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Abstract: LC/ESI/HRMS is increasingly employed for monitoring chemical pollutants in water
samples, with non-targeted analysis becoming more common. Unfortunately, due to the lack of
analytical standards, non-targeted analysis is mostly qualitative. To remedy this, models have
been developed to evaluate the response of compounds from their structure, which can then be
used for quantification in non-targeted analysis. Still, these models rely on tentatively known
structures while for most detected compounds, a list of structural candidates, or sometimes only
exact mass and retention time are identified. In this study, a quantification approach was developed,
where LC/ESI/HRMS descriptors are used for quantification of compounds even if the structure is
unknown. The approach was developed based on 92 compounds analyzed in parallel in both positive
and negative ESI mode with mobile phases at pH 2.7, 8.0, and 10.0. The developed approach was
compared with two baseline approaches— one assuming equal response factors for all compounds
and one using the response factor of the closest eluting standard. The former gave a mean prediction
error of a factor of 29, while the latter gave a mean prediction error of a factor of 1300. In the machine
learning-based quantification approach developed here, the corresponding prediction error was a
factor of 10. Furthermore, the approach was validated by analyzing two blind samples containing
48 compounds spiked into tap water and ultrapure water. The obtained mean prediction error was
lower than a factor of 6.0 for both samples. The errors were found to be comparable to approaches
using structural information.

Keywords: random forest; non-target analysis; suspect screening; quantification

1. Introduction

In medicine, agriculture, and industry, thousands of chemicals are used every day,
and these may end up in the environment [1]. Furthermore, many of the compounds form
different transformation products through environmental photolysis, biodegradation, or
disinfection [2]. To identify emerging contaminants, non-targeted analysis with liquid chro-
matography electrospray ionization high resolution mass spectrometry (LC/ESI/HRMS) is
increasingly employed [3]. For the identification of the detected contaminants, chromato-
graphic and mass spectrometric information is used to yield tentative candidate structures
while analytical standards are required for the full identification [4]. Due to the lack of
analytical standards for a majority of the tentatively identified compounds, the results
of non-targeted analysis are primarily qualitative rather than quantitative [5]. Therefore,
compounds whose structure cannot be unequivocally identified, or for which standards
cannot be obtained, are usually overlooked when estimating the hazard [6,7]. The difficulty
in quantification of the detected compounds arises from the great variations in ionization
efficiency between compounds in the electrospray ionization source, which spans over
six orders of magnitude [8]. Due to this difference, two compounds may give very dif-
ferent signals in the mass spectrometer even if the concentrations are equal [9]. For this
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reason, absolute quantification of the identified compounds is primarily possible using
analytical standards.

To overcome these limitations, machine learning approaches for predicting the ion-
ization efficiency of the detected compounds have recently been developed [10–13]. The
predicted ionization efficiencies can be further used to quantify the tentatively identified
compounds if analytical standards are lacking [11,14,15]. These approaches rely on descrip-
tors deduced from the structure of the compound and, therefore, at minimum a tentatively
known structure of the detected compound is required. However, the concentration of a
detected compound is required for risk assessment even if the confidence in the structure
is low.

A different strategy has been proposed by Pieke et al. [16] which does not require
structural information. In this approach, the sample is spiked with several standard com-
pounds and the response factor of the closest eluting standard is assigned to the detected
compound. This approach assumes that compounds eluting close to each other have very
similar ionization efficiencies and thus do not require the structure of the detected com-
pound. Indeed, ionization efficiency and retention time are influenced by some common
factors. The retention time in reversed phase chromatography is primarily influenced
by the polarity of the compound, where less polar compounds generally elute later [17].
Similarly, compounds with nonpolar moieties tend to have higher ionization efficiency as
they effectively compete for the surface charge of the electrospray droplets [18,19]. Both
retention time and ionization efficiency are also influenced by pKa. For example, strong
bases tend to yield cations through protonation and elute faster than the respective neutral
form and tend to have higher ionization efficiencies in positive ESI mode (ESI+) as proto-
nation in the mobile phase is beneficial to ionization [20,21]. Still, many compounds that
are extremely weak bases in the mobile phase, such as phthalates or esters, can be proto-
nated in electrospray and a signal detected [8]. This can be explained as the protonation
of the compounds which may already occur in the mobile phase, on the droplet surface
which has a higher proton concentration than the droplet center [22] or in the gas phase.
However, it has been observed that among compounds of similar polarity, stronger bases
usually possess higher ionization efficiency in ESI+ [8]. Noteworthy though is that pH
effect on ionization efficiency is unclear and a so called “wrong-way round” ionization
may occur where the cations show highest response in basic mobile phase. Additionally,
the organic modifier percentage can significantly alter the pH of the mobile phase and the
pKa of the compounds [23]. As such, the pKa of the compound and the pH of the buffer do
not alone determine whether an analyte will ionize. For example, significantly different
ionization efficiencies have been observed for the same compound in different buffers with
the same pH [24].

While using retention time to describe the ionization efficiency is a good start, there
may be other LC/ESI/HRMS characteristics which are correlated to ionization efficiency
that are still unexplored. For example, compounds need to have some acidic functionalities
to become deprotonated in negative ESI mode (ESI–). Here we develop an approach
that predicts the LC/ESI/HRMS response factor from the chromatographic and mass
spectrometric characteristics, called the LC/MS descriptors model throughout the paper.
We use the predicted response factors to quantify the compounds detected in non-target
analysis without the previous structural assignment. The approach has been developed
on a dataset of 92 compounds and tested on 28 compounds analyzed at three mobile
phases with different pH in both positive and negative ionization mode. We further
compare the performance with two baseline approaches, one assuming equal response
for all compounds, and one using the response factor of the closest eluting standard.
Additionally, we compare the prediction accuracy of the LC/MS descriptors model with an
approach proposed previously by Liigand et al. [11] that uses the structure of the detected
compounds for predicting the response. The performance of the proposed approach was
validated for 48 compounds in blind spiked tap and ultrapure water samples.
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2. Methods
2.1. Chemicals

Acetonitrile, methanol, and acetone (HPLC grade, Riedel-de-Haën, Seelze, Germany)
were used as solvents as well as 0.1% formic acid (Merck, Darmstadt, Germany) in ultrapure
water. The ultrapure water with resistance 18.2 MΩ cm and TOC < 5 ppb was prepared by
Milli-Q IQ 7000 device from Merck (Darmstadt, Germany).

The aqueous mobile phase components were 0.1% formic acid solution (pH 2.7),
5.0 mM ammonium bicarbonate buffer (pH 8.0), and 0.1% ammonium solution (pH 10.0).
Formic acid, ammonium bicarbonate were purchased from and ammonium (25%, MS
grade) was purchased from Merck (Darmstadt, Germany). The organic phase used was
acetonitrile (HPLC grade, Riedel-de-Haën, Seelze, Germany).

2.2. Compounds

Altogether three sets of compounds were analyzed independently. The training set
contained 101 compounds out of which 92 were detected, while the test set contained
31 compounds, of which 28 were detected. The list of compounds for both sets, as well
as their measured retention times and response factors, is presented in Supplementary
Materials (Tables S1 and S2). Standard solutions where prepared with concentrations
ranging from 1.7 × 10−6 to 2.4 × 10−5 M depending on the compound from stock solutions
(approximately 1000 mg/kg, one year old). Five dilutions of each standard solution were
prepared and analyzed for both the training and test set. The solution containing the
training set compounds was diluted by a factor of 1, 2, 4, 20, and 40 and the solution
containing test set compounds was diluted by a factor of 1, 2, 10, 20, and 100. Stock
solutions used were stored at −19 ◦C.

2.3. Instrumental

Samples were analyzed with LC/ESI/HRMS in parallel in positive and negative
ionization mode. Analysis was performed on a Thermo Scientific Dionex Ultimate 3000
(ThermoFisher ScientificTM, Waltham, MA, USA) with an RS binary pump and a Thermo
Scientific Q Exactive Orbitrap (ThermoFisher ScientificTM, Waltham, MA, USA). A Kinetex
2.6 µm EVO C18 (150 × 3.0 mm) reversed phase column from Phenomenex (Torrence,
CA, USA) was used for all LC runs. The gradient started with 5% acetonitrile and was
increased to 100% over 20 min, was kept at 100% acetonitrile for 5 min, and then lowered
back to 5% over 0.1 min. The system was equilibrated for 5 min between runs. The column
oven temperature was 40 ◦C and the mobile phase flow rate was 0.350 mL/min. The
autosampler temperature was kept at 15 ◦C. The scan range was m/z 65 to 975 Da and the
resolution 120,000. Auxiliary gas, sheath gas, and sweep gas flow rates were set to 3, 35,
and 0 arbitrary units, respectively. The auxiliary gas and capillary temperature were 320 ◦C
and the S-lens RF level was 50%.

2.4. Data Processing

The LC/ESI/HRMS results were extracted using Thermo Xcalibur Processing Setup
Quan Identification and Thermo Xcalibur Quan Browser (Thermo Fisher ScientificTM,
Waltham, MA, USA) and Compound Discoverer version 3.2 (Thermo Fisher ScientificTM,
Waltham, MA, USA). [25]. For all datasets the peaks of the protonated or deprotonated ions
were integrated depending on the ionization mode. The presence of sodium adducts at pH
2.7 was also checked and recorded as yes/no. For Quan Browser the mass tolerance was set
to 10 ppm and peak integration was adjusted manually when necessary. For Compound
Discoverer the mass tolerance was set to 5 ppm, and the maximum retention time shift
was set to 1.5 min for the alignment. The S/N threshold was set to 3 and the minimum
peak intensity was set to 10,000 for compound detection. Grouping was done with a mass
tolerance of 5 ppm and an RT tolerance of 0.1 min. The results were then filtered based
on the suspect lists and noise peaks were removed. The “Fill Gaps” and “Search Mass
List” nodes were used with default settings. Some compounds yielded split peaks. In
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these cases, the peak areas of the two split peaks were summed and the retention time was
taken as the mean retention time. The retention time in the final dataset was taken as the
mean retention time over all dilutions. The slopes in the linear range of the calibration
curves of the training and test data were calculated using R version 4.0 [26] and were used
as the response factors in the further analysis. Here we assume that the response factors
are primarily influenced by the ionization efficiency of the compounds. The logP and pKa
values were calculated with Chemicalize from ChemAxon (Budapest, Hungary) [27].

3. Model Development
Model Training and Evaluation

Twelve descriptors were extracted from the raw data for each of the compounds and
were used to train the models. These descriptors were selected based on their potential to
describe either the polarity or acid-base properties of the compounds as these have been
factors known to influence the ionization efficiency in ESI. The following descriptors were
selected: the logarithm of the relative intensities of the peak areas in positive and negative
mode for each pH, the retention time at each pH, the difference between the retention time
at pH 8.0 and pH 2.7, the difference between the retention times at pH 8.0 and pH 10.0,
the m/z of the compound, if the compound formed sodium adducts, if the compound was
detected in negative mode, and if the m/z was odd or even. For the relative intensities
the value was set to −999 when the compound was not detected in positive mode, and to
999 when it was not detected in negative mode. This was done to represent signals below
the limit of detection as well as to allow these datapoints to remain in the dataset as the
model cannot handle missing values. Since the models have been trained with random
forest, which does not assume linear dependence between the descriptors and output
criteria, any values that are consistent and fall far from the continuous range can be used to
indicate compounds that could not be detected.

The LC/MS descriptor model was trained using Regularized Random Forest from
RRF package. One model was trained for each combination of ionization mode and mobile
phase pH, giving six random forest models in total. Each model was trained to predict the
logarithm of the response factor. The caret package [28] with default settings was used to
optimize the hyperparameters; the optimal values for each of the models can be found in
Table S4. The importance of the descriptors in the random forest models was evaluated by
permuting the variable values for each of the trees in the random forest regressor using the
importance function from the RRF package [29].

The random forest models using LC/MS descriptors were also compared with two
baseline models: (1) assuming equal response factor [30] and (2) using the closest eluting
standard [16]. For the equal response factor baseline model, the mean response factor of
the 92 standards in the training set was taken as the response factor for all compounds:

log(RF) =
∑n

i=1 log(RFi)

n
(1)

where n is the number of compounds in the training set and RFi is the response factors of
i-th compound.

In the closest eluting standard baseline model, [16] the compound was assigned the
response factor of the standard in the training set with the closest retention time:

RF = RFi (2)

where RFi is the response factor of the standard in the training set with the most similar
retention time to the compound. The closest eluting standard approach was used for pH 2.7
positive mode only.

The LC/MS descriptors models as well as the baseline approaches were then em-
ployed to predict the response factors for the compounds in the test set. In the case of
the LC/MS descriptors models and the equal response model, the response factors were
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converted back from logarithmic values and further used to estimate the concentrations of
the compounds in the test set. Assuming an insignificant intercept of the calibration curve,
the concentrations were estimated:

c =
Peak area

RFpred
(3)

For the LC/MS descriptors approach, the six different models using LC/MS descrip-
tors were applied yielding one predicted concentration for each ionization mode and mobile
phase pH. Thus, up to six concentrations for the same compound were obtained giving a
range of concentrations rather than a single value.

The accuracy of the predictions was expressed as a prediction error in folds and
calculated as follows:

error = max

{ cpredicted
cactualcactual

cpredicted

(4)

The models were evaluated using the test set based on several performance metrics,
namely, the mean, median, and maximum error as well as the percentage of compounds
with a prediction error lower than a factor of 10. The exercise of analysis of samples and
model development was repeated three times over the course of one year. The results
obtained for the test set were similar in all cases. Here we report the results for the final
model for which the standards were analyzed together with the validation samples and are
therefore most valuable.

The code for all models and data for model training, testing, and validation can be
found in https://github.com/kruvelab/ionization_efficiency_without_structure.

4. Validation

The LC/MS descriptors models were validated using four blind samples: ultrapure
water and tap water both spiked at high and low concentration. Both ultrapure and tap
water samples contained 63 compounds which were identified based on a list of the exact
masses. Of the 63 compounds, 48 (listed in Table S3) were detected in at least one of the
ionization modes using the same peak detection and integration method described in the
“Data Processing” section. The developed models were used to estimate the response factors
of the compounds and their respective concentrations according to Equation (3), and the
prediction errors were calculated using Equation (4). The concentrations of the compounds
in these samples were not known until after the quantification had been performed. Full
lists of all compounds can be found in Tables S1–S3.

The performance of the LC/MS descriptors model was also compared to a model
previously published by Liigand et al. [14] This random forest model is based on PaDEL
descriptors [31] calculated from SMILES representation of the chemical and include dif-
ferent molecular descriptors and fingerprints, for example, the number of nitrogen and
hydrogen atoms, and presence of specific functional groups, but also topological and elec-
tronic descriptors. Additionally, mobile phase descriptors, such as pH of the water phase,
viscosity, surface tension, and polarity index, are used to account for the effect of the mobile
phase. The model was applied to the training, test and validation data described as the
other previously approaches.

5. Results
5.1. Predicting Response Factors

The response factors were predicted for compounds detected in the training and test
sets with positive and negative ionization mode for mobile phases with pH 2.7, 8.0, and
10.0, with the respective six models using LC/MS descriptors. The experimental response
factors ranged from 1.7 × 1012 to 3.0 × 1017 M−1 in the training set and from 1.8 × 1013 to
2.9 × 1017 M−1 in the test set. A good correlation between the experimental response factor
and the predicted response factor for all six developed models using LC/MS descriptors

https://github.com/kruvelab/ionization_efficiency_without_structure
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was observed in both the training and test sets, as can be seen in Figures S1 and S2. In the
training set, the mean prediction error for the response factor was a factor of 2.6 and the
median prediction error was a factor of 1.6. For the test set the corresponding errors were
somewhat higher with a mean error of a factor of 10.4 and a median error of a factor of 2.7.

5.2. Predicting Concentration

The predicted response factors were thereafter used to estimate the concentration
of the detected compounds according to Equation (3). The concentrations in the test set
ranged from 1.8 × 10−8 to 1.7 × 10−5 M. A good correlation between the predicted and
spiked concentration was observed, as seen in Figure 1a. The mean prediction error for
the concentrations was a factor of 3.2 for the training set and a factor of 10.2 for the test
set. Median errors were a factor of 1.7 and 2.8 for the training and test set, respectively. In
the training set, 98% of the datapoints (datapoints refer to compound and concentration
combination in each ionization mode) had a prediction error lower than a factor of 10, the
corresponding value in the test set was 83%. Therefore, concentration prediction accuracy
is very close to that of the response factor and reveals that response factor prediction is the
largest source of uncertainty in the predictions.

Figure 1. (a) The predicted concentration plotted against the actual concentration for the closest
eluting standard approach, the equal response factor approach (equal RF), and the LC/MS descriptors
models. Each point represents a compound at a certain concentration, the outer lines show a
prediction error of a factor of 10 and the middle line show where the predicted and true concentrations
are equal. (b) A box plot showing the prediction error of the closest eluting compound approach, the
equal response factor approach, and the LC/MS descriptors model.

Since a different response factor prediction model was trained for each pH and ioniza-
tion mode for the LC/MS descriptors models, up to six concentrations were obtained for
each compound. This resulted in a range of estimated concentrations. For most compounds,
this concentration range was narrower than an order of magnitude, which shows a good
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agreement between the models. However, for some compounds, e.g., benzotriazole and
chlorothiazide, the predicted concentrations varied by over two orders of magnitude.

The prediction accuracy varied somewhat between the six different models. In the
training set the lowest mean prediction error was observed for pH 2.7 in positive mode,
with a mean error of a factor of 2.2. The highest mean prediction error, a factor of 4.1, was
observed for pH 10.0 in negative mode. For the test set, the lowest mean prediction error
was a factor of 2.5, observed for pH 8.0 in negative mode, and the highest prediction error
was a factor of 17, which was obtained for pH 2.7 in negative mode. Furthermore, at pH 2.7
negative mode, only 42% of the datapoints gave prediction errors lower than a factor of
10 for the test set, whereas for the other models this value was between 79.3% and 100%.
For the test set, only 7–12 compounds could be detected in negative mode, which likely
influenced the errors. All evaluation metrics for both training and test sets are given in
Tables S5 and S6.

The prediction accuracy of the LC/MS descriptors models developed here was com-
pared with the two baseline approaches. Firstly, the equal response approach for the
training set resulted in a mean prediction error of a factor of 40, a median prediction error
of a factor of 4.8, and 68% of the datapoints having a prediction error lower than a factor of
10. For the test set the mean error was a factor of 29, the median error a factor of 8.7, and
54% of the datapoints had prediction errors lower than a factor of 10. The distribution of
over- and underpredicted concentrations was mostly even. Still, some compounds were
found to have significantly underpredicted concentrations as can be seen in Figure 1a.

The second baseline approach, the closest eluting standard quantification approach
proposed by Pieke et al. [16], yielded both large under- and overestimations of the con-
centrations. No error calculations were made for the training set for the closest eluting
compound approach, since the compounds would be assigned their own response factor.
However, the test set revealed large prediction errors, with a mean of a factor of 1300
and a median of a factor of 12. For this baseline approach, only 46% of the datapoints in
the test set had prediction errors lower than a factor of 10. The comparison of the error
distribution is visualized in Figure 1b and the agreement between the predicted and spiked
concentration in Figure 1a.

5.3. Feature Importance

To investigate which descriptors are most useful in predicting the response factors
from the LC/MS descriptors, the importance feature from RRF package was used. The
three most important descriptors were the relative intensities of the peaks in positive and
negative mode in the different pH mobile phases (see Figure 2). Following the intensity
ratio of positive and negative mode peaks, the fourth most important feature was the m/z
of the compounds. The retention time difference between pH 2.7 and 8.0 alongside other
retention time descriptors were also found to be of some importance. The descriptors of
least importance were formation of sodium adducts, odd-even nominal m/z, and detection
in negative mode. The importance of the descriptors was mostly similar across the six
models in terms of which descriptors were the most important, though the exact values
differed. The importance values for all descriptors in each model can be found in Table S7.

5.4. Validation Results

The best performing quantification approach, i.e., the models using LC/MS descrip-
tors, were validated with four blind samples: two ultrapure water samples and two tap
water samples, spiked with 63 compounds. Depending on the mobile phase, the number
of detected compounds ranged from 41 to 43 for positive detection mode, and 13 to 24
in negative detection mode, see Table S3. The concentrations of the compounds ranged
from 3.8 × 10−10 to 1.5 × 10−6 M, while the predicted concentration range was between
3.6 10−10 and 1.3 10−5 M (see Figure S3). The concentration prediction accuracy was com-
parable for the two matrices, with the mean prediction error being a factor of 6.0 and 5.5
for the ultrapure and tap water samples, respectively. The median prediction errors were
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a factor of 2.6 for the spiked ultrapure water samples and a factor of 2.4 for the spiked
tap water samples. Furthermore, 88% and 90% of the compounds were found to have
prediction errors lower than a factor of 10 for the spiked ultrapure and tap water samples,
respectively. The performance characteristics were very similar to what was found for the
test set, indicating the robustness of the method.

Figure 2. A bar plot showing the mean importance of the descriptors in the six developed random
forest models using LC/MS features. The importance was calculated using the importance function
from the RRF package in R. Descriptors correlated to logP are colored purple while descriptors in
blue showed no significant correlation to neither logP nor pKa.

5.5. Comparison with Quantification Based on Structure

Another aspect of interest was to compare the prediction accuracy of the newly
developed LC/MS descriptors models to that of a model requiring structural information.
For this, we used a model previously published by Liigand et al. [11] to estimate the
concentrations for the compounds in both the test and the validation set. The training set
was used to establish the relationship between the predicted ionization efficiency and the
response factor. The mean prediction error was a factor of 16.0 for the test set, 22.9 for the
validation samples in ultrapure water, and 21.0 for the validation samples in tap water (see
Figure 3). The median prediction errors were a factor of 4.4 and 3.7 for ultrapure and tap
water, respectively. Furthermore, 76% of the compounds had prediction errors lower than
a factor of 10 in both the ultrapure and tap water samples. The results for all prediction
models at each pH and ionization mode can be found in Table S8.

5.6. Comparison of Automatic and Manual Integration

In addition to manual peak integration, Compound Discoverer was used on the same
data for the training and test sets. This was done to evaluate the effect of automatic peak
integration on the quantification accuracy. The errors for the training set were found to be
slightly lower for the manually integrated data with a mean error factor of 3.2 compared
to 4.7 for the Compound Discoverer integrated data (see Figure S4). For the test set the
difference in prediction accuracy was even larger with a mean error factor of 10.2 for the
manual integration compared to 35.1 when using Compound Discoverer.
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Figure 3. A box plot showing the prediction error for the test and validation set using the random forest
LC/MS descriptors models and the 2D structural descriptors models developed by Liigand et al. [11].

6. Discussion

The prediction errors observed for the response factors in the test and training sets
were very similar to the errors in the concentration prediction. This suggests that in
most cases, the errors in the concentration originate from the response factor predictions
rather than the concentration falling outside the linear range, or that the intercepts of the
calibration curves are significant. The compounds with the largest prediction errors varied
with the pH and ionization mode; however, some compounds, e.g., citrulline, had large
prediction errors in several modes.

6.1. Comparison to Baseline Models

The LC/MS descriptors models showed lower prediction errors compared to the
baseline approaches using the equal response and the closest eluting compound approach.
This is expected, especially for the equal response approach, as the response factors spanned
over five orders of magnitude in both the training and test sets. This indicates a very
large variability of ionization efficiency between different compounds. As can be seen in
Figure 1a, the largest prediction errors in the equal response factor approach are caused
by the underestimated concentrations. The over- and underestimation is likely to vary
depending on the distribution of the response factors in the test and training sets. In this
case, the response factors in the training set were non-normally distributed for any mode or
pH. For the positive mode analysis, the distribution was skewed towards higher response
factors, with many compounds having a response factor between 1015 and 1017 M−1 and
a few compounds having response factors as low as 1012 M−1. Therefore, in positive
mode, some of the largest prediction errors were seen for the compounds with lower
response factors.

For the LC/MS features models some of the largest errors were also observed for
the highest and lowest response factors. This is expected to occur due to “regression
towards the mean”, namely, it is more beneficial for the machine learning algorithms to
predict response factors close to the mean value if a clear pattern explaining the extreme
values cannot be found. Therefore, interpolating models, such as random forest, often
yield highest prediction errors for datapoints with most extreme values. Some examples of
such compounds include carbazole and citrulline, with response factors of 6.0 × 1012 M−1

and 2.0 × 1013 M−1, respectively. In negative mode this effect was much weaker as the
distribution of response factors was centered around 1015, although in this case, a lower
number of compounds was detected.

For the closest eluting compound approach, the source of the large prediction er-
rors can be found in the lack of a clear trend between retention time and response factor
(Figure S5). For example, atraton, with a retention time of 3.5 min at pH 2.7, would indicate
high polarity and therefore a low response factor, as less polar compounds are less attracted
to the droplet surface. Yet, it has the fifth highest response factor in the training set. A
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possible reason for this is that atraton is protonated under these chromatographic conditions,
resulting in high ionization efficiency despite the low polarity. There are several compounds
with similar trends. This means that for these protonated compounds retention time alone
is not a reliable indicator of ionization efficiency. Furthermore, even for the compounds
which are neutral at given mobile phase conditions, no correlation between the response
factor and the retention time could be found. This means that the compound and its closest
eluting standard may have very different response factors, which results in large prediction
errors. For example, diazinon, with a response factor of 1.2 × 1017 M−1 and a retention
time of 13.9 min, was assigned the response factor of carbazole, which had a response of
6.0 × 1012 M−1 and a retention time of 13.6 min. This resulted in the largest prediction
error for diazinon, up to a factor of 21,000 depending on the concentration. Carbazole and
diazinon also have very different acid-base properties, with carbazole having a strongest
acidic pKa of 15.0 and no basic pKa, while diazinon has a strongest basic pKa of 4.2. The
logP values are 3.1 for carbazole and 4.2 for diazinon. These differences in physicochemical
properties are likely to contribute to the significantly different response factors.

One of the lowest prediction errors for this model was observed for ofloxacin, which
had a response factor of 1.7 × 1016 M−1 and was assigned the response factor of
o-desmethylvenlafaxinee, which had a response factor of 3.0 × 1016 M−1. Their logP
values were somewhat different, 2.3 for o-desmethylvenlafaxine and 0.1 for ofloxacin. The
pKa were similar with ofloxacin having a basic pKa of 6.7 and o-desmethylvenlafaxine hav-
ing a basic pKa 8.9. It would therefore appear that even compounds with rather different
properties can have similar response factors and retention times. This, in combination
with the lack of correlation between response factors and retention time, seen in Figure S5,
makes it likely that higher prediction accuracy for some compounds results from chance
alone, rather than from similar physicochemical properties.

6.2. Comparison between Different pH Mobile Phases

It was noticed that the prediction errors for the LC/MS descriptors models were
generally lower for the mobile phase with pH 2.7 in positive mode and for mobile phase
with pH 8.0 in negative. Similar findings were observed previously [11] and have been
associated with the lower ionization efficiencies observed at higher pH for ESI positive
mode. However, while some of the poorly predicted compounds in this study had very
low response factors, some of the highest prediction errors in the test set were seen for the
compounds with some of the highest response factors.

For some compounds with large prediction errors, a trend could be seen for the error
factor and the pH, namely, for febantel and diazinon in the test set, the response factor was
constant between different pH, but the predicted response factor decreased with the pH.
This may arise from the fact that the response factors generally decreased with pH for the
compounds in the training set. This led to an increased underestimation of the response
factor at pH 8.0 and 10.0 in comparison to pH 2.7. On the contrary, other compounds,
e.g., citrulline and dimethyl phthalate, which also had large prediction errors, did not show
the same trend.

6.3. Comparison with Response Factors Predicted from 2D Descriptors

Previously, ionization efficiency values have been predicted from the 2D structural de-
scriptors of the compounds and been applied for the quantification [11]. We also compared
the LC/MS descriptors approach developed in this study with the 2D structure-based
predictions. The model trained in the current study, using chromatographic and mass spec-
trometric descriptors, showed higher prediction accuracy for both the test and validation
sets on all evaluation metrics compared to the structure-based predictions. However, the
current model was validated on the data collected with the same instrument as the training
data, while the model by Liigand et al. [11] is a generic model transferred to our instrument.
It is likely that if the models developed here were transferred to a different instrument,
similar prediction errors could be expected. A previous study on the transferability of
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ionization efficiency scales between instruments found that the root mean square error of
the predicted ionization efficiency was at most a factor of 5.2 (0.72 logarithmic units) when
using a linear model with three anchoring compounds [32].

Interestingly, the compounds showing large prediction errors were different between
the models. For example, in the test set, the three highest prediction errors were ob-
served for diazinon, febantel, and dimethyl phthalate for the LC/MS descriptors model,
whereas the 2D structural parameters models yielded the highest errors for naproxen,
5,5-diphenylhydantion, and diclofenac. This suggests that the models operate differently
and can learn different information from the data. Still, it does suggest that chemical
characteristics influencing ionization efficiency can be extracted from the chromatographic
and mass spectrometric properties of the detected compounds, and thus, concentration
estimations do not have to rely on structural knowledge alone.

6.4. Interpretation of the LC/MS Descriptor Model

It was of interest to understand the chemical information learned by the LC/MS
descriptors models to improve the understanding of the ionization process and predictions
of ionization efficiency. The most important descriptors in the model were peak area ratio
between positive and negative mode at the different mobile phase pH values. Interestingly,
these ratios did not yield a strong correlation to neither logP nor pKa (R2 < 0.20). Our
hypothesis is that these descriptors still give some indication of physicochemical properties
relevant for ionization in ESI, see discussion in Simplifying the Model.

For many of the developed models it seemed that more than one positive/negative
mode ratio was important. Possibly, this arises as some compounds were detected in
both positive and negative mode only at some specific pH. The second set of influential
descriptors was the exact mass, m/z, of the detected compound. The m/z showed a linear
correlation to logP; however, no direct correlation between the m/z and the response factor
could be seen.

Retention times at different pH were also important descriptors, and it was of interest
to investigate if they correlated to the polarity and acid-base properties of the compounds.
Not surprisingly, the retention time at all pHs correlated to logP. Another interesting aspect
was to investigate if the compounds which became protonated in the acidic mobile phase
could be pinpointed based on the retention time differences from one pH to another, namely,
weakly basic compounds should yield a shift in retention time when the mobile phase pH
is increased, and the compounds become neutral. Compounds which showed a shift to
longer retention times at pH 10.0 generally had higher response factors in positive mode,
indicating that these compounds may be basic. Similarly, compounds which shifted to
shorter retention times generally had lower response factors in positive mode, indicating
that these may be acidic. This supports the hypothesis that compounds that are already
ionized in the mobile phase are also easier to be ionized in ESI, which has previously also
been suggested by Kruve et al. [33]. However, no clear correlation could be found between
the shift in the retention time and pKa of the compounds. It is also worth noting that
the pKa values used were calculated in pure water and the mobile phase pH values were
measured in the water phase; however, the pKa and pH values in the buffer and acetonitrile
mixture used in chromatographic analysis is likely to be somewhat different [34].

The three least important descriptors for the LC/MS descriptors models were detection
in negative mode, sodium adduct formation, and if the mass was odd or even. In the case
of the negative mode detection, this is expected as this information is already explained by
the peak area ratios. For the sodium adduct formation, the hypothesis was that compounds
which form sodium adducts often are oxygen bases, i.e., weaker bases, and may thus have
a lower response factor. However, no correlation between the formation of sodium adducts
and the response factor of the compound alone was observed. The odd or even mass would
indicate if the number of nitrogen atoms is odd or even. The presence of nitrogen atoms
makes the compound more likely to be basic, and thus an odd mass could imply that the
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compound is a base. However, compounds with an even number of nitrogen atoms and
compounds with no nitrogen atoms are also grouped together by this feature.

For further interpretation of the models, regression trees were trained with the same
dataset; Figure 4 showing an example of this at pH 2.7 positive ionization mode. The
first node in all positive mode trees was the positive/negative mode peak area ratio at
pH 10.0 indicating a lower response factor for compounds with lower ratio. The second and
third node for positive mode in pH 2.7 and 8.0 related to retention time at pH 2.7 and the
molecular weight of the compound, with compounds of higher m/z and compounds with
longer retention time both having higher response factors. The fourth and fifth nodes were
again related to the retention times and the peak area ratios, but at pH 8.0. For negative
mode models, the trees were shallower, but still the main important descriptors were
found to be the m/z and the peak area ration in positive and negative mode. In this case,
compounds with higher peak area ratios were predicted to have lower response factors and
compounds with higher m/z were predicted to have higher response factors. All regression
trees can be found in Figures S6–S11.

Figure 4. Regression tree trained from the training set data at pH 2.7 positive mode.

6.5. Simplifying the Model

For the compounds which had peaks detected in both positive and negative mode,
a correlation between the logarithm of the response factor and the intensity ratio was
observed at all mobile phase pHs with R2 values between 0.48 and 0.75, as can be seen
in Figure S12. In positive mode, compounds with higher ratios tended to have higher
response factors whereas in negative mode, compounds with lower ratios tended to have
higher response factors.

To evaluate the universality of this finding, the previously published ionization effi-
ciencies values by Liigand et al. [35] for compounds ionizing in both positive and negative
mode were analyzed. The difference in logarithmic ionization efficiency in ESI positive and
negative mode was correlated with the ionization efficiencies measured in both modes. A
weak correlation was observed with the R2 of 0.51, as can be seen in Figure 5a. Compounds
which had a higher difference between the logarithmic ionization efficiency in positive
mode and negative mode, also generally had higher ionization efficiencies in positive mode.
This suggests that ionization in both positive and negative ionization mode is driven by
the same physicochemical properties as the difference in two highly correlated variables
correlates to both variables, as long as the slope of the correlation is significantly different
from one. The beauty of this finding is that the physicochemical property driving the
ionization process in both modes does not need to be pinpointed to make predictions about
the ionization efficiency.
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Figure 5. (a) A scatterplot showing the difference between the logarithm of the ionization efficiencies
ion positive and negative modes measured by Liigand et al. [35] plotted against the logarithm
of the ionization efficiency ion positive mode as well as the regression line. (b) The predicted
concentration for the test (red) and training (blue) set based on the linear model using only the ratio
of the logarithmic response factors plotted against the known concentration.

Therefore, for compounds ionizing in both modes, an even simpler, linear model could
be used for evaluating the response factor. To investigate this further we fitted a linear
regression between the logarithm of the response factor in positive mode at pH 8.0 with the
logarithm of the peak area ratio in positive and negative mode at the same pH in the training
set (Figure S12). The linear model was then applied to quantify the compounds detected
in both modes at the same pH in the test set. A good correlation between measured and
predicted concentrations for both the training and test sets was observed (see Figure 5b).
The obtained mean error was a factor of 1.7 and the median error was a factor of 1.4.
The maximum error was a factor of 4.7. Using this simplified model would significantly
reduce the number of measurements required; however, it also excludes any compound
not detected in both modes.

6.6. Uncertainty Assessment

It needs to be acknowledged that the prediction accuracy of the LC/MS descriptors
model is not competing with the targeted analysis. Still, the predictions can prove useful
in environmental monitoring where considering the potential risk, that is hazard and
exposure, of the detected compounds is important in further prioritization [36]. The
uncertainty of the risk estimation needs to incorporate uncertainty from both quantification
(exposure) and toxicity endpoint predictions (hazard). It is therefore of interest to compare
the prediction errors for the developed approach to the errors of measured and predicted
toxicities. Based on a review of the data in the CompTox [37] database, the measured
toxicity endpoints (e.g., LC50 values) for the same compound and species tend to fall within
a factor of 10, though the range can in some cases be as high as a factor of 1000. Similarly,
Castro [38] found that the reported EC50 values for chlorinated paraffins may differ by a
factor of three. For the predicted toxicity, Chen et al. [39] achieved prediction errors below
a factor of 10 for most of their compounds. However, in this case errors over three orders
of magnitude were also observed. These error ranges are very similar to what we observe
for the predicted concentrations with the LC/MS descriptors model. In the validation set,
90% of the compounds have prediction errors lower than a factor of 10, and the maximum
prediction errors fell within a factor of 1000. According to the law of propagation of error,
the larger uncertainty is always dominant. For example, combining toxicity prediction
and concentration prediction with an uncertainty of an order of magnitude result in a total
uncertainty of a factor of 14 for the risk combining concentration and toxicity. At the same
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time, combining toxicity prediction with an uncertainty of an order of magnitude and
concentration prediction of a factor of 1.2 (uncertainty 20%, corresponding to standard
targeted analysis), yields total uncertainty of a factor of 10. Please see Supplementary
Materials for more details. This suggests that the quantification accuracy achieved here,
though higher then observed in targeted analysis, can be combined with toxicity predictions
without dramatically increasing the uncertainty in the total risk.

6.7. Limitations and Moving Forward

The application area for all models depends on the scope of data on which the model
has been trained. In the case of the LC/MS descriptors models developed here, the
predictions are limited to protonated [M + H]+ or deprotonated [M − H]− molecules. The
models were primarily trained on pesticides, pharmaceuticals, and other small organic
molecules. The logP ranged from −3.9 to 6.4 and the strongest basic and acidic pKa (for the
compounds for which one could be calculated) ranged from −1.8 to 15.0 and −0.8 to 15.7,
respectively.

Additionally, as response factors can vary between different instruments, the model in
its current form can be applied to compounds analyzed on the same instrument. Many of
the descriptors are also instrument and method specific, e.g., retention times and response
factor ratios. This means that for the model to be applicable for another instrument, the
training set needs to be reanalyzed on that specific instrument, and the model retrained.
However, it has been found that ionization efficiencies are correlated between different
instruments [40]. This has previously enabled training a single ionization efficiency model
and transferring the predictions to different instruments via correlation [15]. Therefore,
the transferability of the model can be further investigated in the future, alongside valida-
tion engaging several instruments and laboratories. It is expected that somewhat larger
prediction errors would emerge.

The matrix of the sample, as well as any sample preparation, is another important
consideration. In the current study, the model was applied to spiked water samples
which were injected directly into the LC. However, more complex matrices may cause
more pronounced matrix effects in terms of ionization suppression or enhancement which
may increase the prediction errors [41]. Additionally, imperfect recoveries during the
sample preparation can further increase quantification errors. Thus, more research into the
recoveries for different sample preparation methods are needed.

As the relative peak areas were found to be the most important descriptor for the
random forest models the peak integration is very important for the prediction accuracy.
This was clearly seen when comparing the results from the models trained with data from
completely automatic integration with Compound Discoverer to those done with manually
adjusted integration in Xcalibur. The models trained and tested using data integrated
with Compound Discoverer gave a mean error almost four times higher than the models
trained using the manually integrated data. This difference may be explained by the way
peaks are integrated in Compound Discoverer. The software fits a Gaussian function
to the datapoints on the peak which can significantly change the area if the peaks are
not symmetrical. This somewhat worsens both the quality of the training and test data,
which in turn reduces the prediction accuracy as can be seen in Figure S4. However, the
quality of peak integration affects all the machine learning models and therefore further
developments in peak picking, grouping, and integration are highly needed to improve the
quality of quantitative non-targeted analysis [42].

Despite the limitations, it is clear that machine learning models generally outperform
the baseline models; therefore, applying machine learning models in peak prioritization
and risk assessment is recommended. As the LC/MS and structure-based approaches show
similar prediction accuracies there is no one recommendation for which model to use. The
structure-based approach has been developed on a wider set of chemicals and instruments
whereas the LC/MS based approach is applicable also to unidentified compounds. Thus,
these approaches are seen as complementing each other. We recommend using structure-
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based predictions where candidate structures with high confidence have been assigned to
the peaks, as it requires fewer measurements and is readily transferable between different
instruments. In cases where no structural candidate has been assigned or confidence in
the assignment is low (majority of the peaks in non-targeted LC/HRMS analysis), LC/MS
feature-based predictions are recommended. The LC/MS approach may be useful for peak
prioritization of peaks with yet unknown identity. In parallel, further developments in
models not requiring structural assignment are the way forward in non-targeted LC/HRMS
and additional developments can improve the chemical scope as well as transferability
between instruments.

7. Conclusions

Here, we have presented a quantification strategy applicable at any level of structural
identification in LC/ESI/HRMS non-targeted analysis. This approach allows for concen-
tration estimations even if the structure of the compound is unknown, or if analytical
standards are unavailable. The descriptors which were identified as most important were
the ratios between peak areas in positive and negative mode, followed by the m/z of the
compounds, and the difference in retention time between mobile phases with pH 2.7 and
pH 8.0. The validation of the developed model gave mean prediction errors with factor
of 6.0 and gave comparable prediction errors to a previously developed model which
uses structural parameters as descriptors. However, the model was validated on the same
instrument as it was trained on, and as such, any transference of the model to a differ-
ent instrument would require some retraining and could likely cause somewhat higher
prediction errors.

Supplementary Materials: The following supporting information can be downloaded, Figure S1:
Predicted an measured response factors in the training set for the LC/MS features models, Figure S2:
Predicted an measured response factors in the test set for the LC/MS features models, Figure S3:
Predicted and concentrations for the validation set, Figure S4: Error factor distribution for the different
peak integration methods, Figure S5: retention time and response factor relationship, Figures S6–S11:
Regression trees, Figure S12: Response factor and peak area ratios relationships, Tables S1–S3: Compound
information, Table S4: Hyper parameters, Tables S5–S6: Evaluation parameters for training and test sets,
Table S7: Feature importance, Table S8: Evaluation parameters for the validation set.
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