular structures. It
has been reported that aggNETs-driven occlusions play a role in the pathogenesis of
many diseases not only in vessels but also in ducts [6,7]. Vascular occlusions containing
aggNETs are found in alveolar capillaries of patients with COVID-19. The aggNETs-
associated vascular occlusions induce canonical, as well as noncanonical thrombogenesis
(Figure 1a) [8]. The occlusions of ducts cause pent-up secreted material, as in the case of
Meibomian glands of a patient with acute blepharitis (Figure 1b) [9].

The purpose of this review is to address the factors leading to NETs formation and
the potentially deleterious effects of NETs-associated occlusions in the body. Furthermore,
potential prospective treatment methods will also be discussed.

Figure 1. Immunofluorescence staining of AggNETs in the intravascular space and epithelial surfaces. (a) Neutrophil
elastase (NE, green)-rich microvascular occlusions are observed in the alveolar area of a patient with deceased COVID-19.
The occlusions are indicated with arrows in the merged image. Scale bar 50 µm. (b) Aggregated NETs (NE and citrullinated
histone 3, green) fill the epithelial surfaces of stagnated acini of Meibomian glands of a patient with acute blepharitis. Scale
bar 100 µm.

2. Vascular Occlusions

Canonical thrombi formed after activation of the cascade of coagulation are the lead-
ing cause of vascular occlusions, including arteries, veins, and capillaries. Occluding
thrombi hinder the blood flow, as they can occupy the entire lumen of the vessels. Throm-
boembolism occurs if a partial thrombus detaches from the vessel walls, floats in the
circulation, and finally, fully occludes a distal part of the vessel. Due to its narrow rela-
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tionship with inflammation, thrombosis plays a critical role in the pathophysiology of
various diseases [10,11]. A number of factors can initiate thrombosis, but the role of NETs
in thrombogenesis was reportedly unique [12]. Especially the elucidation of novel roles of
extracellular DNA and histones in the bloodstream contributed to the reinterpretation of
thrombogenesis. In 2013, the term “immunothrombosis” was coined to describe thrombi
initiated by the innate immune response [13,14].

Fuchs et al. first reported the prothrombotic effect of NETs in 2010 [15]. NETs have
been shown to increase thrombosis both directly and indirectly. It is still debatable whether
full-size NETs, aggNETs, or the remnants of NETs are the main inducing agent. While
intact aggNETs are thought to act as a scaffold for vascular occlusion, the promotion of
coagulation by NETs components, including extracellular DNA via both the intrinsic and
extrinsic pathways, has also been reported [16,17]. The mechanisms of NETs-induced
thrombogenesis have attracted much attention and have been the subject of many investi-
gations, as it is associated with many diseases (Figure 2). Several biomarkers, including
miR-146a [18], fibrin [19], plasmin [20], Sirtuin 3 (Sirt3) [21], peptidylarginine deiminase
type IV (PAD4) [22], high-mobility group box 1 protein (HMGB1) [23], and cholesterol crys-
tal (CC) [24], have been proposed to be involved in the NETs-related noncanonical vascular
occlusions that may, in addition, promote canonical thrombogenesis. Jimenez-Alcazar
et al. identified a noncanonical mechanism for vascular occlusion based on employing
targeted mutations of deoxyribonuclease 1 (DNase1) and DNase1l3 [25]. When the dual
host protector function of these DNases against the detrimental effects of intravascular
NETs is lost, NETs cannot be removed efficiently, and aggregated NETs can occlude vessels.

Figure 2. Schematic representation of aggNETs-driven pathologies. The neutrophils, as a first line of defense, eject NETs
when they encounter foreign agents. Single or aggregated NETs might cause, under certain conditions, the obstruction
of the flow of body fluids and, consequently, disease. The pathology depends on the site of occlusion; vascular NETs
formation is associated with both canonical and noncanonical thrombogenesis in various diseases. The accumulation of
AggNETs in the lower respiratory tract has been detected in cystic fibrosis patients. Exocrine gland obstruction has been
observed in the pancreas and Meibomian and salivary glands. Large organs like the liver and kidneys can also be affected
by the accumulation of NETs. The cartoons were modified from https://smart.servier.com accessed on 20 August 2021 in
compliance with the terms of the Creative Commons Attribution 3.0 Unported License (CC BY 3.0).

2.1. Vascular Occlusions in COVID-19

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) continues to cause
public health issues worldwide. NETs reportedly contribute to acute respiratory distress
syndrome (ARDS), and fibrin-based occlusions were observed in the vasculature of patients

https://smart.servier.com
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with coronavirus disease 19 (COVID-19) [26,27]. The experimental data demonstrated
a positive correlation between the quantity of NETs markers in plasma or serum from
patients with COVID-19 and the severity of COVID-19. The elevated level of circulating
NETs has the potential to cause and exacerbate thrombotic events. In severe COVID-19,
the intravascular aggregation of NETs causes vasculopathy and can occlude the microvas-
culature of virtually all organs, thus precipitating organ failure and causing substantial
mortality [27,28].

Indeed, severe COVID-19 is often characterized as vessel occlusions caused by in-
travascular NETs [8,29,30]. The lung is the first tissue affected in patients with COVID-19.
The patients have been found to have higher levels of aggNETs in their lungs, blood,
and tracheal aspirate fluid [31,32]. NETs are able to directly activate endothelial cells,
inducing major changes that include cell death. This promotes endothelial dysfunction,
fosters lung edema, and compromises the barrier function at the air/blood interphase [33].
Furthermore, the activation of the endothelium facilitates thrombosis triggered by the
accumulation of NETs in the microvasculature [34]. The fact that classical antithrombotic
treatments are hampered in immunothrobosis suggests that NETs are central components
of vascular occlusion [25].

2.2. Coronary Occlusions

Cardiovascular diseases are the most common diseases with the highest death rates
worldwide [11]. In myocardial infarction, atherosclerotic plaque rupture with subsequent
thrombogenesis is considered the essential event in arterial occlusions, because it jeop-
ardizes the epicardial flow. However, the fundamental mechanisms that cause coronary
occlusions are still partially elusive [11,16]. Neutrophils have been shown to exacerbate
vascular occlusion, and their blood concentration is considered one of the most reliable in-
dicators for acute coronary events. However, their role in coronary thrombosis is relatively
less explored compared to monocytes [35].

The discovery of NETs components in excess amounts not only in plasma and plaques
from atherosclerosis patients [36] but, also, in atherosclerotic lesions in mice [37] suggests a
pivotal role of NETs in atherosclerosis. This is further supported by the fact that inhibition
of the DNA decondensation during NETs formation, e.g., by inhibitors of PAD4, ameliorates
atherosclerosis [37]. Analyzing the compositions of thrombi is required to understand the
underlying mechanisms of thrombogenesis. A substantial burden of NETs and their critical
constituents were detected displaying a heterogeneous morphology in thrombectomy
specimens from patients with stent thrombosis [38] and acute myocardial infarction [39].
Coronary thrombi and blood from the surrounding sites and healthy vessels were analyzed.
In addition to the high amount of NETs in the thrombi, NETs components such as double-
stranded DNA, NE, and MPO were detected in the vicinity of coronary thrombi but not
in healthy vessels [40,41]. The associated viral infections, including COVID-19, have
also been established during the pathogenesis of myocardial infarction. NETs in coronary
thrombosis have shown a critical relationship to the pathogenesis of ST-elevated myocardial
infarction (STEMI) [42]. Thrombin-activated platelets interact with PMNs at the site of
plaque ruptures during acute STEMI, resulting in local NET formation and the delivery
of active tissue factor (TF) [41]. NETs-associated TF was found significantly elevated in
the coronary plasma samples obtained from patients with STEMI [43]. These findings
support the hypothesis that NETs can be targeted to develop new drugs to prevent cardiac
thrombosis accompanied by inflammatory conditions like viral infections.

2.3. Cerebral Occlusions

Thromboembolic occlusions in the large cerebral arteries such as the internal carotid
(ICA) and/or the middle cerebral artery (MCA) cause ischemic stroke, the second-leading
cause of morbidity and mortality worldwide. The treatment is carried out with two
strategies: (I) mechanical thrombectomy and (II) the intravenous injection of recombinant
tissue plasminogen activator (tPA) [44,45]. Analyses of clots in more detail that cause
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ischemic stroke showed that neutrophils and NETs play pivotal roles in the pathogenesis of
cerebral occlusions [44,45]. Indeed, NETs were discovered in high concentrations not only in
plasma [46] but, also, in cerebral thrombi [47] taken from patients with stroke. In addition,
the distribution of NETs in the thrombi from acute ischemic stroke patients has been
investigated. NETs were detected in 35 out of 37 thrombi, especially in fibrin-rich areas [48].
Thus, new anti-NETs approaches aiming to develop therapies have gained momentum.
In this context, treatment with DNase1 and the inhibition of PAD4 are considered good
candidates [49].

2.4. Sickle Cell Disease

Sickle cell disease (SCD) is defined as the aberrant production of hemoglobin S (HbS)
caused by mutations in the hemoglobin beta chain. The inability to carry adequate amounts
of oxygen results from a single amino acid substitution in the gene encoding the β-globin
subunit. The mutations are the hallmark of SCD [50]. Inflammation and recurrent painful
vaso-occlusive crisis (VOC) are commonly seen in the course of SCD. It was previously re-
ported that rigid red bloodcells (RBCs) obstruct the microcirculation and, thus, cause VOC.
The underlying mechanisms of vaso-occlusion were understood to be more intricate, and
more research is needed for clarification [50,51]. Erythrocytes are increasingly understood
to be the key factor in prolonging the chemokine half-life in the circulation. They serve as
dynamic cytokine reservoirs even under healthy conditions [52]. The intravascular hemol-
ysis of abnormal hemoglobin was discovered to initiate vascular inflammation due to the
release of cytokines and, further, inflammatory mediators, thus inducing excessive NETs
formation during the VOC of SCD [53,54]. A recent study confirmed the parallel induction
of both NETs and inflammatory agents in plasma collected during VOC compared to the
steady-state conditions [55]. In order to open up new therapy options, the regulation of
NETs during VOC is currently under investigation [56].

2.5. Effects of Nondegradable Nano- or Microparticles

Investigations of the response of neutrophils towards inorganic particles are relatively
new due to the recent advances in nanotechnology. New nanotechnology-based applica-
tions have potentially negative impacts on human health caused by increased exposure
to particulate matter. Consequently, developing new forms of nanoparticles is essential
to reduce the potential adverse effects [57]. We have reported that neutrophils also form
NETs after exposure to hydrophobic nanoparticles in a size-dependent manner. The per-
sistence of this response may cause the formation of aggNETs. This aggregation may be
important for the resolution of inflammation [58,59]. Desai and colleagues verified these
findings and reported that the RIPK1-RIPK3-MLKL signaling pathways are involved [60].
Besides the aggNETs-driven resolution of inflammation, the obstructive capabilities of
NETs may cause adverse effects and even fatal consequences. Indeed, the formation of
occlusive co-aggregates of NETs with superparamagnetic iron oxide nanoparticles (SPION)
has recently been reported to cause vascular obstructions. The coating of SPIONs with
biocompatible albumin or dextran reduced NETs formation and prevented the vascular
occlusion in vivo [61].

Since aggregation-related pathologies are prone to cause serious health problems, and
even fatalities, the possible treatment methods are currently being investigated intensively.
A part of the study aims to reduce inflammation by controlling neutrophils and NETs
formation. For example, Feraheme® (a compound used to treat iron deficiency anemia)
was shown to limit the chemotactic activation after uptake by neutrophils and diminish
their inflammatory properties [62].

2.6. Others

In addition to their ability to bind and kill pathogens during innate immune responses,
neutrophils and NETs participate in inflammatory and coagulatory responses in the cir-
culatory system. So far, occlusions caused by NETs-associated thrombus formation have
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been linked to cancers [16], pre-eclampsia [63], renal ischemia-reperfusion injury [64], liver
pathologies [65], and severe malaria [66,67].

3. Airway Occlusions

Human respiratory syncytial viruses (hRSV) are the major viral pathogens causing
lower respiratory tract diseases, particularly in newborns and children under the age of
five [68]. During severe RSV infection, the virus exaggerates the activities of neutrophils
and eosinophils and causes extensive neutrophil accumulations in the lower airways of
the lungs. This causes airway obstruction through the blockage of small airways that
impedes proper breathing and leads to acute morbidity. The excessive formation of NETs is
considered one of the leading causes for these small airway obstructions (Figure 2) [68–70].

In order to develop new therapeutic strategies, the mechanisms of NETs formation
were studied in the context of hRSV infections. Funchal et al. revealed that the RSV
Fusion protein plays a pivotal role in NETs induction via the TLR-4 or ERK/p38 MAPK
pathways [71]. In another comprehensive study, RSV has been postulated to cause NETs
formation via a canonical ROS-dependent mechanism [72]. The signal inhibitory receptor
on leukocytes (SIRL)-1 and leukocyte-associated immunoglobulin-like receptor (LAIR)-1
have been proposed as potential targets that reduce neutrophil activity and, thus, regulate
airway inflammation upon engagement of these receptors [73]. Inhaled DNase 1 treatment
was proposed as an alternative therapeutic approach in NETs-induced airway obstruction
during severe RSV infection [74].

4. Occlusions of Exocrine Glands and Ducts
4.1. Pancreatic Duct

The pancreatic duct, also known as the Wirsung duct, connects the pancreas and
intestine through the common bile duct. Its primary function is to transport enzymes and
bicarbonate, which aid digestion and neutralize the duodenal pH, respectively [75,76].
Occlusion of the pancreatic duct may cause pancreatitis. The occlusions of the ducts are
directly proportional to the severity of the pancreatitis and depend on the duration of the
disease [75,76].

NETs were reported to directly induce trypsin activation, inflammation, and tissue
damage in severe acute pancreatitis induced by retrograde taurocholate infusion [77].
However, the direct cause of obstruction is not always found in human acute pancreatitis.
Under physiological conditions, neutrophils are present in small amounts in the pancreas
and enter the bicarbonate-rich pancreatic fluid and spontaneously form NETs [78]. In the
case of severe inflammatory situations, the resulting neutrophilia can produce excessive
amounts of NETs in the pancreas. This results in large and sticky aggregates prone to
occlude pancreatic ducts. Leppkes et al. reported that sole neutrophilia in IL17 transgenic
mice was the main driving force for the development of pancreatitis. In this case, excessive
NETs formation was immediately induced by a high bicarbonate concentration in the
pancreatic juice. Formed NETs tend to aggregate and occlude the ducts triggering focal
acute pancreatic [79]. The reduced production and sizes of NETs and aggNETs in the
pancreatic ducts of PAD4-KO mice prevented the development of focal pancreatitis [80,81].

4.2. Meibomian Gland

The Meibomian gland (MG) secretes a biological fluid (meibum) containing a signif-
icant amount and variety of lipids. Meibum is crucially important for the maintenance
of a healthy ocular surface. Meibomian gland dysfunction (MGD) and the disruption of
meibum homeostasis change the lipid content of the tear fluid [82,83]. The lack of lipids in
the tear film promotes hyper-evaporation and tear hyperosmolarity.

As neutrophils are the first cells to be recruited to the foci of inflammation, NETs
have been discussed to drive the pathogenesis of MGD-related diseases, including dry
eye disease (DED). The increased abundance of NETs in the tears and on the ocular
surfaces of the patients with MGD and the positive correlation between NETs amounts
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and disease severity has reinforced this suspicion [84]. Although aggNETs have been
known for their ability to resolve inflammation on the ocular surface [85], a recent study
demonstrated that NETs are also implicated in MG terminal duct occlusions precipitating
the inflammation on the ocular surface [9]. This work has provided vital new evidence to
propose novel avenues in the treatment of MG occlusion-related disorders. In addition
to the currently available medical treatments, such as antibiotics and nonsteroidal and
steroidal anti-inflammatory drugs, NETs formation inhibitors should be considered in the
therapeutic arsenal of MGD [86].

4.3. Periodontitis (Periodontal Crevicular Occlusions)

The gingival crevice, also called the gingival sulcus, is defined as a narrow V-shaped
space between the inner aspect of the free gingival epithelium and the surrounding enamel
of a tooth. Normally, its depth range is 1–3 mm. The gingival epithelium continuously
produces gingival crevicular fluid (GCF) that is finally transferred into the oral cavity. It
has been known for many years that the production of GCF and its composition change
during inflammatory diseases like periodontitis. Therefore, GCF has been extensively
studied as a diagnostic tool [87,88]. Under physiological conditions, the minimal amount
of GCF present in the gingival crevice flows into the oral cavity, making the crevice a kind
of duct. Upon inflammation, this fluid transforms into a purulent exudate containing large
amounts of NETs and neutrophils expressing CD177 [89,90]. The exudate is extremely
viscous due to the excessive amount of aggNETs. Vitkov and colleagues put forward
the view of NETs-driven obstruction of the periodontal crevice. The authors speculated
that the formation of a periodontal abscess might result from NETs-induced cervical
obstructions [6] supported by the overproduction of NETs and the impaired clearance of
NETs remnants [91]. This hypothesis has not yet been proven experimentally. However,
the crucial roles of NETs in the initiation and progression of inflammatory periodontal
diseases are surely worth investigating.

4.4. Gallstones

Obstruction of the biliary system, a common, serious, and painful condition, is one
of the leading causes of hospitalization with significant morbidity and mortality. The
formation of gallstones in the gallbladder or ducts, also referred to as cholelithiasis, are
the most prevalent etiological event for biliary obstruction that results in biliary stasis.
However, gallstone-caused biliary obstructions generate a high socioeconomic burden due
to their high incidence, especially in developed countries [92,93]. Until recently, it has been
proposed that gallstones simply form due to the supersaturation of cholesterol crystals. The
contents of human gallstones were eventually investigated for NETs, as cholelithiasis is an
occlusive condition [94]. After observing extracellular DNA and neutrophil elastase in gall
sludge and gallstones, it was established that an intact NETs formation capacity is necessary
to form gallstones in a murine model of cholelithiasis. Basically, NETs were crucial in
the initiation and progression of gallstone formation by promoting the aggregation of
biliary cholesterol and calcium crystals. Furthermore, a positive correlation between the
neutrophil/lymphocyte ratio and the severity of gallstone-induced pancreatitis has been
reported in clinical settings [95]. However, formal clinical trials employing NETs formation
inhibition in patients with recurrent cholelithiasis are still needed [96].

4.5. Sialoliths

Sialoliths, also known as salivary stones, are the most prevalent obstructive disease
of the salivary glands, especially for middle-aged patients. Stone formation is mostly
seen in the submandibular gland, with an incidence of more than 80 percent. The parotid
gland follows it with 13 percent and by sublingual and minor salivary glands at very
low rates. The etiology of sialolith formation was initially considered a multifactorial
interaction of calcium salts, organic and inorganic molecules, pH, and bacteria [97,98].
In two conflicting reports, inorganic materials [99] and organic components [100] have
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claimed to be the main components of sialoliths. However, since the role of inflammation
in sialoliths formation [101] and the presence of bacterial residues, including bacterial DNA
and biofilms in their structures, has been established [102], NETs have gained attention as
a possible etiological factor. Furthermore, since bacterial biofilm structures at the core of
sialoliths have been established, biofilms have been hypothesized to be an initial step in the
formation of sialoliths [103]. Recently, neutrophil recruitment and NETs formation in the
salivary system were suggested to initiate sialolithiasis. Indeed, the demonstration of NE
activity associated with a high prevalence of extracellular DNA points to NETs as nidi for
the formation of sialoliths [104]. The high content of bicarbonate in saliva strengthens this
hypothesis as it facilitates the formation of NETs [78]. The interaction between neutrophils
and the precipitated particulate matter is discussed to cause the salivary stone to grow.
These results offer an alternative perspective for the “until now” proposed mechanisms of
sialolithogenesis [105,106].

4.6. Further Obstructive Diseases

Kidney stones (nephrolithiasis) are among the oldest known diseases, affecting about
12% of the world’s population at some point in their lives [107]. Although the earliest
recorded kidney stone cases date back to 4000–5000 BC, and the first medical texts for its
treatment date back to 1500 BC in ancient Egypt, the etiology and appropriate treatments
are still partially elusive [108]. Randall’s plaques have been widely accepted to be the
nidus for kidney stone formation. Crystallization with particle retention is the most crucial
event in kidney stone formation. Randall discovered calcium salt deposits in kidney stones
for the first time and termed it “plaque”. These calcium deposits were later referred to
as Randall’s plaques. However, although it has been more than 80 years since its first
definition, not much progress has been made in the characterization of the roles of these
plaques in kidney stone formation [109,110]. More than 80% of all kidney stones are based
on calcium, and hypercalciuria is associated with the formation of Randall’s plaques and
kidney stones [111]. Considering the evidence collected for gallstones, NETs may also
drive the onset and/or progression of kidney stone formation. This is strengthened by
recent studies describing the neutrophil–lymphocyte ratio as a new diagnostic marker for
kidney stones and increased neutrophil activation in kidney stone formation [111,112].

Skin calcifications (e.g., calcinosis cutis) and stones found in large body cavities like
the intestine and bladder are further candidates for NETs-driven conditions [113–115].
Therefore, the presence of NETs in these calcareous formations needs to be investigated.

5. Therapeutic Approaches to Prevent NETs-Driven Occlusions

Additionally to their protective effects against pathogens, NETs contribute to the
regulation of innate and adaptive immunity. In the case of persistent neutrophil activation,
the NETs form aggregates that contribute to the resolution of inflammation, reflecting
the advantageous side of NETs formation. Depending on where aggNETs are formed
(e.g., vessels or ducts), these large and sticky aggregates might cause various kinds of
obstructions. These occlusions drive the pathophysiology and increase the severity of many
diseases, including COVID-19, chole- and sialolithiasis, dry eye disease, and probably many
others. Therefore, it is critical to developing new effective therapeutic strategies directed to
control either the accumulation of NETs or improving their clearance at specific anatomic
locations [26,116]. NETs-inducing agents are diverse, and the formation mechanisms of
NETs vary depending on these triggering agents.

Consequently, the mechanism of NETs formation has to be explored for every single
condition, and then, therapeutic strategies have to be developed in a condition-specific
manner. NE, MPO, PAD4, and extracellular DNA are promising targets for suppressing
excessive NETs formation [11,28] and are, therefore, currently the focus of drug develop-
ment (Figure 3). Among these, the inhibition of PAD4 and the treatment with DNase1 are
the most promising candidates for NETs-driven occlusions [91]. Therefore, we will explore
these two candidates together with others in more detail in the following paragraphs.
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Figure 3. Targets in the treatment of aggNETs-driven occlusive pathologies. NE, MPO, PAD4, and
extracellular DNA are promising targets for the suppression of excessive NETs formation. Enzymatic
inhibitors of PAD4 and MPO have demonstrated its effectivity in preclinical settings of cholelithiasis,
Meibomian gland dysfunction, and vasculitis. DNase treatment is effective at preventing death in
severe sepsis and improving the symptoms in cystic fibrosis, bronchiolitis, and dry eye disease. The
cartoons were modified from https://smart.servier.com accessed on 20 August 2021 in compliance
with the terms of the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). Abbreviations:
MPO, myeloperoxidase; NE, neutrophil elastase; NET, neutrophil extracellular traps; and PAD4,
peptidylarginine deiminase type IV.

5.1. Inhibition of PAD4 Reduces Formation and Size of NETs

Peptidylarginine deiminases (PADI) are a calcium-dependent enzyme family respon-
sible for post-transcriptional deamination/citrullination. In this process, the positively
charged arginine residues are converted into uncharged citrulline residues. The PADI
family consists of five members. PAD4 is unique among them. It plays a role in the for-
mation of NETs by ensuring the decondensation of chromatin [117]. This makes PAD4
a possible therapeutic target for the treatment of occlusive NETs-related diseases. The
increased activity of PAD4 and the therapeutic potential of its inhibition have already
been reported in preclinical settings for the formation of thrombosis [22], acute pancreati-
tis [81], cholelithiasis [94], meibomian gland disfunction [9], lung injury [64], and sickle
cell disease [56].

5.2. Deoxyribonucleases Dismantle NETs

DNases have been studied for therapeutic purposes in obstructive conditions. DNase1
cleaves DNA by breaking its phosphodiester bonds. This disrupts the structural integrity
of NETs and reduces the sizes and amounts of aggNETs [118]. It has been shown that
disrupting NETs with DNase1 not only prevents vascular occlusion [25] but also recanalizes
the already occluded vessel [119]. Similar results have been obtained in crystal clots-driven
arterial occlusion [24]. The improvement of ventilation after the inhalation of DNase1 in
RSV acute bronchiolitis has also been demonstrated [71]. DNase1 is already approved
as an inhalant to reduce the viscosity of the mucus in the lungs of patients with cystic
fibrosis [74].

5.3. Inhibitors of Myeloperoxidase Reduce the Early Phases of NETs Formation

One of the most important elements of NETs, especially in the early phases, is MPO.
When neutrophils encounter danger signals, MPO enters the nucleus and drives chromatin
decondensation, a crucial step of NETs formation [120]. Inhibitors of MPO such as PF-1355
have been tried as NETs formation blockers in small vessel vasculitis. In this context,
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PF-1355 prevented excessive NETs formation and reduced leukocyte infiltration [121],
making it a good candidate for further studies trying to interfere with NETs formation in
occlusions. Furthermore, natural surfactants also have the ability to inhibit NETs formation
in vitro [122]. Therefore, natural surfactants bear the potential to be used as therapeutical
agents in occlusive conditions.

6. Conclusions

Neutrophils and NETs participate in the initiation, pathogenesis, and resolution
phases of several inflammatory conditions. Considerable collateral damage is expected
in most of the cases where neutrophils are involved. Therefore, robust regulatory mech-
anisms like apoptosis and NETs formation have evolved to endow neutrophils with the
ability to drive the amelioration of the initial inflammation. The clearance of apoptotic
neutrophils by professional phagocytes triggers potent anti-inflammatory and regenera-
tive responses [123,124]. NETs formation and aggregation actively limit the spreading of
pathogens and inflammatory mediators [7,125]. Unfortunately, those anatomical locations
carrying fluids or air through the body are prone to be occluded by NETs generating
heterogeneous pathologies. The study of the prevention or dissolution of such clogs will
provide new therapeutic opportunities for old prevalent diseases.
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