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Abstract

Background: Recent analyses have suggested that many genes possess multiple transcription start
sites (TSSs) that are differentially utilized in different tissues and cell lines. We have identified a huge
number of TSSs mapped onto the mouse genome using the cap analysis of gene expression (CAGE)
method. The standard hierarchical clustering algorithm, which gives us easily understandable
graphical tree images, has difficulties in processing such huge amounts of TSS data and a better
method to calculate and display the results is needed.

Results: We use a combination of hierarchical and non-hierarchical clustering to cluster
expression profiles of TSSs based on a large amount of CAGE data to profit from the best of both
methods. We processed the genome-wide expression data, including 159,075 TSSs derived from
127 RNA samples of various organs of mouse, and succeeded in categorizing them into 70100
clusters. The clusters exhibited intriguing biological features: a cluster supergroup with a ubiquitous
expression profile, tissue-specific patterns, a distinct distribution of non-coding RNA and functional
TSS groups.

Conclusion: Our approach succeeded in greatly reducing the calculation cost, and is an
appropriate solution for analyzing large-scale TSS usage data.

Background

Large amounts of gene expression data are now available,
generated by the well-known oligonucleotide chip, cDNA
microarray, and serial analysis of gene expression (SAGE)
techniques, as well as by new tiling array techniques [1-5].
These techniques are used in large-scale gene expression
analyses for classifying gene expression patterns [6,7].
However, most of the techniques can only recognize a
group of transcript variants as a single transcript, because

all variants hybridize to the same probe on the arrays, hid-
ing the distinct expression regulation of each variant
reflecting the condition of tissues and developmental
stages.

Recently, we have developed a gene expression measure-
ment technique, called cap analysis of gene expression
(CAGE), which effectively detects distinct transcription
start site sequences, and marks the location with what we
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call CAGE tags. CAGE tags are grouped into tag clusters
(TCs), where the member tags map to the same strand of
a chromosome and overlap by at least 1 bp. Analysis of
TCs enables us to recognize representative TSSs and their
upstream regulatory elements [8]. Massive CAGE analysis
in the Functional Annotation of Mouse (FANTOM) 3
activity has shown that one gene locus, or transcription
unit (TU), can have as many as three TCs on average,
resulting in alternative transcripts [9]. Some of these alter-
native transcripts are translated into proteins with distinct
biological functions [10,11]. Therefore, identifying TSSs is
an essential process for researching the mechanisms that
regulate gene expression in a variety of tissues and devel-
opmental stages. It is also important to quantify the abso-
lute expression values for each TSS, rather than the relative
expression level compared to reference RNA. In this con-
text, CAGE analysis indicates discrete TSSs expression
intensities. Using these characteristic features of CAGE
analysis, we have developed a calibration method to
exchange relative expression values for absolute counts of
mRNA in a sample [12].

As a consequence of the complex features of transcrip-
tional gene expression regulation, the number of TCs
(equal to representative TSSs) that needs to be analyzed
totals 159,075 (from 127 mouse samples) from
FANTOM3 [9], far exceeding the number of actual genes
[13]. If we were to attempt analyzing this CAGE data, the
large number of TSSs might prevent a realistic determina-
tion of the solution due to the sheer size. Therefore, more
effective systems need to be developed for processing the
expected amount of TSS data. Although various methods
have been reported for clustering of expression data [14],
some of them are difficult to use, having high computa-
tional requirements. For instance, it is difficult for a stand-
ard 32 bit personal computer to process more than 40,000
genes using hierarchical clustering, for the algorithm con-
sumes more than 8G bytes of memory.

Here, we report the system and methods of a two-step
clustering of CAGE TSS data in detail, where we combine
different clustering methods. By using non-hierarchical
clustering, we can save computational power, even if the
amount of data surpasses the ordinarily computable
amount of data for hierarchical clustering. The Usage of
this two-step method in FANTOM3 activity has been
already succeeded in showing a part of the clustering
results such as the relations between different clusters and
the classification of a huge amount of upstream sequence
of the CAGE tags [9]. Then, here we will compare two
results of the clustering in different numbers of clusters,
and assess the validity of our method by examining
whether clustering data indicates molecular functions
annotated by GO terminology. Both results seem to pro-
vide the visually understandable hierarchical tree struc-
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ture that can be widely used by biologists. This attempt,
here we would demonstrate, let us confirm cluster data
agreed with past biological findings reflected in GO terms,
and notice new findings about aging-related genes.
Besides the systemic determination of gene network archi-
tecture in yeast [ 15], our approach is the first to cluster TSS
groups for whole-genome transcripts, including non-cod-
ing RNA.

Systems and Methods

Overview of clustering strategy

The clustering method has two steps. The first step is a
robust process to divide the dataset into small enough
parts to enable the employment of hierarchical clustering
algorithms. The division is performed with the k-means
method, which is suitable for large amounts of gene
expression data littered with noise [16,17]. This needs a
lower calculation order (O (Nk); N: number of data items;
k: number of clusters) and demands less computational
memory than the hierarchical method (which needs O
(N2) of memory and more than O (N2) of the correspond-
ing calculation order).

The second step of the analysis is done with hierarchical
clustering (for an overview of tree clustering and hierar-
chical clustering of individual groups, see Figure 1), based
on the calculation results from the first step, such as the
cluster centroid and number of TSSs in each cluster. This
two-step clustering method provides us with a good
graphical representation reflecting the biological signifi-
cance of the FANTOM3 data, which is easy to analyze sta-
tistically and gives a biologist a general view of the data in
order to analyze clusters. Figure 1a,b shows our calcula-
tion procedure.

Number of clusters

Non-hierarchical methods (similar to k-means) require a
suitable number of clusters. However, it is difficult to
decide the optimal number of clusters and the question of
how many clusters to use has been discussed and there are
several ways to decide the cluster number [15,18,19]. To
decide the optimum number of groups, information crite-
ria such as Akaike's Information Criterion (AIC) and Min-
imum Description Length (MDL) [20,21] or simple
functions such as the mean square error (MSE) can be
used. In our case, we have evaluated this number by using
the normalized residual sum of squares (nRSS), which is
based on the statistical characteristics of the data. The
nRSS is one of the simpler prediction functions given by
the following equation, to estimate and validate the
number of clusters:

Lo,
nRSS=2n— 2|xl,i—x1| (1)
1=1"1\ i=1
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Calculation procedure of the two step clustering. a) Schematic diagram of our clustering method. The second step
needs two types of parameters, cluster centroid vector and number of elements of each cluster, calculated in the first step. b)
Detail of the link algorithm. Each cluster calculated in the first step is connected by our method. This figure is an example of
the use of the average-linkage algorithm for the second step clustering.

where the cluster numberis ! {I = 1,..., L} where L is the
total number of clusters, the number of TCs in each cluster
isn;(I=1,..., L), and TC expression vectors in each cluster

lare x;{i=1,.., m}. The cluster centroid vector of x; ; {i

=1,.,mn}is 51. To validate this model, we used the 10-
fold cross validation method. All of the CAGE TC data
were randomly divided into 10 sub-groups. Dataset D(- §)
was a combination of 9 sub-groups other than j (1 <j <
10), and was used for estimation of the number of clus-
ters. The index for estimation, nRSS(e), was the average of
the results from the calculation by the equation when j
was changed from 1 to 10 in dataset D(- j). Dataset D(j)
was the j th sub-group, which was used to validate the esti-
mated result. The index for validation, nRSS(v), is the cal-
culated result using dataset D(j).

Link algorithm

To connect the non-hierarchical (first) clustering result
with the hierarchical (second) clustering algorithms, and
to draw a clustering overview tree, we used the informa-
tion of cluster centroids and the number of cluster mem-
bers from the first step. The application of these non-
hierarchical clustering results is different depending on
the link algorithm used in the hierarchical clustering.
Here, we mention two cases. In the case of average-linkage
algorithms, the equation of the link algorithm is as fol-
lows:

My My

d =
e n, +m,

dxa + dxb (2)

n, +m,

where g, b, ¢, x is the specific cluster number, d,, is the dis-
tance between cluster a and cluster x and n, is the number
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of members in cluster a. Note that, at the first merging, n,,
y,....n, are the number of the members in each cluster,
which is calculated by k-means clustering (see Figure 1b).
In the original average-linkage algorithm, this value is
always 1. We substituted these values with the result of the
non-hierarchical clustering (the first step). This equation
will depend on the hierarchical clustering link algorithm
chosen by the user. In the case of complete linkage algo-
rithms, our method does not affect the calculation
because the algorithm does not use the number of cluster
members.

Results

Decision of number of clusters

Figure 2 shows the relationship between number of clus-
ters and values of nRSS indices, nRSS(e) and nRSS(v), cal-
culated with the estimation dataset and the validation
dataset, respectively (see Systems and Methods). The
value of nRSS decreased as the number of clusters
increased, as is expected from the inverse relation of these
two parameters; thus, a local minimum of the value of
nRSS(v) can be settled in the selected range (0 to 200) of
the number of clusters. Indeed, in an approximation with
the nRSS index, the index value approached a certain con-
stant value when the number of clusters reached 70. From
this index, we decided that the optimum number of clus-
ters is 70 (L = 70 in equation (1)). Moreover, by substitut-
ing this number with 100 in the following example below,
we were able to show that the change has no essential
influence on the analytical result, giving no reason for fur-
ther division of the CAGE data. In the second step cluster-
ing, we applied the hierarchical average-linkage algorithm
to the 70 and 100 cluster groups. The most important
point in this step is that the number of elements in the
hierarchical clustering calculation decreases from 159 075
(TSSs) to 70 or 100 (clusters). The size of memory needed
to calculate the Cophenetic matrix, essential for the
processing of this clustering algorithm, decreases drasti-
cally from 126G bytes to 24K bytes. As a result, hierarchi-
cal clustering algorithms can be executed even when the
number of data points is huge. In the next section, we
focus on the clustering result divided into 70 clusters, and
point out that the result agrees with existing findings.
Afterwards, we discuss the resulting differences between
the calculation of data divided into 70 or 100 clusters.

Verification of two step clustering

|. Expression pattern

Figure 3 shows the clustering results of CAGE expression
data (divided into 70 clusters). Among these clusters, sev-
eral supergroups, cluster families with distinct expression
patterns and biological features, appeared. Supergroup
Aoy (A (70): group A is part of the dataset which was
divided into 70), which is composed of clusters 23 ;) to
4270y (not numerical order; see Figure 3, formed a large
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"ubiquitous and high expression" group, including TCs
expressed in most examined mouse organs, tissues, and
cell lines. This group was characterized by a lower
"number of TCs", which means that the clusters are com-
posed of a small number of transcripts each (710 per clus-
ter on average), and that they have a larger "total
expression": the total amount of expression per cluster
was more than 10 000 tags per million (except cluster

23(70)) .

Clusters outside supergroup A, formed several other
supergroups, characterized by tissue-specific expression
patterns. The clusters 3 7o), 470y, 3970y, 41(70), 63(70), and
64 70) that did not form supergroups, were characterized
by broad and high expression levels with tissue-specific
expression patterns. Clusters 3 ;) and 39 ;) were domi-
nantly expressed in the lung, cluster 64, in macro-
phages, and clusters 4;q), 41 ;o) and 635, in the brain.
Supergroup A and these 7 clusters form a "broad and high
expression" cluster family. In contrast to this, clusters
49 70)and 14 ;o) were "broad and low expression” clusters,
enclosing the largest and the second-largest numbers of
TCs (38 078 and 13 786 per cluster, respectively), and
therefore resulting in low expression values (5 to 6 tags
per million on average), even if the total expression in
each cluster was high.

To evaluate the difference in the result that may be caused
by different numbers of clusters, we compared the rela-
tion of the supergroups and clusters in two datasets where
the data were divided into either 70 or 100 clusters. Figure
4 is a result of the hierarchical clustering (the second step)
using the data divided into 100 clusters, and there are no
significant differences between the two cluster numbers in
Figure 3 and 4 when we compare it with our earlier results.
Figure 4 has the supergroups A, B and tissue-specific clus-
ters similar to the structures observed in Figure 3. Figure 5
shows the number of TC overlaps between the two data
sets. About 91% of the TCs belonging to supergroup
A(100) belong also to supergroup A;,). The lung specific
cluster 61(;9), consists in part of cluster 3;,), and cluster
2(100) is partly made up by cluster 39 . Clusters 66, ),
20100y and 32(;qp), which are mostly expressed in the
brain, correspond to the clusters 4(;4), 41(7), and 637,
respectively, further decreasing the difference between the
two data sets.

2. Gene ontology terms

To validate the biological relevance of the clusters, we
identified cluster-specific gene ontology (GO) terms by P-
values [22].

The ontologies are structured as directed acyclic graphs,
which are similar to hierarchies. A more specialized term
has parents of a more generalized term. If a general term

Page 4 of 10

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:161

Normalized RSS

900

= NRSS(v)

00 + nRSS(e)

600

500

400 oo, /

300 vy, e R [ R | L

nRSS

200

100

0 50 100 150 200
Number of Clusters

Figure 2

Scatter chart of averaged nRSS index versus number
of clusters. The data set is the CAGE tag cluster expression
data set from FANTOM3. The number of clusters was esti-
mated by the 10-fold cross validation method. nRSS(e): The
Normalized residual sum of squares results calculated by
using the estimation dataset. nRSS(v): Result of the validation
dataset: a): The value of the number of clusters at which the
nRSS(v) reaches the minimum.

is selected, it may contain several GO terms with opposite
biological meanings: for example, a general GO term,
apoptosis  (GO:0006915), contains anti-apoptosis
(GO:0006916) and induction of  apoptosis
(GO:0006917). Then, we first selected specialized GOs
related to organ-specific functions: glycolysis, gluconeo-
genesis, and neurotransmitters [23], to test whether the
transcripts in the clusters with tissue-specific expression
patterns could be annotated by proper GO terms. Indeed,
TCs in supergroup B(;,), which is expressed in the brain,
were tightly related to the GO category for neurotransmit-
ters; TCs in cluster 52 ,,), which originated from muscle
tissues, were annotated for glycolysis; and TCs in cluster
51(70yand 16;4), dominantly expressed in the liver, were
characterized by GOs for gluconeogenesis (Figure 3, 4).
The consistency between the GO terms and the expression
patterns in the clusters allowed us to propose the function
of transcripts as involved in the distinct biological activi-
ties of these organs.

Because transcripts have a wide variety of biological func-
tions, our samples, mostly derived from normal mice,
were not diverse enough to provide appropriate TCs for all
GOs, but they were enough to elicit the TCs obtained in
particular conditions and to form concordant clusters
with more general GO terms. TCs in cluster 17 was
largely derived from embryos (CFT to CFW; Figure 3) and
was annotated by GOs for cell cycle, which is reasonable
given the active cell division found in embryos. TCs in
cluster 65 7,), with a prominent P-value for apoptosis (10-
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5), originated from macrophages, which undergo apopto-
sis [9].

We compared the members of TCs formed by two differ-
ent numbers of clusters (70 and 100 clusters in figure 3
and 4, respectively). The correspondence of the clusters
formed in the two different clusterings is shown in figure
5. Most of the TCs in supergroup A ;o) and By, belong to
corresponding clusters in supergroup Ao and B(joq
respectively Further, we were able to show their promi-
nent P-values of GOs in the clusters, showing similar GO
p-values to those of the corresponding clusters. For exam-
ple, the clusters 50(;4p) and 90(;() contained almost the
same TCs as 65 ;o) and 52;), respectively resulting in
mostly the same GO P-values. Because the TC members
and their GO P-values of the clusters was thereby almost
the same, regardless of the cluster number, we could
assume that our attempts to annotate the clusters by GO
succeeded well, and the results were not influenced by dif-
ferences in the number of clusters.

3. Non-coding RNA

In the FANTOMS3 activity we cloned 34 030 non-coding
transcripts, which comprised 33% of the total transcripts
[9]. We tested whether there was any tendency of non-
coding TC expression (non-coding P-value in Figure 3, 4).
Alarge number of non-coding TCs (1,318 non-coding TCs
in 11,264 TCs) were contained in the "broad and high
expression" supergroup A ;) (P-values < 10-¢ except clus-
ters 11(;)), but not in the "broad and low expression”
clusters (P-values > 5%) or "other tissue-specific" clusters
(P-value > 10-3). Thus, in this computational method, the
number of non-coding TCs detected with this CAGE anal-
ysis is tightly related to the proportion of TCs with broad
and high expression levels. In the data set divided into
100, the results are similar: the majority of the non-coding
TCs appear in supergroup A ;o) (1,348 non-coding TCs in
11,521 TCs) with "broad and high expression”. Thus, our
method is more suitable to analyze statistical tendencies
across several clusters than the k-means method alone,
since k-means cannot describe or detect the relations
between clusters.

Discussion

Genome-wide surveys of gene expression are gaining in
importance, and computational methods capable of han-
dling the enormous amount of information generated are
sorely needed. Here we propose a mathematical clustering
method using genome-wide TSS data derived from tran-
scripts in various organs, tissues, and cell lines of mice
from the FANTOMS3 consortium [9]. The study of
sequence-based TSSs has unique problems. One problem
is the difficulty in dealing with the entire data set, because
the amount of data is huge and much larger than the
number of genes.
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Tree view image and supergroup annotation for 70 clusters. The tree view of the hierarchical clustering of CAGE
expression data (left side of figure), and the number of tag clusters (TCs, shaded) and P-values (color-coded) of TCs included in
each cluster classified by GO terms (right side of figure). This figure displays the results of 159 075 TCs from 127 RNA sam-
ples. Hierarchical clustering was performed for 70 clusters which were grouped by the k-means method, and for 127 RNA

samples.

To solve this problem, we devised a computational
method that combines two different clustering methods
to analyze CAGE expression data. The calculation proce-
dure is as follows (Figure 1); firstly we decided on the
number of clusters of TSS data (Figure 2), and then we
used k-means clustering (non hierarchical). Secondly, we
performed a tree view clustering (hierarchical clustering)
to visualize the distance between the clusters (Figure 3, 4)
by using the results from the first step. Our new method is
useful in combining the merits of two calculation meth-
ods: the high degree of noise tolerance and calculation
order of the non-hierarchical clustering and the improve-
ment of the entire data by the second step.

Euclidean distance, one of the basic distance functions,
was used as the distance metric of the first step, but it is

possible to optimize the results by testing a variety of dis-
tance functions [14,16]. The use of other distance func-
tions may give clusters with clearer GO term
characteristics. Although other methods [24,25] have
been proposed to reduce the calculation time of hierarchi-
cal clustering, these methods still require a huge amount
of memory. In addition, they have a problem of making a
visually understandable tree from such a large amount of
data as ours. At this point, Tight Clustering is probably
one of the powerful methods for a large amount of data
[26]. One of the difficulties of this model-based method
is the requirement of the choice of several parameters,
which can cause some artifacts. In a widely used experi-
mental method like microarray, the investigation of the
parameter space can be done in advance. However, for a
novel experimental method like CAGE, the a priori setting
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Tree view image and supergroup annotation for 100 clusters. Hierarchical clustering result, performed for 100 clus-

ters which were grouped by the k-means method.

of parameters for a model based approach becomes very
difficult. Here, a heuristic approach like ours might be the
more appropriate choice.

The 70 clusters we obtained were well characterized by
CAGE-TC expression patterns and gene ontology, proving
our method's suitability for analyzing CAGE data. We
have published another paper that shows the correlation
between the expression pattern and upstream sequences
of TSSs, noncoding RNA analysis, and alternative promot-
ers in protein-coding genes [27]: if these data are com-
bined, as in Figure 3 and 4, the features of gene expression
regulation specific to biological function and upstream
transcription regulatory elements can be easily and
informatively described in a pleasing way. In Figure 3, we
show that the clusters 5(;) and 69 7,), which belong to
supergroup A, were rich of noncoding RNAs located in
the last exon. As mentioned in our previous article [27],

noncoding RNA that are derived from 3'-UTR may func-
tion as regulatory RNA. The TCs in these clusters were
accumulated in the visual cortex and in the embryo. This
may suggest that the noncoding RNA derived from the last
exon, which contains the 3'-UTR, may play particular
roles in these tissues. However, we would not deeply dis-
cuss a biological meaning of the clusters in this paper
because we do focus on the discussion concerning the
methodology. Likewise, by using the method described
here, we can gather new information on biological proc-
esses by combining and comparing different TSS-based
data.

Abbreviations

CAGE, cap analysis of gene expression; FANTOM, func-
tional annotation of mouse; TU, transcription unit; TC,
tag cluster; TSS, transcription start site; GO, gene ontol-
ogy; nRSS, normalized residual sum of squares.
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The splitting and merging of the TCs. The splitting and merging of the TCs between the two clusterings (content ratio),
generating 70 (Fig. 3) and 100 (Fig. 4) distinct clusters, are shown here. The expression level for each cluster is the value of the
cluster centroid; "Numbers of TCs" shows the number of tag clusters in each cluster. "Total Expression" shows the total
expression level (log,(tags per million)) in each cluster. "Random" shows the result analyzed by using 5,000 TCs of different
GO terms, chosen at random. "P-value" shows the statistical probability of the accuracy of the tag clusters classified by gene
ontology terms. See Systems and Methods for how tag clusters are classified by gene ontology.
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Appendix

Materials

All RNA samples used were the same as used in the
FANTOM3 analysis [9]. Detailed information correspond-
ing to RNA sample IDs used in this clustering can be seen
in the FANTOM3 Basic Viewer [28]. We chose 127 librar-
ies which has more than 1500 mapped tags from among

209 CAGE libraries. The CAGE libraries, which are non-
normalized, unsubtracted, and unfractionated, were pre-
pared according to Shiraki et al. [8]. 5'-End sequences of
full-length transcripts (CAGE tags) were mapped to the
mouse genome version UCSC mm5 by the procedure
described by Carninci et al. in [9]. To establish the corre-
spondence between CAGE tags and TUs, we used the Rep-
resentative Transcript Set [29].

Calculation of P-values of TC to GO association

TCs were easily connected to GO terms. Most TCs were
included in specific TUs defined by the RTPS dataset [29],
in which the TUs were connected to GO terms. P-values of
the TC-GO association were calculated from the number
of TCs connected to certain GO terms and the total
number of TCs in the cluster by R Statistics software [30]

Page 8 of 10

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:161

in a one-sided Fisher's exact test. The term "Random" in
Figure 3 and 4 shows whether each cluster significantly
contains randomly chosen TCs. We did another test that
randomized all the relations between TC and the expres-
sion. The Fisher's test yielded significant p-values in very
few clusters. See supplementary web site [31].

Non-coding RNA dataset

The non-coding RNAs were the FANTOM clones predicted
to be non-coding by at least 2 out of 3 methods: CRITICA
(Coding Region Identification Tool Invoking Compara-
tive Analysis) [32], mTRANS and rsCDS [33].

Software and expression data processing

The software used for the k-means (first step) was EISEN
Cluster3 1.27 [34], maximum number of repetitions for
the calculation of Figure 2, 3 and 4 were 5 and 100, respec-
tively. Rand seed was 100 (for Figure 3, 4), and the tree
view (second step) clustering procedure was Cluster3 1.31
[34], modified by our group. In this clustering, we used
Euclidean distance (first step and second step: RNA sam-
ple clustering), and Uncentered correlation (second step:
TC cluster clustering) for the distance metric. Pair-wise
average-linkage was used in the hierarchical clustering
algorithm. The expression values were converted to log-
transformed tags per million. Programs (diff file) and
some details, used in this paper, are available at the sup-
plementary web site [31].
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