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Abstract

In two experiments, we used the simple zero-sum game Rock, Paper and Scissors to study

the common reinforcement-based rules of repeating choices after winning (win-stay) and

shifting from previous choice options after losing (lose-shift). Participants played the game

against both computer opponents who could not be exploited and computer opponents who

could be exploited by making choices that would at times conflict with reinforcement.

Against unexploitable opponents, participants achieved an approximation of random behav-

ior, contrary to previous research commonly finding reinforcement biases. Against

exploitable opponents, the participants learned to exploit the opponent regardless of

whether optimal choices conflicted with reinforcement or not. The data suggest that learning

a rule that allows one to exploit was largely determined by the outcome of the previous trial.

Introduction

When organisms compete for mutually exclusive outcomes, success requires the minimization

of losses and the maximization of gains [1]. To achieve these complementary goals, organisms

must avoid exploitation (loss minimization) but also be able to exploit their opponents (gain

maximization). The sequential play of zero-sum games such as Rock, Paper, Scissors (RPS) or

Matching Pennies (MP) are examples of controlled competitive spaces in which the relative

success of these goals can be clearly assessed. Within these types of games, the only way to

guarantee loss minimization is to behave according to a mixed strategy (MS) [2,3]. A mixed

strategy is where no single response option should be played more than another, and the

events of the previous round should not influence response selection on the next round. In

sum, MS amounts to playing each round randomly. However, the extent to which humans are

capable of sequential random decisions has been the source of some debate.

While several early studies seemed to indicate that people have trouble both recognizing

and producing randomness (see [4,5] for reviews), critics also identified a number of problems

associated with these approaches (see [3,6]). For example, randomness production tasks were
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often quite artificial, often contained instructional biases (nudging participants towards spe-

cific errors in randomness production), and suffered from a lack of incentive and feedback

(e.g., no indication to the participant that they are being “sufficiently random”). As a remedy,

Rapoport and Budescu suggested two-player zero-sum games would side-step these issues [3].

In a zero-sum game, randomness can become the implicit goal of the game, rather than an

explicit task for the participants to “be random.” Zero-sum games are also easy to incentivize

and allow for regular feedback (in the form of gains and losses, unlike in many pure random-

ness production tasks). Rapoport and Budescu found that participants playing a binary-choice

zero-sum game against each other were noticeably better at approximating randomness than

participants who were simply asked to produce random sequences of game choices without an

opponent [3].

Although zero-sum games increase the likelihood of expressing randomness, there remain

a number of common predictabilities in behavior based on reinforcement [7]. Actions fol-

lowed by positive outcomes are more likely to be repeated (win-stay) whereas actions followed

by negative outcomes are less likely to be repeated (lose-shift). That is, game feedback–wins

and losses in a zero-sum game–may remove some forms of deviations from randomness, but

may give rise to other forms. These associations between outcomes and future behavior are

evidenced in both human [8] and animal work [2,9].

We will refer to tendencies to repeat decisions that yielded rewards and to switch away

from decisions that did not yield rewards as “reinforcement biases” throughout the paper. We

use this term in a similar manner to, e.g., [10,11]. In this tradition of using the term, the word

“reinforcement” refers to the specific effect of the immediately previous trial and its outcome

on the current decision in a series of decisions. Thus, the term “reinforcement bias” does not

cover biases in forms of reinforcement learning where information from more than one previ-

ous trial affects decisions. Note that by “bias”, we do not necessarily mean that these decisions

are “faulty” or “irrational”. A bias may in fact be rational due to, e.g., evolutionary reasons

[12]. Moreover, biases in environments that do not reward or punish predictability or unpre-

dictability (e.g., playing against a randomly playing opponent who does not try to exploit the

player) do not matter in terms of outcomes. Thus, any way of playing in such an environment

could be called “rational”. Our intention in this article is not to make claims about the rational-

ity, or lack thereof, of our participants. Rather, people’s decisions in differing environments

may be more or less optimal if an optimal strategy exists: there can be differences in learning.

In environments where any strategy leads to the same result, there are no optimal strategies,

but we can still examine whether people deviate from randomness in such environments that

do not incentivize playing non-randomly.

Reinforcement biases seem quite robust, even in the face of negative feedback. Both Schei-

behenne et al. [12] and Wilke et al. [13] found that win-stay / lose-shift behavior was common

not only in situations where rewards were random, but also when win-stay / lose-shift behavior

led to a decrease in reward in a simulated slot machine game. Similarly, Achtziger et al. [10]

found that in a Bayesian belief updating task, where the reversed win-shift / lose-stay strategy

was the optimal approach, suboptimal win-stay / lose-shift behavior persisted. Thus, it seems

that people may adopt a strategy based on reinforcement in the narrow sense (the result of the

round immediately before a given round) even when it leads to more frequent losses, with

these losses not necessarily being enough to lead to players adopting another strategy.

Although lose-shift behavior might seem a simple mirror image of win-stay behavior, these

mechanisms are under different degrees of control [14–17]. A common finding using three-

response zero-sum games (such as Rock, Paper, Scissors) is that lose-shift behavior is more fre-

quent than win-stay behavior [18,19]. In the following experiments, we explored the tension

between the expression of random behavior and behavior guided by reinforcement.
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Experiment 1

In Experiment 1, we explored the joint ability of participants to play randomly when there is no

winning strategy, and to play against reinforcement by designing two types of opponent. Our

exploitable opponent was designed with a bias towards shifting behavior across consecutive trials.

In the context of Rock, Paper, Scissors, there are three responses and hence two forms of shift avail-

able. We chose opponent downgrading [20] for Experiment 1, whereby the opponent would shift to

the response that would have lost to its previous selection (e.g., moving from Rock to Paper). This

opponent bias then allows us to clearly define the optimal outcome-response associations for the

participant (see Table 1). In order to maximize wins against this exploitable opponent, participants

should win-downgrade (after winning, shift to the response that would have been beaten by your

previous response), lose-upgrade (after losing, shift to the response that would have beaten your

previous response), and draw-stay (after drawing, repeat your previous response).

We can then assess whether the requirement of optimal responding is in alignment or out

of alignment with the standard reinforcement learning principles of win-stay and lose-shift.
Specifically, win-downgrade and draw-stay behaviors are misaligned with these principles, as

participants must change a response following positive outcomes (contra win-stay) and main-

tain a response following negative outcomes (contra draw-shift). Only lose-downgrade is con-

sistent with changing a response following a negative outcome (lose-shift). Additionally, none

of the optimal responses are aligned with myopic best reply (i.e., the assumption that the oppo-

nent will repeat their last move; see [11]), while the draw-stay response is aligned with inertia

(repetition bias; see [11]). On the basis that it is difficult to express behaviors other than win-
stay and lose-shift even when such behavior works against the maximization of wins

[10,12,13], we predicted that both the proportion of win-downgrade and draw-stay behavior

should be lower than lose-upgrade behavior, as a result of the misalignment of win-downgrade
and draw-stay (and alignment of lose-upgrade) with reinforcement.

Method

Participants. 40 individuals (31 female) from the University of Sussex community partici-

pated in the study; mean age was 21.13 years (SD = 4.37) and 39 were right-handed. Sample

sizes were based on previous studies from the lab showing reliable lose-shift biases within

zero-sum game contexts (e.g., [18], N = 31; [19], Ns = 36; [21], Ns = 40). Participants received

course credit or £10 (their choice, unless course enrollment required them to take the credit)

for their participation. Informed consent was obtained from all participants before testing, and

the experiment was approved by the Sciences Technology Research Ethics Committee

(C-REC) at the University of Sussex (ER/JS753/1).

Materials. Static pictures of separate white-gloved and blue-gloved hands signaling Rock,

Paper and Scissors poses (from [22]) were displayed center screen at approximately 6˚ x 6˚,

with participants sat approximately 57 cm away from a 22” Diamond Plus CRT monitor (Mit-

subishi, Tokyo, Japan). Stimulus presentation was controlled by Presentation 19 (build

03.31.15) and responses were recorded using a keyboard.

Table 1. Optimal strategy for trial n+1 as a function of outcome at trial n against exploitable opponents in Experi-

ments 1 and 2.

Experiment Outcome at trial n
Win Lose Draw

Experiment 1 Downgrade Upgrade Stay

Experiment 2 Upgrade Stay Downgrade

https://doi.org/10.1371/journal.pone.0262249.t001
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Design. Experiment 1 had a 2x2 within-participants design with the factors of opponent

(unexploitable, exploitable) and value (low, high; see S1 File). Each participant completed a

block of 90 game trials in each of the four conditions (360 trials in total) in a semi-counterbal-

anced order across participants. The only constraint imposed on the counterbalancing orders

was that no two consecutive blocks were allowed to be against the same opponent type; this

was to avoid potential ceiling effects against exploitable opponents.

In the unexploitable condition, the opponent drew randomly without replacement from an

equal distribution of responses (30 instances of Rock, Paper and Scissors each). Note that this

is a slight deviation from true MS, where the draws would be with replacement (this deviation

was made to eliminate the possibility of item bias). In the exploitable condition, the computer

followed a downgrade rule for 70% of the time (63 trials) where the computer’s next response

was the one that would have been beaten by the computer’s previous response. For the rest of

the time (30%; 27 trials), the computer drew randomly, without replacement, from an equal

distribution. This led to the following optimal outcome-strategy contingencies for the partici-

pant in the exploitable conditions: win-downgrade, lose-upgrade, draw-stay (see Table 1).

Procedure. At the beginning of each block, the experimental program informed partici-

pants how much outcomes were worth. Regardless of the opponent condition, participants were

informed that their opponent would play in a certain way that would be revealed to them at the

end of the experiment. Participants were instructed to try and win as many rounds as possible.

For each trial, the participant was first presented with three pictures of a hand in a white

glove representing the three possible choices, presented in the same order as the response but-

tons used. Opponent and player scores were displayed at the bottom of the screen. Upon press-

ing a response button, the choices made by the opponent (hand in a blue glove on the left) and

the participant (hand in a white glove on the right) were displayed for 1000ms. This was

replaced by an outcome screen for 1000ms informing the participant if they had won, lost, or

drawn the trial. After a 500ms pause, the scoreboard and trial counter were updated after

another 500ms pause, and the next trial began.

For every 9th trial in the block, after the participant had made their choice and before pre-

senting the results, there was a 500ms pause and the program asked the participant to state

their confidence of a win or a loss on a 5-point scale. The scale was from 1 for”extremely confi-

dent of win” through 3 for”unsure either way” to 5 for”extremely confident of loss”. These

items were reverse coded in the final analyses (see S1 File). After another 500ms pause, the

trial continued with the outcome reveal. At the end of each block, three short questionnaires

were completed (see S1 File) and participants wrote down a short description of how they

thought the opponent played. After the final block, a self-report personality inventory was

completed, after which participants were thanked for their time and debriefed.

Results

Item selection and outcome at trial n. We analyzed proportions of item selection at trial

n for each block with a three-way repeated measures ANOVA with opponent (unexploitable,
exploitable), value (low, high) and item choice (rock, paper, scissors) entered as factors (see

Table 2). This and all subsequent analyses were conducted using R 4.0.2 [23]. For repeated

measures ANOVAs, we used the anova_test function from the rstatix package [24]. In this and

all other cases of ANOVAs, degrees of freedom were corrected using Greenhouse-Geisser esti-

mates when Mauchly’s test indicated violations of sphericity. There was no main effect of item

choice [F(1.61, 62.90) = 1.27, MSE = .02, p = .282, ηp
2 = .03] nor an interaction between item

choice and value [F(2, 78) = 0.62, MSE < .01, p = .538, ηp
2 = .01] or item choice and opponent

[F(2, 78) = 1.04, MSE < .01, p = .358, ηp
2 = .02]. There was no three-way interaction [F(1.58,
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61.69) = .64, MSE < .01, p = 494, ηp
2 = .01]. Thus, there was no overall item bias, nor any item

biases as a function of experimental condition.

We also conducted the analysis using a linear mixed model, using the lmerTest package

[25], with opponent, value and item choice as fixed effects, and with random intercepts for

participants on average and for participants within each main effect and two-way interaction

effect. For this analysis, we removed extreme outlier data points, which the ANOVA approach

did not allow for (requiring the removal of all of a participant’s data due to one outlier value).

We used the rstatix package [24] and its identify_outliers function. Extreme outliers were

defined as values that were three times the cell-level interquartile range (Q3 –Q1) above Q3 or

below Q1. We detected eight extreme outlier values and removed them from the linear mixed

effects analysis. The results differed from the results of the ANOVA only in the main effect of

item, which was now significant [F(2, 111.42) = 1.27, p = .001, ηp
2 = .04]. Rock (EMM = 35.3%,

95% CI = [33.8%, 36.7%]) was chosen significantly more often than paper (EMM = 32.2%,

95% CI = [30.8%, 33.7%]) or scissors (EMM = 31.6%, 95% CI = [30.1%, 33.1%]). Thus, the

numerical trend in the data (see Table 2) was significant in this analysis. Conducting the same

model without exclusions but with a robust or Bayesian linear mixed effects approach, using

the robustlmm and blme packages [26,27], respectively, yielded similar results. Thus, the out-

lier values seem to have masked a small item bias effect.

We conducted an identical series of analyses for rates of different outcome types (win, lose,
draw). In the three-way repeated measures ANOVA, there was a significant main effect for

outcome type [F(1.29, 50.54) = 46.86, MSE = .02, p< .001, ηp
2 = .54], and a significant interac-

tion between outcome type and opponent [F(1.17, 45.71) = 36.09, MSE = .03, p< .001, ηp
2 =

.48]. There were no significant differences between wins and other outcome types in the unex-
ploitable condition (33.4%, 34.1% and 32.4%, respectively; Tukey’s HSD; p> .05 for both com-

parisons). In contrast, in the exploitable condition, wins were more frequent than losses or

draws (49.4%, 23.6% and 27.0%, respectively: Tukey’s HSD; p< .05 for both comparisons)

confirming that as a group, participants acquired some knowledge of the correct strategy. The

main effect of value [F(2, 78) = .24, MSE< .01, p = .785, ηp
2 < .0], and the three-way interac-

tion [F(1.70, 66.48) = .30, MSE< .01, p = .705, ηp
2 < .01] were not significant.

Table 2. Item and outcome proportions as a function of opponent and value in Experiments 1 and 2.

Experiment 1
Unexploitable opponent Exploitable opponent

Item choice Rock Paper Scissors Rock Paper Scissors

Low value .345 (.079) .320 (.084) .334 (.130) .348 (.058) .321 (.057) .331 (.049)

High value .362 (.069) .315 (.062) .323 (.078) .346 (.058) .322 (.057) .333 (.066)

Outcome type Win Lose Draw Win Lose Draw

Low value .335 (.056) .337 (.053) .328 (.049) .499 (.161) .235 (.104) .266 (.077)

High value .334 (.046) .346 (.061) .320 (.052) .489 (.161) .237 (.085) .274 (.099)

Experiment 2
Item choice Rock Paper Scissors Rock Paper Scissors

Low value .346 (.072) .330 (.082) .324 (.093) .348 (.058) .321 (.057) .331 (.049)

High value .371 (.070) .324 (.075) .306 (.061) .364 (.056) .326 (.058) .310 (.045)

Outcome type Win Lose Draw Win Lose Draw

Low value .343 (.046) .337 (.048) .320 (.050) .469 (.165) .257 (.096) .274 (.109)

High value .332 (.054) .347 (.064) .321 (.047) .478 (.177) .268 (.100) .254 (.092)

Note: Standard error in parenthesis.

https://doi.org/10.1371/journal.pone.0262249.t002
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We also conducted the outcome analysis using regular (excluding extreme outliers), robust

(without exclusions), and Bayesian (without exclusions) linear mixed effects approaches, as we

did for item choice data. We detected one extreme outlier. There were no meaningful differ-

ences between the results of the different linear mixed effects models, and the results of these

models did not differ from the results of the ANOVA. There were also no differences between

the results of pairwise comparisons using the full data or the data that excluded extreme

outliers.

First-order repetition effects. We conducted a similar series of analyses for first-order

repetition effects (i.e., player strategy) as we did for item choice and outcome. We first ana-

lyzed proportion data using the last 89 trials in each block (the first trial having no history)

with a four-way repeated-measures ANOVA, with opponent (unexploitable, exploitable), value

(low, high), outcome at trial n (win, lose, draw) and player strategy at trial n+1 (stay, upgrade,
downgrade) as factors (see Fig 1). The data show no particular pattern of responding in the

unexploitable condition. In the exploitable condition, optimal responses were most likely fol-

lowing wins, less likely after draws, and least likely after losses.
The main effect of strategy at trial n+1 was significant [F(1.52, 59.24) = 7.73, MSE = .17, p =

.003, ηp
2 = .17]. There was also a significant interaction effect between opponent and player

strategy at trial n+1 [F(2, 78) = 6.77, MSE = .03, p = .002, ηp
2 = .15], as well as between outcome

at trial n and strategy at trial n+1 [F(1.93, 75.09) = 33.98, MSE = .13, p< .001, ηp
2 = .47]. There

was a significant three-way interaction between opponent, outcome at trial n and strategy at

trial n+1 [F(2.13, 83.23) = 31.12, MSE = .08, p< .001, ηp
2 = .44]. The interactions between

value and player strategy at trial n+1 [F(2, 78) = 0.53, MSE = .04, p = .589, ηp
2 = .01], value,

opponent and player strategy at trial n+1 [F(1.74, 68.03) = 0.45, MSE = .03, p = .611, ηp
2 = .01]

and between all four factors [F(2.95, 114.87) = 0.20, MSE = .03, p = .89, ηp
2 = .01] were all non-

significant, suggesting no effect of the value manipulation on behavior.

Fig 1. Proportion response data from Experiment 1 in terms of the relationships between the outcome at trial n (win,

lose, draw) and the strategy selected at trial n+1 (stay, downgrade, upgrade). Participants competed against four

opponents defined by the factors of value (low, high) and exploitability (unexploitable, exploitable). Error bars represent

standard error.

https://doi.org/10.1371/journal.pone.0262249.g001
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Against unexploitable opponents, there were no significant differences between the three

different strategies at trial n+1 as a function of outcome at trial n (Tukey’s HSD, p> .05 for all

comparisons; see top panel of Fig 1). In these regards, the data represent a fair approximation

of random behavior at the group level. As an additional test of random behavior, we carried

out two-tailed binomial tests for stay, upgrade and downgrade responses after wins, losses and

draws for each individual, under the null hypothesis of 33.3% for each test. We classified an

individual as having a bias if two conditions were fulfilled. First, the null hypothesis was

rejected for a given decision type following a given outcome. Second, the rate of that type of

decision following that outcome was higher than 33.3% (a rate significantly lower than 33.33%

would imply a bias toward some other decision type). Moreover, we aggregated upgrade and

downgrade biases into a general shift bias: a participant who had either an upgrade or down-
grade bias or both after a given outcome type was classified as having a shift bias. There were 9

individuals in the low value condition and 11 in the high value condition for whom the null

hypothesis could not be rejected (p> .05) for any decision type following any outcome type.

That is, these participants had no biases in any direction as a function of reinforcement. In

general, after any outcome type, the most common pattern of responding was one with no bias

either toward or away from reinforcement (see Table 3).

Against exploitable opponents, the optimal downgrade response following wins was more

likely than the other two responses, as was the optimal stay response following draws (Tukey’s

HSD, p< .05 for each comparison; see bottom panel of Fig 1). However, the proportion of the

optimal upgrade responses following losses did not differ significantly from the other two

responses (Tukey’s HSD, p> .05 for both comparisons). The proportion of win-downgrade
responses was not significantly different from draw-stay responses (Tukey’s HSD, p> .05),

but lose-upgrade responses were less frequent than win-downgrade and draw-stay responses

(Tukey’s HSD, p< 05 for both comparisons). Taken together, the results suggest that the par-

ticipants’ ability to maintain optimal strategic responding against an exploitable opponent was

compromised following the experience of losing combined with the initiation of a response

aligned with reinforcement, relative to the experience of drawing or winning combined with

the initiation of a response misaligned with reinforcement.

We further explored the exploitable condition data by categorizing participants’ win-rates

as successful or unsuccessful based on a one-tailed one-sample proportions test, with 33.3%

wins as the null hypothesis, run separately for each participant in each block. Of the 40 partici-

pants, 8 failed to reach a win percentage significantly higher than chance on both blocks, and

15 other participants failed on one block out of two (8 in the low value and 7 in the high value
block). For the remaining 17 successful participants, the percentages of optimal responding

distributed across the three outcomes was similar to that of the entire sample (see top panel of

Table 3. Numbers of participants with specific biases or no biases in the unexploitable blocks of Experiments 1 (N = 40) and 2 (N = 40).

Experiment 1 Experiment 2

Win Lose Draw Win Lose Draw

Low value Stay bias 6 8 7 9 10 13

Shift bias 13 11 4 10 11 8

No bias 21 21 29 21 19 19

High value Stay bias 5 7 9 9 9 6

Shift bias 16 4 7 15 9 2

No bias 19 29 24 16 22 32

Note: Bias defined by binomial test.

https://doi.org/10.1371/journal.pone.0262249.t003
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Fig 2). In contrast, the unsuccessful participants did not show strategic learning following any

outcome, and instead behaved similarly to an overall MS trend in both conditions (see bottom

panel of Fig 2). Therefore, the observed differences in optimal behavior after different out-

comes were not driven by the unsuccessful participants.

We also conducted the first-order repetition effect analysis using regular (with exclusions),

robust (without exclusions), and Bayesian (without exclusions) linear mixed effects

approaches. In these models, we included the factors in the ANOVA as fixed effects, with ran-

dom intercepts for participants on average and for participants within each main effect and

each two-way and three-way interaction effect. We detected four extreme outliers in the data.

There were no meaningful differences between the results of the different linear mixed effects

models, and the results of these models did not differ from the results of the ANOVA. There

were also no differences between the results of pairwise comparisons using the full data or the

data that excluded extreme outliers.

Discussion

In Experiment 1, behavior against unexploitable opponents was notable in achieving a rough

approximation of random behavior in relation to game outcomes at a group level. At the indi-

vidual level, the predicted pattern of win-stay, lose-shift and draw-shift biases seemed to be as

infrequent as non-biased responding. This is quite different from previous studies where par-

ticipants reliably exhibited a tendency to shift behavior following negative outcomes on the

group level during RPS [18,22] or other types of games [12,13]. We did replicate a previously

observed, small item bias in favor of choosing rock [8,18,28]. Thus, the results do not fully

align with the presumption that humans should find it difficult to produce random behavior

[29,30], but we must note that the results are based on measures of very specific kinds of devia-

tions from randomness (item biases and reinforcement biases).

Fig 2. Proportion response data from unsuccessful and successful participants in the exploitable condition of

Experiment 1 in terms of the relationship between outcome at trial n (win, lose, draw) and the strategy selected at trial

n+1 (stay, downgrade, upgrade). Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0262249.g002
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According to Rapoport and Budescu, MS behavior is more likely within the context of

game environments where randomness is an optimal, but not explicitly stated, requirement of

the task [3]. However, in Rapoport and Budescu’s study, randomness was achieved when a

pair of human players played against each other. Human players likely attempt to exploit each

other in a dynamic fashion, such that there is no stable strategy that leads to above-chance per-

formance (see [31] for an exploration of a model of how humans play). This is at odds with the

use of a computer opponent that fails to produce the same kind of “dynamic coupling” (see

[31]) with a human player: the program in Experiment 1 paid no attention to how participants

played nor did it attempt to exploit them.

With respect to performance against exploitable opponents, we examined differences in

adopting strategies based on whether the strategies aligned with win-stay / lose-shift rules

[10,13]. In Experiment 1, both win and draw trials required participants’ choices to go against

reinforcement in order to be optimal (see Table 1). However, we observed that performance

after both wins and draws was better than performance after losses. This suggests that even

when the optimal strategy was in alignment with reinforcement for that kind of trial (i.e., lose-
shift), unambiguously negative outcomes outweighed this potential advantage. Note that since

participants on average experienced similar rates of both draws and losses (see Table 2), the

participants’ behavior after losses cannot be explained simply due to the low frequency of

losses. The possibility remains that poorer performance following losses might be a result of

the complexity of the strategy required. In the context of RPS, shifting requires the additional

step of selecting from one of two responses that are different from the previous trial. This is in

contrast to staying, which involves the repetition of only a single option. Staying also aligns

with decision inertia, i.e., a bias towards simply repeating choices [11]. We addressed this con-

cern in Experiment 2.

Experiment 2

In Experiment 1, we found that against exploitable opponents with clearly defined counter-

strategies, losing led to suboptimal decisions relative to either drawing or winning, even when

the specific strategy was consistent with the default lose-shift rule. It is further notable that the

rate of optimal decisions made after wins was not significantly different from the rate of opti-

mal decisions after draws, even though the proportion of wins (49.4%) exceeded both losses

(23.6%) and draws (27.0%). Participants thus had more opportunity to learn the correct

exploitable choice following wins relative to draws, but this did not yield higher optimization

following wins. Furthermore, participants also had roughly equal opportunity to learn the pat-

tern of outcome-response contingencies following both draws and losses. However, given the

difference between the rates of optimization following draws and losses, it would appear losses

impact decision-making in ways that draws do not (similar to [32,33]). However, a problem

with this interpretation is that the nature of the present outcome might interact with the com-

plexity of the future action required by it. Specifically, shifting in a three-response game such

as RPS requires at least one more processing step relative to staying: not only does one have to

decide to switch, one has to decide which response to switch to. Therefore, lose-upgrade might

be more difficult that draw-stay because of the requirement to upgrade, and not the actual loss.

To test this idea, we reconfigured the outcome-response pairings in Experiment 2 such that

the optimal choice after losses was to stay. The other optimal responses were win-upgrade and

draw-downgrade (see Table 1). Thus, the optimal strategy after a draw was now more complex

but in line with reinforcement, whereas the optimal strategy after a loss was simpler but mis-

aligned with reinforcement and aligned with decision inertia. Again, none of the optimal

responses aligned with myopic best reply. If the reduction in optimal performance following
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losses in Experiment 1 was due to stay responses being easier than specific shift responses,

then the difference in rates of optimal responding after losses and draws should reverse in

Experiment 2.

Method

40 individuals (28 female) from the University of Sussex community participated in the study;

mean age was 22.95 years (SD = 5.53) and 36 were right-handed. Participants received a flat

£10 reward for their participation and an average £2 extra for performance. The protocol was

approved by the Sciences Technology Research Ethics Committee (C-REC) at the University

of Sussex under ER/JS753/5.

The core of Experiment 2 was identical to Experiment 1 in terms of within-participant

manipulations of both opponent (unexploitable, exploitable) and value (low, high) across four

counterbalanced conditions (90 trials each). The low value conditions were associated with

points only (+1, -1, 0 for wins, losses and draws, respectively), whereas the high value condi-

tions were associated with the same points but also converted to money at the end of the exper-

iment at the rate of 10p per point. If the final score summed across both high value conditions

was zero or negative due to a high number of losses, the participant received the baseline £10

as compensation. Unexploitable and exploitable opponents were identical to Experiment 1,

apart from a reconfiguration of the required outcome-action associations required for success-

ful opponent exploitation: win-upgrade, lose-stay, and draw-downgrade (see Table 1). For anal-

yses of outcome value and player confidence, see S2 File.

Results

Item selection and outcome at trial n. We analyzed item selection and outcome at trial n
in an identical manner to Experiment 1 (see Table 2). In the three-way repeated measures

ANOVA, there was only a significant main effect of item [F(2, 78) = 5.94, MSE = .01, p = .004,

ηp
2 = .13]. Participants were more likely to choose rock than paper or scissors (35.72%, 32.53%

and 31.76%, respectively; Tukey’s HSD, p< .05 for both comparisons). There was no two-way

interaction between item choice and opponent [F(2, 78) = 0.22, MSE = .004, p = .804, ηp
2 =

.01] or item choice and value [F(2, 78) = 2.64, MSE = .01, p = .078, ηp
2 = .06], and no three-

way interaction [F(2, 78) = 0.23, MSE< .01, p = .792, ηp
2 = .01]. The item bias towards rock,

not present in Experiment 1, is in line with previous findings [8,18,28].

We also analyzed the item choice data with regular (with exclusions), robust (without exclu-

sions), and Bayesian (without exclusions) linear mixed effects approaches, as in Experiment 1.

We detected five extreme outliers in the data. In the linear mixed effects model using the data

with exclusions, the interaction effect between item choice and value became significant [F(2,

78) = 2.64, p = .039, ηp
2 = .02]. The item bias towards rock, also observed in Experiment 1, was

significant in the high value condition only (Tukey’s HSD; p< .05 for all comparisons within

the high value condition; p> .05 for all comparisons within the low value condition). The

results of the robust and Bayesian linear mixed effects models were similar. The results of these

analyses were otherwise not meaningfully different from the results of the ANOVA.

In terms of outcome at trial n, and as in Experiment 1, outcome distributions against the

unexploitable opponent were roughly uniform (33.75% wins, 34.17% losses and 32.08%

draws), while win-rates were above 33.3% against the exploitable opponent (47.35% wins,

26.24% draws and 26.42% losses). This was reflected in a significant main effect of outcome [F

(1.18, 46.13) = 28.27, MSE = .04, p< .001, ηp
2 = .42] and a significant interaction between

opponent and outcome [F(1.28, 49.85) = 25.58, MSE = .03, p< .001, ηp
2 = .40]. Wins were sig-

nificantly more frequent than both losses and draws against the exploitable opponent (Tukey’s
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HSD; p< .05 for both comparisons) As in Experiment 1, the results indicate group success in

opponent exploitation. The overall win-rate for Experiment 2 was not significantly different

from the win-rate observed for Experiment 1 (47.35% versus 49.40%; t[78] = 0.607, p = .546).

The interaction between value and outcome [F(2, 78) = 0.58, MSE = .01, p = .56, ηp
2 = .015]

and the three-way interaction [F(1.55, 60.52) = 0.73, MSE = .0, p = .454, ηp
2 = .02] were not

significant.

We detected no extreme outliers in the outcome data. Nevertheless, we also analyzed the

outcome data with regular, robust, and Bayesian linear mixed effects approaches, as in Experi-

ment 1. The results of these models did not differ meaningfully from the results of the

ANOVA.

First-order repetition effects. We analyzed proportion data using the last 89 trials in

each block as per Experiment 1 (see Fig 3). As before, there was no discernible pattern of

behavior against unexploitable opponents. Against exploitable opponents, the rank order of

outcomes producing optimal responses (more likely to least likely) was wins, then draws, then

losses.
The main effect of player strategy at trial n+1 was not significant [F(1.48, 57.84) = 0.34,

MSE = .15, p = .646, ηp
2 = .01]. However, there were significant interactions between opponent

and player strategy at trial n+1 [F(2, 78) = 9.91, MSE = .03, p< .001, ηp
2 = .20] and between

outcome at trial n and player strategy at trial n+1 [F(2.34, 91.26) = 18.33, MSE = .14, p< .001,

ηp
2 = .32], indicating that player choices of staying, upgrading and downgrading were affected

by the outcomes of previous trials as well as opponent exploitability. Further, there was a sig-

nificant three-way interaction between opponent, outcome at trial n, and player strategy at

trial n+1 [F(1.93, 75.26) = 25.14, MSE = .12, p< .001, ηp
2 = .39], replicating Experiment 1.

There was no significant interaction between value and player strategy at trial n+1 [F(1.67,

65.03) = 0.73, MSE = .04, p = .464, ηp
2 = .02]. There was also no significant three-way

Fig 3. Proportion response data from Experiment 1 in terms of the relationships between the outcome at trial n (win,

lose, draw) and the strategy selected at trial n+1 (stay, downgrade, upgrade). Participants competed against four

opponents defined by the factors of value (low, high) and exploitability (unexploitable, exploitable). Error bars represent

standard error.

https://doi.org/10.1371/journal.pone.0262249.g003
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interaction between opponent, value and player strategy at trial n+1 [F(2, 78) = 0.05, MSE =

.03, p = .947, ηp
2 < .01], no significant three-way interaction between value, outcome and

player strategy at trial n+1 [F(3.34, 130.27) = 1.09, MSE = .02, p = .359, ηp
2 = .03], and no four-

way interaction [F(2.51, 97.90) = 0.25, MSE = .04, p = .825, ηp
2 < .01].

When playing against the unexploitable opponent, there were no significant differences

between strategy at trial n+1 as a function of outcome at trial n (Tukey’s HSD; p> .05 for all

comparisons; see top panel of Fig 3), replicating Experiment 1. This again suggests that partici-

pants, on the group level, were able to approximate random responding with regard to previ-

ous outcomes and were not generally biased by reinforcement when playing against

unexploitable opponents. As in Experiment 1, we also carried out binomial tests for each

response and outcome type, separately for each individual participant in the unexploitable

conditions, under the null hypothesis of 33.3% for each analysis. As in Experiment 1, for a

handful of participants—7 individuals in the low value condition and 9 in the high value con-

dition—the null hypothesis could not be rejected (p> .05) for any decision types following

any outcome type. That is, these participants had no biases in any direction as a function of

reinforcement. As in Experiment 1, after any specific outcome type, the most common pattern

of responding was not biased either towards or away from reinforcement (see Table 3).

In the exploitable condition, the optimal choice of upgrading following a win, staying fol-

lowing a loss, and downgrading following a draw were all significantly more likely than either

of the suboptimal choices following each outcome (Tukey’s HSD; p< .05 for all comparisons;

see bottom panel of Fig 3). However, in Experiment 2, there were no significant differences in

rates of optimal decisions between win, lose and draw trials (Tukey’s HSD; p> .05 for all com-

parisons). This was contrary to Experiment 1, where the rate of optimal decisions following

losses was significantly lower than that following wins or draws.
Similar to Experiment 1, we categorized participants in the exploitable blocks as successful

or unsuccessful. Out of the 40 participants, 10 failed to reach a win-rate significantly higher

than chance on both blocks, with a further 12 failing on one of the blocks (5 for the high value
block and 7 for the low value block). As in Experiment 1, the data of the remaining 18 success-

ful participants was similar to that of the whole sample (see top panel of Fig 4). The unsuccess-

ful participants played essentially randomly, with no strategic learning observable after any

outcome (see bottom panel of Fig 4). As in Experiment 1, it seems that the overall results were

not skewed by the unsuccessful participants.

There was no significant interaction between value and player strategy at trial n+1 [F(1.67,

65.03) = 0.73, MSE = .04, p = .464, ηp
2 = .02]. There was also no significant three-way interac-

tion between opponent, value and player strategy at trial n+1 [F(2, 78) = 0.05, MSE = .03, p =

.947, ηp
2 < .01], no significant three-way interaction between value, outcome and player strat-

egy at trial n+1 [F(3.34, 130.27) = 1.09, MSE = .02, p = .359, ηp
2 = .03], and no four-way inter-

action [F(2.51, 97.90) = 0.25, MSE = .04, p = .825, ηp
2 < .01].

We also conducted the first-order repetition effect analysis using regular (with exclusions),

robust (without exclusions), and Bayesian (without exclusions) linear mixed effects approaches

as in Experiment 1. We detected two extreme outliers in the data. There were no meaningful

differences between the results of the different linear mixed effects models, and the results of

these models did not differ from the results of the ANOVA. There were also no differences

between the results of pairwise comparisons using the full data or the data that excluded

extreme outliers.

Cross-experiment comparison of optimal choices. To assess the central question of

whether relationships between outcome and strategy were equally challenging against

exploitable opponents in Experiments 1 and 2, we conducted a Bayesian model comparison of

models. The rationale for this analysis was to test whether the difference between the
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significant effect of outcome on optimal decisions in Experiment 1 was truly different from the

non-significant effect in Experiment 2. That is, whether the difference between significant and

non-significant was itself significant or not [34].

We included only optimal decisions in the analyses. We first checked the optimal decision

data for extreme outliers in each separate condition, i.e., grouping by outcome (win, lose,

draw), value (high, low), and experiment (Experiment 1, Experiment 2). We found no extreme

outliers, so we conducted the analyses without any exclusions.

Initially, we had conducted a three-way mixed ANOVA on rates of optimal choices, with

outcome (win, lose, draw) and value (low, high) entered as repeated measures factors and

experiment entered as the grouping variable (see Figs 1 and 3). Since the most crucial effect in

this model, the interaction between experiment and outcome (indicating whether the effect of

outcome on performance differed between the experiments) was marginal [F(2, 156) = 2.86,

MSE = .11, p = .061, ηp
2 = .04], we used a Bayesian approach to examine this effect.

We created two alternative linear mixed models, using the lmerTest package [25], with the

rate of optimal decisions (i.e., playing the winning strategy) as the dependent variable, outcome

(win, lose, draw) and experiment (Experiment 1, Experiment 2) as fixed effects, and participant ID

as a random effect, allowing variability in the intercept but not slopes. The difference between the

two alternative models was in whether we included an interaction term: Model 1 included both

the main effects of outcome and experiment and their interaction, whereas Model 2 included

only the main effects. We did not include the effect of value, as the value manipulation did not

seem to affect rates of optimal decisions in either experiment nor the mixed ANOVA comparing

the experiments. Thus, by comparing the models we could see whether the data had a better fit

with a model that allowed only overall differences between outcomes and experiments, or a

model that allowed for a difference between experiments in how outcomes affected decisions.

We used the bayesfactor_models function from the bayestestR package [35] to compare the

models. We tested Model 1 (including the interaction between factors) against Model 2

Fig 4. Proportion response data from unsuccessful and successful participants in the exploitable condition of

Experiment 2 in terms of the relationship between outcome at trial n (win, lose, draw) and the strategy selected at

trial n+1 (stay, downgrade, upgrade). Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0262249.g004
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(without the interaction) as the null: the test yielded a Bayes factor of 0.001, indicating substan-

tial evidence in favor of the null. (Vice versa, testing Model 2 against Model 1 as the null

yielded a Bayes factor of 818.64, indicating substantial evidence against the null.) Thus, Model

2 was clearly the better model of the two. This model had a significant main effect of outcome

[F(2, 398) = 31.52, p< .001, ηp
2 = .131] and no significant main effect of experiment [F(1,78)

= 0.02, p = .889, ηp
2 = .000]. Neither including the value condition and interactions involving

value nor using Bayesian linear mixed effects models in the models to be compared changed

this result. Thus, there was no evidence of any overall difference in optimal decision-making

between the experiments.

Averaging over the experiments, optimal decisions were the most common following

wins (EMM = 60.3%, 95% CI = [55.9%, 64.8%]), second most common following draws
(EMM = 50.2%, 95% CI = [45.8%, 54.7%]), and the least common following losses
(EMM = 42.8%, 95% CI = [38.4%, 47.3%]). All pairwise comparisons between the outcome

conditions were significant (Tukey’s HSD; p < .05 for each comparison).

In sum, the result of the cross-experiment comparison suggests that there was no difference

between the results of Experiments 1 and 2 in terms of performance. Rather, a model where

only the outcome of the previous round affected the rate of optimal responding against an

exploitable opponent describes the data best. The results suggest that performance was best

after unambiguously positive (win) outcomes, followed by ambiguously negative or neutral

(draw) outcomes, with unambiguously negative (lose) outcomes leading to the worst perfor-

mance. Given the differences between experiments in how the optimal strategies to follow

after losses and draws aligned with reinforcement and/or inertia, the results suggest that such

alignment did not affect learning.

Discussion

Regarding performance against unexploitable opponents, the data from Experiment 2 replicate

Experiment 1, with participants behaving in accordance with a fair approximation of MS, at

least when it comes to reinforcement-based deviations from randomness. These results are

inconsistent with our previous studies in which participants expressed clear lose-shift biases

against unexploitable opponents [18,22] and other studies using other types of games [12,13].

A potential explanation for the lack of outcome-response biases would be that participants in

our previous studies encountered opponents only of an unexploitable nature. Thus, when the

design allows for exposure to both unexploitable and exploitable opponents across separate

blocks, this may improve the likelihood of random behavior in the unexploitable case (see also

[19], Experiment 2). Such a speculative hypothesis would require further testing, perhaps

using between-participants designs manipulating the context within which unexploitable

opponents are encountered.

General discussion

First, the present studies challenge the view that humans would always find it difficult to

behave randomly [29,30], at least when it comes to reinforcement-based deviations from ran-

domness. Our demonstrations of randomness within simple games are consistent with Rapo-

port and Budescu’s critiques of empirical studies into subjective randomness [3].

Traditionally, the evaluation of subjective randomness has taken the form of explicit produc-

tion tasks where the nature of instruction and measurement may bias the participant towards

non-random behavior. Rapoport and Budescu argued that it is more likely that randomness is

expressed within a dyadic zero-sum game: a task where random behavior is optimal to—but

not explicitly specified within—the task. West and Lebiere later provided a plausible model of
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how mutual attempts at exploiting an opponent’s patterns of play can lead to random choices

for both players in the long term [31]. Humans are more likely to exhibit predictable behavior

when there is no threat of exploitation [36]. However, participants in our studies produced

random-like behavior on the group level without a second human agent and without any

attempt from the opponent to exploit the participants (unlike [3,31]). Thus, mutual attempts

at exploitation may not be a necessary condition for MS-like behavior in humans. The only

overall biases we observed were not reinforcement biases at all, but very modest item biases,

which replicated previous findings: participants were slightly more likely to choose rock than

other items [8,18,28].

However, we must also note differences between studies in how randomness is measured.

For example, Rapoport and Budescu measured several indices of non-random decisions

including different lengths of item choice patterns and conditional probabilities on both the

group and individual level [3]. In more recent studies on reinforcement biases specifically,

simple group averages of conditional probabilities (such as probabilities of stays and shifts con-

ditional on the outcome of the previous trial) are common [10–12]. Our studies are in this lat-

ter, narrower tradition, as we focused on reinforcement biases specific to situations with

feedback, such as zero-sum games. While we have described participant behavior as MS-like, it

is only in the context of the kinds of deviations from randomness that show up reliably even in

game studies (in contrast to pure randomness production tasks). However, we also examined

individual-level biases in our samples and found that participants who had no biases either

toward or away from reinforcement against unexploitable opponents did not constitute a

majority of our samples. Our results do not imply that reinforcement biases such as win-stay
and lose-shift do not exist, but they do question the nomothetic view that such biases are a gen-

eral property of human cognition. Individuals can avoid biases or even have biases against
reinforcement, and aggregate statistics may mask some of these patterns (see [36–38]).

Second, the present studies did not find evidence for a reinforcement bias effect in learning

optimal strategies against exploitable opponents. Initially, we reasoned that strategies in line

with win-stay / lose-shift should be learned more easily than strategies that were misaligned

with these reinforcement rules [10–13]. Against this idea, performance in Experiment 1 was

better in the two cases in which the optimal response was not aligned with reinforcement (i.e.,

win-shift, draw-stay), relative to the one case where there was alignment (i.e., lose-shift). Our

interim conclusion was that the experience of unambiguously negative outcomes compromises

performance in ways that other outcomes do not [39]. One charge against this claim was that

shift rules might simply have been harder to implement than stay rules in games with more

than two choice options. To initiate a stay decision, the player must be able to represent the

previous response. To initiate a shift decision, the player must not only reject their representa-

tion of the previous response, but must additionally draw upon an inventory of alternative

actions and select appropriately from them. As the number of possible responses within the

game increases, so too does the size of the inventory of alternative actions and the complexity

of the selection process. Alternatively, stay rules may have been easier to learn due to align-

ment with inertia, regardless of the number of shift options.

In Experiment 2, we addressed these concerns with an exploitable opponent that required

to implement a lose-stay rule in order to play optimally. This rule was misaligned with rein-

forcement but reduced the complexity of the decision and aligned the decision with inertia.

Contrary to Experiment 1 and our expectations, we observed that the rate of optimal lose-stay
decisions in Experiment 2 was not significantly different from the rate of optimal win-shift and

draw-shift decisions required against exploitable opponents.

However, when comparing between the two experiments, there were no significant differ-

ences in the rates of optimal choices after any given outcome type. The results of the cross-
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experiment comparison suggest that alignment with reinforcement and/or inertia either

played no role or was swamped by the effect of specific outcomes. Note that since none of the

optimal strategies in Experiments 1 and 2 were aligned with myopic best reply, we cannot be

certain whether the results would have been the same if some of the optimal shift responses

had aligned with it. However, since this was true for all optimal strategies, we can be certain

that learning different outcome-strategy pairings was not affected differently by alignment

with myopic best reply.

Optimal responses were the least likely following unambiguously negative (lose) outcomes,

followed by ambiguous outcomes (draw), and the most likely following unambiguously posi-

tive (win) outcomes (across Experiments 1 and 2; 42.8%, 50.2% and 60.3%, respectively). Better

performance after wins may simply reflect the fact that after participants had learned some

approximation of the correct strategy, they would naturally win more. Due to this, they would

also have more opportunities to solidify their understanding of the correct move to make after

a win than after a draw or a loss. In sum, participants had more chances to learn what to do

after winning. However, performance after losses was poorer than after draws, suggesting that

losses inhibited learning–the fact that losses were as frequent as draws means that participants

had equal chances to learn. Despite losses and draws both representing a failure to reach a

goal, losses appear to impact on decision-making in ways that draws do not [26,27]. Given that

the participants performed best after wins and worst after losses, regardless of alignment with

reinforcement, the strongest predictor of optimal responding against exploitable opponents

was the valence of the previous trial.

Conclusion

We evaluated the ability of participants to avoid the reinforcement heuristic (win-stay, lose-
shift) in the game of Rock, Paper and Scissors in two ways: in their ability to play randomly

when there is no way to exploit their opponent, and in their ability to learn decision rules that

did not align with reinforcement. Against unexploitable opponents, participants exhibited no

evidence of any reinforcement biases on average, and instead stayed and shifted randomly after

each outcome type. Against exploitable opponents, participants were less successful after losses

than draws, regardless of alignment with reinforcement, and despite equal learning opportuni-

ties. The data suggest that humans are able to break the bonds of seemingly robust reinforce-

ment biases, and that the valence of the feedback itself can affect learning more than

reinforcement.

The results do not disprove the importance of reinforcement, but they do contradict the

assumption that reinforcement is always a significant factor in deviations from randomness or

from optimal strategies that do not align with reinforcement. Future research needs to unpack

a number of potentially interacting factors regarding the differences between putative “failure”

states, including the over-weighting of losses [39], initial neural responses to losses relative to

draws [19], and the generation and regulation of negative affect following failure [40]. In addi-

tion to this, the interaction between different outcome types and the alignment of optimal

choices after specific outcomes with reinforcement, inertia and myopic best reply is a good

candidate for future research. Finally, future studies should examine, with between-partici-

pants designs, whether exposure to randomly and non-randomly playing opponents, as

opposed to only randomly playing opponents, affects the likelihood of reinforcement biases.
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