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Mitochondria are the major energy source for cell functions. However, for the plant fungal
pathogens, mitogenome variations and their roles during the host infection processes
remain largely unknown. Rhizoctonia solani, an important soil-borne pathogen, forms
different anastomosis groups (AGs) and adapts to a broad range of hosts in nature.
Here, we reported three complete mitogenomes of AG1-IA RSIA1, AG1-IB RSIB1,
and AG1-IC, and performed a comparative analysis with nine published Rhizoctonia
mitogenomes (AG1-IA XN, AG1-IB 7/3/14, AG3, AG4, and five Rhizoctonia sp.
mitogenomes). These mitogenomes encoded 15 typical proteins (cox1-3, cob, atp6,
atp8-9, nad1-6, nad4L, and rps3) and several LAGLIDADG/GIY-YIG endonucleases
with sizes ranging from 109,017 bp (Rhizoctonia sp. SM) to 235,849 bp (AG3).
We found that their large sizes were mainly contributed by repeat sequences and
genes encoding endonucleases. We identified the complete sequence of the rps3
gene in 10 Rhizoctonia mitogenomes, which contained 14 positively selected sites.
Moreover, we inferred a robust maximum-likelihood phylogeny of 32 Basidiomycota
mitogenomes, representing that seven R. solani and other five Rhizoctonia sp.
lineages formed two parallel branches in Agaricomycotina. The comparative analysis
showed that mitogenomes of Basidiomycota pathogens had high GC content and
mitogenomes of R. solani had high repeat content. Compared to other strains, the AG1-
IC strain had low substitution rates, which may affect its mitochondrial phylogenetic
placement in the R. solani clade. Additionally, with the published RNA-seq data, we
investigated gene expression patterns from different AGs during host infection stages.
The expressed genes from AG1-IA (host: rice) and AG3 (host: potato) mainly formed four
groups by k-mean partitioning analysis. However, conserved genes represented varied
expression patterns, and only the patterns of rps3-nad2 and nad1-m3g18/mag28 (an
LAGLIDADG endonuclease) were conserved in AG1-IA and AG3 as shown by the
correlation coefficient analysis, suggesting regulation of gene repertoires adapting to
infect varied hosts. The results of variations in mitogenome characteristics and the gene
substitution rates and expression patterns may provide insights into the evolution of
R. solani mitogenomes.
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INTRODUCTION

The basidiomycetous fungus Rhizoctonia solani Kühn
[teleomorph Thanatephorus cucumeris (Frank) Donk] is a
worldwide prevalent soil-borne plant pathogen. It causes diseases
in many economically important crops (including rice, corn,
soybeans, potatoes, wheat, cabbage, lettuce, sugar beets, and
tomatoes), ornamental plants, and forest trees (Ogoshi, 1987;
Gonzalez Garcia et al., 2006; Yang and Li, 2012; Molla et al.,
2020).

The multinucleate R. solani isolates are grouped in the taxa
within the Rhizoctonia species complex (Carling, 1996). These
R. solani isolates are classified into 14 distinct anastomosis
groups (i.e., AG1-AG13 and AGBI), and AG1 consists of four
primary intraspecific subgroups of AG1-IA, AG1-IB, AG1-IC,
and AG1-ID (Pannecoucque and Höfte, 2009; Yang and Li,
2012). Among AG1-AG13, strains are generally capable of
fusing hyphae only in each AG, while strains from AGBI are
capable of fusing hyphae with strains from 14 AGs (Sneh
et al., 1991; Gonzalez Garcia et al., 2006). Meanwhile, the
binucleate Rhizoctonia sp. isolates are classified in other taxa
within the complex (Carling, 1996), which include 21 AGs
(AG A-U).

In recent years, R. solani pathogenesis has been studied at
the genomic and transcriptomic level, including AG1-IA that
causes sheath blight in rice (Oryza sativa), corn (Zea mays),
and soybeans (Glycine max; Zheng et al., 2013; Nadarajah et al.,
2017; Xia et al., 2017; Yamamoto et al., 2019; Lee et al., 2021; Li
et al., 2021a), AG1-IB that infects lettuce (Wibberg et al., 2015;
Verwaaijen et al., 2017), AG3 that infects potatoes (Cubeta et al.,
2014; Patil et al., 2018; Zrenner et al., 2020), and AG8 that infects
wheat (Hane et al., 2014).

Mitochondrial genomes evolve independently of the nuclear
genomes, and comparative mitogenome analysis sheds light
on mitochondrial evolution (Gray, 2012). The relatively small
size and mostly uniparental inheritance of fungal mitochondria
also makes them ideal candidates for evolution, fungicide
insensitivity, population genetics, and taxonomy studies
(Bullerwell and Lang, 2005). So far, more than 800 complete
fungal mitogenomes are available in the NCBI database1,
providing a rich picture of their prevailing features, ancestral
characteristics, and evolutionary trends. About 16% of these
mitogenomes are in Basidiomycetes, including AG1-IB 7/3/14
and AG3 mitogenomes (Wibberg et al., 2013; Losada et al.,
2014). The partial mitogenomes of AG1-IA and AG8 have
also been reported (Zheng et al., 2013; Hane et al., 2014). The
AG3 mitogenome revealed the expansion of mobile elements
in R. solani and the synteny among AG1-IA, AG1-IB, and
AG3 mitogenomes (Losada et al., 2014). Recently, multi-, bi-,
and uninucleate Rhizoctonia mitogenomes have been reported
(Li et al., 2021b). However, lack of complete mitogenomes of
AG1-IA and AG1-IC that can infect cabbage and soybeans (Fu
et al., 2014; Misawa and Aoki, 2017) prevents our understanding
of the diversity of mitogenomic characteristics in R. solani.
A comparison of mitogenomes in Basidiomycota could provide

1https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/; April 2021

valuable insight into the origin and evolution of their complex
mitogenomic features.

In fungal biology, mitochondria play a significant role in
fungal virulence and adaptation (Ingavale et al., 2008; Chatre
and Ricchetti, 2014; Calderone et al., 2015; Sun et al., 2019).
Previous studies show that mutations in the mitogenome
of the tree pathogen Cryphonectria parasitica weaken its
virulence (Monteiro-Vitorello et al., 1995), and the mitochondrial
cytochrome C from the animal pathogen Aspergillus fumigatus
is critical for its virulence (Grahl et al., 2012). For the human
opportunistic pathogen Cryptococcus neoformans, the changes
in its mitochondria morphology by fission and fusion could
dramatically influence its virulence (Chang and Doering, 2018).
Meanwhile, the mitochondria of C. neoformans play a key
role in hypoxia adaptation (Ingavale et al., 2008). Moreover,
lineage-specific adaptations in mitochondria have been found
to be associated with hosts in another opportunistic pathogen,
Candida albicans, and the mitochondrial proteins influence
C. albicans respiration (Sun et al., 2019) that is required for
its growth, morphogenesis, and virulence. Many chemicals can
efficiently inhibit respiration in C. albicans while not damaging
the mammalian host (Duvenage et al., 2019), which may be a
strategy to develop a target for antifungals in the future studies.

The fungal mitogenomes may be a powerful system to measure
adaptation at the molecular level. The estimation of substitution
rates may provide evidence of adaptive evolution that possibly
affects only a few amino acids at a few time points (Yang and
Nielsen, 2002). To measure the selection pressure on amino acid
replacement mutation of protein-coding genes, the method of
calculating the non-synonymous/synonymous substitution rate
ratio (dN/dS) is widely used (Nielsen and Yang, 2003). Based
on eight mitogenomes of the Synalpheus species of non-eusocial
and eusocial groups, the comparative analyses of synonymous
substitution rates and selection signals provide direct evidence of
eusociality impacting genome evolution (Chak et al., 2021). The
discovery of several positively selected sites in eusocial lineages
may represent adaptation (Chak et al., 2021). For host specificity
of R. solani AG strains, the examination of substitution rates in
mitogenomes may help to reveal their adaptability to hosts.

Additionally, the expression of R. solani nuclear genes
during host infection enhances our discovery of pathogenic
factors, including candidate effectors (Zheng et al., 2013). The
interactions between AG1-IA and rice, AG1-IB and lettuce, as
well as AG3 and potatoes have been explored (Zheng et al.,
2013; Verwaaijen et al., 2017; Xia et al., 2017; Zrenner et al.,
2020), providing an avenue to investigate the expression of
mitochondrial encoded genes and their roles during infection
process. A schematic of varied gene expression patterns during
infecting different hosts may provide clues to understand fungal
adaptation to hosts.

Here, in exploring the evolution and host adaptation in
R. solani by performing comparative analysis of mitogenomes,
we reported three complete mitogenomes of R. solani AG1-
IA RSIA1, AG1-IB RSIB1, and AG1-IC, providing a resource
for revealing mitogenome characteristics. We also investigated
the phylogenetic analysis and selection pressure analysis on
amino acids, which may indicate significant sites contributing
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to adaptation, and examined the varied expression patterns
of encoded genes from mitogenomes of AG strains with
host specificity during infection, which may further provide
knowledge about host adaptation in R. solani.

MATERIALS AND METHODS

Sampling and DNA Extraction
The R. solani AG1-IA RSIA1, AG1-IB RSIB1, and AG1-IC strains
were provided by Prof. Erxun Zhou at South China Agricultural
University. The strains were grown in potato dextrose broth
medium at 28◦C, and the genomic DNA was extracted using a
modified CTAB method (Ciampi et al., 2008). All the Rhizoctonia
mitogenomes used in this study were listed in Supplementary
Table 1, including the previously reported mitogenomes of AG1-
IB 7/3/14 (Wibberg et al., 2013), AG3 (Losada et al., 2014),
AG4 (Zhang et al., 2021), AG1-IA XN, R. cerealis RW, and four
Rhizoctonia sp. strains, JN, LY, SM, and YR (Li et al., 2021b). The
hosts of five complete mitogenomes were listed in Table 1.

Mitogenome Assembly and Annotation
For the sequenced PacBio RS long reads of AG1-IA RSIA1,
AG1-IB RSIB1, and AG1-IC strains, we used LoRDEC v0.5
(Salmela and Rivals, 2014) with parameters of “-k 19 -s 3” for
read correction based on Illumina short reads with insert size
of ∼180 bp. Then we used Canu v1.2 (Koren et al., 2017) with
default parameters for genome assembly, which generated the
complete three mitogenomes of AG1-IA, AG1-IB, and AG1-
IC. We examined the circular map of the mitogenomes and
improved the sequences using Pilon v1.17 (Walker et al., 2014)
with default parameters.

From the mitogenome sequences, we predicted and annotated
the 15 typical protein-coding genes (seven subunits of NADH
dehydrogenase, three cytochrome c oxidase subunits, three ATP

synthase subunits, one apocytochrome b, and one ribosomal
protein) and other protein-coding genes (LAGLIDADG homing
endonucleases and GIY-YIG endonucleases) by the pipeline as
follows. First, we aligned the mitogenome sequences against
amino acids in the NCBI NR database using BLASTPX with an
E-value cutoff of 1e-10, which detected candidate reference genes
from the NR database. Then, we used Exonerate v2.2.0 (Slater
and Birney, 2005) with the “protein2genome” model to predict
genes by aligning mitogenome sequences against these candidate
reference genes. We found that some Exonerate-predicted genes
may be incomplete without considering the start and/or stop
codons. For each predicted gene, we wrote an in-house Perl
script to check and improve the prediction by scanning its up-
/down-stream genomic sequences to identify the start and stop
codons. For each gene region, Exonerate may predict multiple
candidate genes because of multiple NR reference genes being
used for alignment analysis. All candidate genes were aligned
to NR reference genes again using BLASTP, which could be
useful for manual examination of the length and E-value for
each predicted gene. For multiple predicted genes from the same
genomic region, we manually selected the one with the low
BLASTP E-value and with similar length compared to the NR
reference genes. Finally, the annotation of selected genes was
inferred from NR reference genes. For tRNA genes, we used
tRNAscan-SE v1.3.1 (Lowe and Eddy, 1997) with translation table
4 for gene discovery and removed candidate tRNAs with types of
“Undet” (i.e., without anticodons). The reported rRNA sequences
in the SILVA database (Quast et al., 2013) were used as reference
genes for rRNA annotation by performing BLASTN analysis.

We used the same method to annotate the encoding genes
of the previously reported AG1-IB 7/3/14, AG3, AG4, AG1-
IA XN, R. cerealis RW, and four Rhizoctonia sp. mitogenome
sequences (JN, LY, SM, and YR). The AG4 mitogenome was
included in the reported sequence deposited in NCBI with the
accession number of JADHEA010000014.1 (Zhang et al., 2021;

TABLE 1 | Statistics of mitochondrial genomes of Rhizoctonia solani species.

AG1-IA RSIA1 AG1-IB RSIB1 AG1-IB 7/3/14 AG1-IC AG3-PT

Complete genome Yes Yes Yes Yes Yes

Genome size (bp) 152,549 168,442 162,751 175,227 235,859

Typical proteinsa 15 15 15 15 15

Other proteinsb 36 12 15 24 21

tRNA 26 26 25 26 27

rRNA 2 2 2 2 2

GC content (%) 33.7 36.5 36.4 34.5 35.9

Repeat sequences (%) 17.86 32.17 30.52 28.96 42.73

Accession MW995474.1 MW995475.1 HF546977.1 MW995476.1 KC352446.1

Reference This study This study Wibberg et al., 2013 This study Losada et al., 2014

Hostc Rice, corn,
soybeans, barley,
sorghum, potatoes,
peanut, cabbage,
leaf lettuce, et al.

Corn, sugar beets, gay
feather, common bean,
soybeans, cabbage,
leaf lettuce et al.

Sugar beets, carrot,
buckwheat, flax, soybeans,
bean, cabbage, pineapple,
panicum, spinach and
radish

Potatoes with black
scurf symptoms

aThe 15 genes include cytochrome c oxidase subunits (cox1, cox2, and cox3), apocytochrome b (cob), ATP synthase subunits (atp6, atp8, and atp9), subunits of NADH
dehydrogenase (nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), and one ribosomal protein (rps3).
bLAGLIDADG homing endonucleases and GIY-YIG endonucleases.
cThe host information was inferred from study by Yang and Li (2012).
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Supplementary Table 2). We found that there was one base
deletion in the rps3 gene (Supplementary Figure 1), preventing
the prediction of the rps3 gene in AG4 (Supplementary Table 3).
As we could not be sure that the AG4 rps3 was a real pseudogene
or had an error in assembly sequence, we did not include AG4
rps3 for comparative analysis. For the other six mitogenomes,
we found that there were 17, 4, 1, 1, and 1 gap regions (i.e.,
“Ns” in assemblies) in XN (accession number: MT887631.1),
LY (accession number: MT887629.1), SM (accession number:
MT887628.1), YR (accession number: MT887627.1), and RW
(accession number: MT887630.1) mitogenomes, respectively.
The Rhizoctonia sp. JN (accession number: MT887626.1)
mitogenome did not have a gap sequence, but its length
(∼126 kb) was ∼35 kb less than that of Rhizoctonia sp. LY
(∼161 kb), preventing the confirmation of complete mitogenome
of Rhizoctonia sp. JN. The incomplete mitogenomes may prevent
the prediction of genes (such as the incomplete rps3 in RW
strain). However, the complete sequences of 14 typical proteins
(cox1-3, cob, atp6, atp8-9, nad1-6, and nad4L) were identified in
12 Rhizoctonia mitogenomes. To perform comparative analysis
of endonucleases, only five complete mitogenomes of AG1-IA
RSIA1, AG1-IB RSIB1, AG1-IC, AG1-IB 7/3/14, and AG3 were
used (Table 1 and Supplementary Table 4).

We used the de novo method to identify repeat sequences in
Rhizoctonia mitogenomes. The repeat library was constructed
based on the mitochondrial genome sequences using
RepeatScout v1.0.5 (Price et al., 2005). This library was
used to identify repeat sequences using RepeatMasker v4.0.52.

Comparative Mitogenomic Analysis
Based on amino acid sequences of genes from five complete
mitogenomes of R. solani strains, we used OrthoFinder 0.7.1
(Emms and Kelly, 2015) to detect their orthologous genes. The
sequence alignment of the rps3 gene was done by MUSCLE
v3.8.31 (Edgar, 2004). The positively selected signals in rps3
genes were detected using CODEML implemented in PAML v
4.8a (Yang, 2007), as described in the previous study (Lin et al.,
2015). For the rps3 gene with positively selected signals, we used
PSIPRED (Buchan and Jones, 2019) and RoseTTAFold (Baek
et al., 2021) to predict its protein structure.

The KaKs_Calculator 1.2 estimated dN and dS values using
model-selected and model-averaged methods based on a group
of models (Zhang et al., 2006). As in the description in the
KaKs_Calculator study (Zhang et al., 2006), different substitution
models considered different evolutionary features, resulting
in different estimates, and for protein-coding sequences, the
use of many features may lead to more reliable evolutionary
information. We used the 10 methods (NG, LWL, MLWL, LPB,
MLPB, GY-HKY, YN, MYN, MS, and MA) implemented in
the KaKs_Calculator to estimate dN, dS, and dN/dS values for
protein-coding genes in Rhizoctonia mitogenomes. We used their
mean values to represent the increasing or decreasing trends of
the dN, dS, and dN/dS values for the comparative analysis.

To perform phylogeny analysis for 32 mitogenomes from
Basidiomycetes (Supplementary Table 1), we selected amino
acids from 14 typical protein-coding genes (cox1, cox2, cox3,

2http://www.repeatmasker.org/

cob, atp6, atp8, atp9, nad1, nad2, nad3, nad4, nad4L, nad5, and
nad6) and performed MUSCLE alignment. Then these sequences
were concatenated for the following analysis. The ProtTest v3.4
(Darriba et al., 2011) with parameters of “-all-distributions -
F -AIC -BIC” identified the best model of LG + I + G + F
for constructing the maximum-likelihood phylogeny. Then we
used Mega v6.06 (Tamura et al., 2013) to build the maximum-
likelihood phylogenetic tree with bootstrap value of 1,000.

Transcriptomic Analysis
For AG1-IA, its gene expression analysis was investigated using
RNA-seq after rice infection at 10 h (10-h), 18, 24, 32, 48, and 72-h
(Zheng et al., 2013). The RNA-seq data before and after infecting
different crops (i.e., rice, corn, and soybeans) of different AG1-
IA strains that were isolated from rice, corn, and soybeans have
been reported (Xia et al., 2017). For three strains of AG3, their
interaction with potato sprouts after infection of three and 8 days
were investigated by transcriptomic analysis (Zrenner et al.,
2020). For the reported RNA-seq data, we analyzed data from
each study independently. We calculated the gene expression
FPKM (fragments per kilo base per million mapped reads) values
following the protocol (Pertea et al., 2016) using HISAT2 (Kim
et al., 2019), StringTie (Pertea et al., 2015), and Ballgown (Frazee
et al., 2015) software. Based on the expression values, we used the
R function of fviz_cluster that was implemented in the factoextra
package to detect gene clusters and used the R function cor to
calculate the Pearson correlation coefficient between genes.

Gene Expression Analysis via Real-Time
Quantitative Reverse Transcription PCR
(RT-qPCR)
A total of 15 genes were selected for RT-qPCR analysis. First-
strand cDNA was synthesized from total RNA using HiScript II
Q RT Supermix for qPCR with a gDNA wiper (Vazyme R223-
01, Nanjing, China). RT-qPCR was performed using the AceQ
qPCR SYBR green master mix (Vazyme Q111-02/03, Nanjing,
China). The qPCR reactions were performed in a final volume of
10 µL containing 5 µL of 2 × AceQ qPCR SYBR green master
mix, 0.25 µL of 10 µM of each primer, 4.25 µL of ddH20,
and 0.25 µL of cDNA. Reactions were carried out at 95◦C for
5 min, followed by 40 cycles of 95◦C for 10 s, 60◦C for 30 s,
and melting curve analysis from 60◦C to 95◦C at 1◦C increments
(qTOWER3G, Jena German). Primers for qPCR were designed
based on our predicted gene sequences by NCBI primer blast, and
the parameters were modified to suit the RT-qPCR conditions
(Supplementary Table 5). The 18S gene was used as an internal
control. Fold changes were determined by the 2−1 1 Ct method.
All qPCR reactions were run in triplicate.

RESULTS

General Characteristics of R. solani
Mitogenomes
Here we reported three complete mitogenomes of R. solani
AG1-IA, AG1-IB, and AG1-IC, with the sizes of ∼152-168 kb
(Table 1), and performed a comparative analysis with two

Frontiers in Microbiology | www.frontiersin.org 4 September 2021 | Volume 12 | Article 707281

http://www.repeatmasker.org/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-707281 September 17, 2021 Time: 11:17 # 5

Lin et al. Evolution of Rhizoctonia solani Mitogenomes

published complete mitogenomes of R. solani AG1-IB and AG3
(Wibberg et al., 2013; Losada et al., 2014). Among the five
complete mitogenomes, the smallest size was ∼152 kb in AG1-
IA and the largest size was ∼235 kb in AG3 (Table 1). We found
highly conserved sequences in the two AG1-IB mitogenomes of
RSIB1 and 7/3/14 strains. These mitogenomes consisted of an
essential set of 15 typical protein-coding genes (three cytochrome
c oxidase subunits: cox1, cox2, cox3; the apocytochrome b: cob;
three ATP synthase subunits: atp6, atp8, atp9; seven subunits
of NADH dehydrogenase: nad1, nad2, nad3, nad4, nad4L,
nad5, nad6; and one ribosomal protein: rps3), LAGLIDADG
homing endonucleases and GIY-YIG endonucleases (ranging
from 12 in AG1-IB and 36 in AG1-IA), and the small and
large ribosomal RNA subunits (rns, rnl), and tRNAs (Table 1,
Figure 1, and Supplementary Table 4). All protein-coding
genes were clustered into 15, 14, 3, and 1 orthologous groups
for 15 typical protein-coding genes, LAGLIDADG homing
endonucleases, GIY-YIG endonucleases and DNA polymerase,
respectively (Figure 1B). Most groups contained single-copy
genes from each mitogenome, excluding three LAGLIDADG
groups and one GIY-YIG group that each contained multiple-
copy genes (Figure 1C). For example, the RSMOG01 group
contained only one cox1 in each strain, while the RSMOG16
group contained LAGLIDADG homing endonucleases ranging
from 3 in AG1-IB 7/3/14 to 18 in AG1-IA. Compared to
other strains, AG1-IA contained more LAGLIDADG homing
endonucleases that were mainly encoded in the intron regions of
rnl, cox1, and nad4L (Figure 1A and Supplementary Table 4).

Among these mitogenomes, there were 27,239 (17.86%),
54,190 (32.17%), 49,669 (30.52%), 50,748 (28.96%), and 100,785
(42.73%) bp of repeat sequences in AG1-IA, AG1-IB, AG1-IB
7/3/14, AG-IC, and AG3, respectively (Supplementary Tables 6–
10), with the lowest and highest ratios in AG1-IA and AG3,
respectively. The genomic size of AG3 was 83,310 bp larger
than that of AG1-IA (Table 1), while the repeat sequences of
AG3 were 73,546 bp larger than those of AG1-IA, indicating
that repetitive sequences contribute to the large size of the AG3
mitogenome. The comparison of genomic sizes and ratios of
repeat sequences suggested their positive correlations (R = 0.81,
P = 0.0015), i.e., longer genomic sizes containing more repetitive
sequences (Figure 1D).

However, the relationship between GC contents and genomic
sizes was not similar to that between repeat sequences and
genomic sizes (Figure 1E). Although AG3 had the largest
genomic size, its GC content was larger than 33.7% of the
GC content in AG1-IA and was lower than 36.5% for AG-IB
(Table 1). The distribution of GC content among mitogenomes
may suggest the different sequence preferences in mitogenomes.

Mitochondrial Phylogenetic
Relationships Between R. solani and
Other Fungi in Basidiomycota
Based on the complete mitogenome of R. solani, we explored
their phylogenetic relationships with other fungi. A phylogeny for
32 fungal strains in Basidiomycota and one strain in Ascomycota
as an outgroup was constructed, which represented 26, 2, and 3

Basidiomycetes strains in three subphyla of Agaricomycotina,
Pucciniomycotina, and Ustilaginomycotina, respectively
(Figure 2A). Rhizoctonia strains were in Agaricomycotina.
The seven multinucleate R. solani strains (AG1-IA RSIA1 and
XN, AG1-IB RSIB1 and 7/3/14, AG1-IC, AG3, and AG4) were
parallel with a clade containing two binucleate Rhizoctonia
strains (Rhizoctonia sp. LY and R. cerealis RW) and three
uninucleate Rhizoctonia strains (Rhizoctonia sp. SM, JN, and
YR; Li et al., 2021b). These Rhizoctonia lineages were in the
Cantharellales order, plus the Cantharellus cibarius lineage
formed one large clade that was parallel with another clade
containing 12 lineages in four orders (Agaricales, Corticiales,
Russulales, and Polyporales). Outside the branches of these
25 lineages, there was one branch for Serendipita indica in the
Sebacinales order (in Agaricomycotina).

From the phylogeny, mitochondrial genomic sizes varied
from 29 kb (Jaminaea angkorensis strain; in Microstromatales,
Ustilaginomycotina) to 235 kb (AG3; in Cantharellales,
Agaricomycotina). We found that five strains from
Pucciniomycotina and Ustilaginomycotina had mitochondrial
genomic sizes of less than 41 kb (Supplementary Table 1),
excepting the Sporisorium reilianum strain of ∼90 kb in size (in
Ustilaginales, Ustilaginomycotina). However, the mitochondrial
genomic sizes were obviously increased in strains from
Agaricomycotina, a separate clade in Basidiomycota, especially
for R. solani strains in Cantharellales and Phlebia radiata strain
in Corticiales, with sizes larger than 150 kb (Figure 2 and
Supplementary Table 1).

Considering both GC content and mitogenomic sizes, we
found that in Pucciniomycotina and Ustilaginomycotina, most
mitogenomes had small sizes but had high GC content (>31%).
In Agaricomycotina, the GC content was quite different, ranging
from 22.8 to 39.66% (Figures 2B,C and Supplementary Table 1).
A positive relationship (R = 0.73, P = 2.7e-05) between GC
content and mitogenomic sizes are shown for Agaricomycotina
strains, i.e., strains with higher genomic sizes with higher GC
content (Figure 2C). Meanwhile, the repeat sequences in the
mitogenomes had little effect on GC content (Figure 2D).
Moreover, in Basidiomycota fungi, high mitochondrial GC
content was found in pathogens (including Phakopsora sp.
in Pucciniomycotina, Malassezia sp., and Sporisorium sp. in
Ustilaginomycotina, and Rhizoctonia sp. in Agaricomycotina;
Figure 2 and Supplementary Table 1).

Changes in Non-Synonymous and
Synonymous Substitution Rates (dN and
dS) of R. solani Mitogenomes
Although the R. solani phylogeny formed one branch in the
mitochondrial phylogeny (Figure 2A), the AG1-IC and other
AG1 strains were separated by the AG3 strain, which may
reflect the sequence changes in mitogenomes. We used the
KaKs_Calculator to calculate the dN and dS values for the
concatenated sequences of 15 typical protein-coding genes and
found that all dN, dS, and dN/dS values were lower than 0.03000,
0.25000, and 0.18000, respectively (Figure 3 and Supplementary
Table 11). For each pair of mitogenomes, the AG1-IC and AG3
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FIGURE 1 | Characterization of mitogenomes in Rhizoctonia solani. (A) Maps of six mitogenomes. The genomic positions of genes and repeat sequences were
shown. Many protein-coding genes contained multiple exons that were connected by broken lines. (B) Orthologous groups of protein-coding genes in
mitogenomes. (C) Four groups contained multiple genes. (D,E) Distribution of repeat sequences and GC contents in Rhizoctonia mitogenomes. In the MATERIALS
AND METHODS section (Mitogenome assembly and annotation), we described selecting Rhizoctonia mitogenomes for comparative analysis. The R functions (ggplot
and stat_cor with the Pearson correlation coefficient method implemented in ggplot2 and ggpubr packages, respectively) were used to draw the (D,E).
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mitogenomes had the highest dN values (i.e., 0.02339∼0.02934,
mean 0.02583), while AG1-IB and AG3 had the lowest dN
values (i.e., 0.01418∼0.01735, mean 0.01536). Similar results
were found for dS values, i.e., the highest dS values were found
for AG1-IC vs AG3 and the lowest dS values were found for
AG1-IB vs AG3. The mitogenome pairs of AG1-IC and other
R. solani mitogenomes showed the higher substitution rates than
those from mitogenome pairs without AG1-IC (Figure 3 and
Supplementary Table 11), supporting the phylogenetic topology
for R. solani mitogenomes (Figure 2A).

Discovery of Positively Selected Sites in
Rhizoctonia rps3 Genes
For each of 15 typical genes, we calculated their dN/dS
values and found that all of them were less than one,
including the rps3 genes (Figures 4A,B). The amino acid
(aa) sequences of rps3 in four strains (AG1-IB RSIB1 and

3/7/14, AG1-IC, and AG3) were 283 aa, and one more aa
was found in AG1-IA strains (RSIA1 and XN), as well as
56 more aa were found in Rhizoctonia sp. strains (LY, SM,
JN, and YR). The sequence alignment showed that they
shared sequence identities larger than 89%, suggesting the
conserved sequences in Rhizoctonia rps3 genes. However,
with the CODEML method in PAML (Yang, 2007), we
detected 14 positively selected sites (Figure 4C). Among
them, five sites (“RPHA” and “A” in AG1-IA) were closely
linked with each other (aa position: 84–89), with one amino
acid (“L” in AG1-IA) flanking these positively selected
sites; meanwhile, for the 27 aa downstream of these sites,
other positively selected sites were found, including “P,”
“I,” and “NTT” in AG1-IA (Figure 4C). These changed
sites represented five types of different sequences in AG1-
IA, AG1-IB, AG1-IC/AG3, SM, and other strains (LY,
JN, and YR), respectively, which were related to their
phylogenic topology (Figure 2A). The secondary structure

FIGURE 2 | Phylogenetic relationships between Rhizoctonia solani and other fungi in Basidiomycota. (A) The mitogenome phylogeny of 33 fungal strains. The
Candida parapsilosis in Ascomycete was used as the outgroup. The maximum-likelihood bootstrap values were shown. The sizes of mitogenomes were shown with
different colors for strains from different orders. The newly reported complete mitogenomes were marked in bold. (B) Distribution between sizes and GC content
from 33 fungal mitogenomes. (C) Positive relationship between GC content and mitogenomic sizes for Agaricomycotina mitogenomes. (D) Distribution of GC
content in Rhizoctonia mitogenomes with and without repeat sequences.
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FIGURE 3 | The dN, dS, and dN/dS values for each pair of Rhizoctonia solani mitogenomes. (A) The box plots displayed the values estimated by 10 methods
implemented in the KaKs_Calculator. The analysis was done based on concatenated sequences of 15 typical protein-coding genes. (B) The mean of the estimated
values shown in (A).

of the rps3 gene showed that the contiguous sites with
positively selected signals were in the helix and coil regions
(Supplementary Figure 2A). For these sites, we marked them in
the predicted protein structure (with RoseTTAFold confidence
of 0.46) as well (Supplementary Figure 2B).

Expression Patterns of Genes in R. solani
Mitogenomes During Host Infection
From RNA-seq for fungi-host interactions (i.e., interactions
between AG1-IA and rice, soybeans, corn; AG1-IB and

lettuce; AG3 and potatoes; Zheng et al., 2013; Xia et al.,
2017; Zrenner et al., 2020), we analyzed the expression
patterns of mitochondrial genes, which may suggest their
roles during host infection. Based on gene expression FPKM
values, 51 and 27 expressed genes from AG1-IA and AG3
mitogenomes, respectively, were all clustered into four clusters
(Figures 5A,B and Supplementary Tables 12,13). Not all
of each functional group of genes cytochrome c oxidase
subunit, ATP synthase subunit, NADH dehydrogenase subunit,
LAGLIDADG endonuclease, and GIY-YIG endonuclease were
clustered into the same groups. For example, cox1, cox2,
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FIGURE 4 | Detection of positively selected sites in rps3. (A) The dN/dS values for each pair of rps3 genes from mitogenomes. The dN/dS values were calculated by
10 methods implemented in the KaKs_Calculator. (B) The mean of the estimated values shown in (A). (C) Display of positively selected sites in rps3 genes. The 14
positively selected sites were detected by the CODEML program in PAML, including three sites (in blue) with P > 95% and three sites (in red) with P > 99%.

and cox3 from AG1-IA were clustered into three groups.
The gene clusters showed different expression patterns after
infecting hosts.

We further explored gene expression during rice infection,
which displayed varied gene expression peaks (Figure 5C).
The peaks for cox1, cox2, and cox3 from AG1-IA mitogenome
were at 24 (i.e., 24 h), 10, and 18-h, respectively, although
they all had functional cytochrome c oxidase subunits.

Similarly, the peaks for atp6 and atp9 were at 48 and
32-h, respectively, and atp8 was not expressed during rice
infection. Meanwhile, LAGLIDADG endonucleases and GIY-
YIG endonucleases represented expression peaks after host
infection. For example, mag2 (a LAGLIDADG endonuclease)
displayed an expression pattern similar to that of nad6, with
the peak at 32-h; mag6 (a GIY-YIG endonuclease) showed a
peak at 18-h. Similarly, peaks for different genes from AG3

Frontiers in Microbiology | www.frontiersin.org 9 September 2021 | Volume 12 | Article 707281

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-707281 September 17, 2021 Time: 11:17 # 10

Lin et al. Evolution of Rhizoctonia solani Mitogenomes

FIGURE 5 | The expression patterns of genes from Rhizoctonia solani mitogenomes. (A,B) The distribution of gene clusters from AG1-IA and AG3. (C) The heatmap
of AG1-IA genes after infecting rice at 10, 18, 24, 32, 48, and 72 h.

mitogenomes during potato infection were found as well
(Supplementary Figure 3).

Correlations Between Expressed Genes
in R. solani Mitogenomes During Host
Infection
For the expressed genes (including 15 typical proteins,
LAGLIDADG endonucleases, and GIY-YIG endonucleases),
we calculated the Pearson correlation coefficient to measure
their expression similarity. With the Pearson correlation
coefficient value cutoff of 0.6, we identified 76 and 8 positive
correlations between each pair of genes in AG1-IA and AG3,
respectively (Supplementary Tables 14,15). Among these
genes, cox1, cob, nad1, nad2, nad6, rps3, and LAGLIDADG
endonucleases in RSMOG16 orthologous group (11 genes in
AG1-IA: mag10, mag12, mag13, mag14, mag20, mag23, mag26,

mag28, mag30, mag32, mag36; three genes in AG3: m3g4,
m3g10, and m3g18; Supplementary Table 4) were found in
both AG1-IA and AG3. To view their relationships clearly, we
chose the network to display these correlated pair of genes.
The different topologies for these correlations were shown
in AG1-IA and AG3 (Figure 6), with only two conserved
correlations (i.e., nad2-rps3 and nad1-mag28/m3g18). In the
neighboring genes nad2 and rps3 there were some repeat
sequences; however, these repeat sequences from AG1-IA
and AG3 mitogenomes were not similar sequences detected
by BLAST alignment. Because the correlation coefficient was
inferred from gene expression during varied host infection
(i.e., rice infection for AG1-IA and potato infection for
AG3; Supplementary Tables 12,13), there were different
network topologies for expressed genes (Figure 6), which
showed their different expression profiles in AG1-IA and AG3
mitogenomes, possibly indicating the different roles for these
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FIGURE 6 | Correlation coefficients between each pair of genes encoded in mitogenomes. (A) The correlations for genes in AG1-IA. (B) The correlations for genes
in AG3.

genes after AG1-IA and AG3 mitogenomes separated from
the same ancestor.

DISCUSSION

It has been proposed that mitochondria evolved from free-
living bacteria via symbiosis within a eukaryotic host cell
(Margulis, 1970). With that in mind, we compared examples
of GC content variations in the bacterial kingdom with those
we have observed in some of our fungal mitogenomes. In
bacteria, the high genomic GC content is proposed to be
associated with high rates of DNA damage and environmental
factors (Wu et al., 2012; Weissman et al., 2019), and it is
suggested to be maintained in some species by mutation pressure
(Hildebrand et al., 2010). Considering both GC content and
mitogenomic sizes, the Agaricomycotina clade is of interest.
A comparison of mitogenomes between Rhizoctonia and other
non-pathogens in Agaricomycotina showed that Rhizoctonia
had a higher GC content, and a comparison of mitogenomes
between Rhizoctonia and other plant pathogens that were
separated early in Basidiomycota showed that Rhizoctonia had
more repeat sequences. The results may indicate the divergent
evolution of Basidiomycota mitogenomes. The high GC content
in mitogenomes of Rhizoctonia that have broader host ranges
may have evolved under pathogenic environmental pressure.

The comparative analysis of five complete R. solani
mitogenomes showed the natural existence of varied
mitogenomic characteristics in sizes, endonuclease genes
(both LAGLIDADG and GIY-YIG endonucleases), and repeat
sequences. The repeat sequences and endonucleases are the
major contributors to the size variations. At least 12∼36
endonucleases were encoded in these mitogenomes (Table 1),
and there were 73,546 bp (31.18%) repeat sequences in the
AG3 mitogenome, more than those in AG1-IA (Supplementary
Tables 6,10). In fungal mitogenomes, multiple repeat sequences
are the main cause of size expansion in mitogenomes (Losada
et al., 2014; Li et al., 2015). The genes encoding endonucleases
are considered mobile genetic elements that invaded introns
and intergenic sequences, and they have been found to play
an important role in causing mitogenome size variation
(Kolesnikova et al., 2019).

LAGLIDADG and GIY-YIG endonucleases have been found
in fungal mitogenomes belonging to orders in all fungal phyla
(Belfort et al., 2002; Megarioti and Kouvelis, 2020). These
endonucleases possess special conserved amino acid motifs
and are encoded in the intron regions of fungal mitogenomes
(Stoddard, 2014). The LAGLIDADG endonuclease has the ability
to recognize 18–22 bp target sequences (Belfort and Roberts,
1997; Chevalier et al., 2005). These endonucleases may originate
from free-standing open reading frames, and endonucleases and
their intron hosts may have co-evolved through recombination
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and horizontal gene transfer (Megarioti and Kouvelis, 2020).
Yeast endonucleases have been found to drive recombination
of protein-coding genes (Wu and Hao, 2019). Currently, only
five complete mitogenomes in R. solani have been reported.
With the increasing release of genomic data, the evolution of
endonucleases in R. solani will be explored in the future studies.

Meanwhile, the expression peaks of endonucleases during host
infection were identified (Figure 5C), such as the high expression
of mag3 (a GIY-YIG endonuclease, located within the intergenic
region between atp6 and rns) and mag33 (a LAGLIDADG
endonuclease, located within the intergenic region between nad4
and rps3) at 10-h after rice infection. The expression patterns of
mag31 (a LAGLIDADG endonuclease) and rps3 containing the
intron host of mag31 were different, i.e., with expression peaks
at 72 and 32-h, respectively, indicating that endonuclease and
its inserted gene were expressed independently. These expression
peaks may suggest the significant roles of endonucleases
during host infection and independent roles for invasive
endonucleases/introns and rps3 genes. As fungal mitochondria
acting as organelles to provide energy for cell functions, their
encoded genes displayed varied expression peaks after infection,
indicating significant cooperation among these genes.

The analysis of interspersed repeat sequences in the AG3
mitogenome suggested that the stable secondary structures
exhibited by repeats may comprise catalytic RNA elements
(Losada et al., 2014). None of the repeat sequences were shared
between AG3 and AG1-IB 7/3/14 or between AG3 and other
fungal mitogenomes in Basidiomycota, suggesting the unique
evolutionary phenomenon of repeat acquisition in R. solani
(Losada et al., 2014). The mitochondrial repeat sequences
had been considered as putative elements for recombination
or regulation (Ghikas et al., 2006). For both complete AG1-
IB mitogenomes (AG1-IB RSIB1 and 7/3/14 in Figure 1A),
their repeat sequence contents vary from each other, and
these differences resulted in the size variation between AG1-IB
and AG1-IB 7/3/14 mitogenomes (Supplementary Tables 7,8).
Meanwhile, in the AG1-IA mitogenome, the repeat sequences
may affect the expression of genes because similar repeat
sequences nearby the each pair of genes (rps3-nad2 and nad1-
mag28) with positive correlations in expression were found.
However, the influence of repeat sequence on gene expression in
mitogenomes is required to further evaluate.

Non-synonymous and synonymous substitution rates (dN
and dS) were different for each pair of R. solani mitogenomes
(Figure 3), which may affect the phylogenetic placement of AG1-
IC in the phylogeny (Figure 2A) because it was far from AG1-
IB branches. The conflict between mitochondrial (Figure 2A
and Supplementary Figure 4) and nuclear DNA (data not
shown) phylogenies was identified for AG1-IC lineage. In the
phylogenetic tree of nuclear genomes, AG1-IC was most closely
related to AG1-IB, and they formed a clade parallel with AG1-
IA. In our previous RNA-seq analysis, we found that among
AG1 strains, AG1-IB and AG1-IC had the most and least
frequent polymorphisms, respectively (Yamamoto et al., 2019),
which was consistent with our mitogenomic analysis, i.e., the
comparison of sequences between AG1-IC and other strains with
high substitution rates (Figure 3).

Positive selection signals in fungal mitochondrial rps3 genes
have been reported previously (Lin et al., 2015, 2017; Kang et al.,
2017; Wang et al., 2020; Zhang et al., 2020; Huang et al., 2021;
Wu et al., 2021). Together with rps3, genes encoding ribosomal
subunits with positive AT and GC skewness are identified in the
mitogenomes of brown rot fungal pathogens (Yildiz and Ozkilinc,
2021). In our results, we detected several sites in R. solani rps3
genes representing positively selected signals. These sites may be
the hot spot region in the R. solani mitogenomes and they may
contribute to host adaptation.

Mitochondrial DNA has been popularly used to design
markers for study of genetic diversity (Galtier et al., 2009), such
as the study in medicinal fungus Cordyceps militaris (Zhang et al.,
2017). However, to our knowledge, the used of DNA markers to
investigate intraspecific genetic diversity of Rhizoctonia sp. are
mainly designed from nuclear genomes (Das et al., 2020). With
the increase in publication of Rhizoctonia mitogenomes from
different AGs, the design of mitochondrial DNA markers for
identification of pathogens will become possible. Meanwhile, our
mitochondrial phylogeny including AG1-IA, AG1-IB, AG1-IC,
AG3, AG4, and other Rhizoctonia strains that adapt to different
hosts will acting as a phylogenetic marker to investigate host
adaptation between AGs.

Additionally, the expression of mitogenome encoded genes
may offer clues to understand host adaptation for R. solani strains
in the future studies. Although the 15 typical protein-coding
genes were highly conserved in the strains, their expression
in AG1-IA and AG3 during rice and potato infection were
quite different (Figures 5, 6 and Supplementary Figure 3). The
AG1-IA has many plant hosts, including rice, corn, soybeans,
barley, potatoes, and cabbage, while AG3 hosts are potatoes and
tobacco (Yang and Li, 2012). The host infection process requires
energy provided by mitochondria. To adapt to different host
infection, gene regulation in mitochondria may be very complex.
The different correlation coefficient maps in AG1-IA and AG3
showed the more complex relationships between genes in AG1-
IA (Figure 6). Even for AG1-IA strains, the atp8 gene from
rice isolated strains was not expressed during rice infection,
while the atp8 gene from soybeans or corn isolated strains
was expressed during rice infection (Supplementary Table 12).
These gene repertoires may be difficult to explain currently, but
the strain-specific phenomena of gene expression patterns were
very interesting.

Gene expression is a fundamental life process, which is
essential for fungal growth, metabolism, virulence, and response
to environments. The comparison of expression patterns between
RNA-seq and RT-qPCR analyses (Supplementary Figure 5)
suggested the complex expression and regulation for genes,
although similar patterns were found for several genes (such as
cob, rps3, mag28, and mag4). Those highly expressed genes in rice
infection (Figure 5), such as the cox2 with an expression peak
at 10-h, may play a significant role at the beginning of AG1-IA
pathogenesis and may act as candidate targets for disease control.
A comparison of amino acids between AG1-IA cox2 and human
cox2 (i.e., MT-CO2) showed highly conserved sequences, with
E-value of 2e-72 and identity of 46%. The sequence mutations
in human MT-CO2 have been reported to be related to serious
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diseases (Rahman et al., 1999; Heidari et al., 2020), suggesting
that there may be also some potential key pathogenic factors in
the R. solani mitogenome. The CRISPR gene-editing technology
could facilitate genetic alterations in fungal genomes and enable
study of gene function (Liu et al., 2015; Muñoz et al., 2019), in
relation to changes in fungal growth, morphology, and virulence.
Gene editing may also accelerate our understanding of the role of
mitochondrial genes.
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