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Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms
that govern the production of euploid gametes for successful sexual reproduction.
These surveillance mechanisms are particularly crucial during meiotic prophase, when
cells execute a highly orchestrated program of chromosome morphogenesis and
recombination, which must be integrated with the meiotic cell division machinery to
ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled
by kinases and phosphatases, has emerged as one of the main signaling routes for
providing readout and regulation of chromosomal and cellular behavior throughout
meiotic prophase. In this review, we discuss common principles and provide detailed
examples of how these phosphorylation events are employed to ensure faithful passage
of chromosomes from one generation to the next.
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INTRODUCTION

The central function of meiosis is to produce haploid genomes that can be packaged into gametes
for sexual reproduction. Going from a diploid germ cell progenitor to haploid meiotic products
involves a modified cell division program, in which a single round of DNA replication is followed
by two rounds of chromosome segregation, meiosis I and meiosis II. These two segregation
phases separate homologous chromosomes and sister chromatids, respectively (Petronczki et al.,
2003; Hunter, 2013). The spatiotemporal regulation of meiotic events is highly complex and this
complexity is accompanied by rates of chromosome missegregation that are orders of magnitude
higher than during mitosis. Errors in meiotic chromosome segregation account for the naturally
high rate of spontaneous pregnancy loss in humans and are the main cause of chromosomal birth
defects, including Down syndrome (Nagaoka et al., 2012; Geisinger and Benavente, 2016; Potapova
and Gorbsky, 2017; Webster and Schuh, 2017).

The complexities of meiosis arise primarily from the need to faithfully identify and connect
homologous chromosome pairs and to ensure their proper separation during meiosis I. Unlike
sister chromatids, which are connected by sister chromatid cohesion from the moment they are
synthesized, homologous chromosomes originate from different organisms (mom and dad). As a
result, meiotic germ cells spend an inordinate amount of time and energy to properly identify and
connect pairs of homologous chromosomes (Zickler and Kleckner, 2015, 2016). This process occurs
after premeiotic DNA replication in a period called meiotic prophase and, in most organisms,
involves the physical rewiring of homologous chromosomes by meiotic crossover recombination.
Crossover recombination is important evolutionarily for creating new allele combinations but also
has an important mechanical function during meiosis. Together with the existing sister chromatid
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cohesion, crossovers create physical links between homologous
chromosome pairs that support proper chromosome alignment
and separation during meiosis I (Hunter, 2015).

Crossover recombination involves the controlled introduction
and repair of numerous DNA double-strand breaks (DSBs)
(Figure 1). Meiotic DSBs are formed by SPO11, a conserved
meiosis-specific enzyme related to topoisomerases that remains
covalently attached to DSB ends and must be nucleolytically
removed to allow repair (Lam and Keeney, 2015). Once removed,
DSBs are resected to expose single-stranded DNA (ssDNA).
These ssDNA tails provide the substrate for recombinases
including RAD51 and DMC1, which scan the genome for
homology and catalyze strand invasion of a donor duplex
to initiate repair (Brown and Bishop, 2015). Depending on
the processing of the resulting displacement loops, these
intermediates are either stabilized and further processed to form
crossovers, or they are dissolved after limited repair synthesis
to yield non-crossover products (Hunter, 2015). To prevent
genomic instability, DSBs must be repaired by the time cells
initiate meiosis I.

Alongside these DNA-based events occur large-scale changes
in chromosome architecture and dynamics (Zickler and
Kleckner, 2015, 2016; Figure 1). Chromosomes assemble
into longitudinally compacted arrays of chromatin loops that
emanate from the axial element, a meiosis-specific nucleo-
protein axis that dynamically adapts to ongoing transcription
and recombination. As meiotic prophase progresses, axial
elements of homologous chromosomes align to form the lateral
elements of the synaptonemal complex (SC), a dynamic structure
that progressively connects homologous chromosome pairs
in a zipper-like arrangement (Zickler and Kleckner, 2015;
Lake and Hawley, 2021). The chromosomal compaction and
organization mediated by the SC are tightly coupled to the
progression of crossover recombination and play numerous
roles in controlling all stages of meiotic recombination. They
also lead to gross morphological changes in chromosome
architecture that underlie the cytologically defined stages of
meiotic prophase, leptonema, zygonema, pachynema, and
diplonema, which describe the progressive compaction and
ultimate decompaction of prophase chromosomes. Alongside
SC formation, chromosomes cluster with their telomeres in the
nuclear envelope to form the telomere bouquet (Scherthan,
2001; Zickler and Kleckner, 2016). Telomeric attachment to the
nuclear envelope also creates chromosomal linkages with the
cytoplasmic cytoskeleton, which powers rapid chromosomal
movements during pachynema.

The programmed formation of meiotic DSBs in the context
of a highly dynamic genome creates a substantial hazard
for genomic integrity. Meiotic checkpoints and surveillance
mechanisms serve to safely navigate this developmental process
and ensure that DSBs form at the right time and are appropriately
repaired before cells initiate the meiotic divisions (MacQueen and
Hochwagen, 2011; Subramanian and Hochwagen, 2014). These
mechanisms ensure that DNA replication is largely complete
before DSBs start to form, they help to locally downregulate
DSB formation once a chromosome pair has initiated productive
crossover recombination, and they stop DSB formation as

FIGURE 1 | Overview of stages of meiotic prophase along with corresponding
DNA intermediates. During leptonema, the first stage of meiotic prophase,
chromatin condenses and forms attachments with the nuclear envelope. It is
also during this stage that DSBs are introduced. In parallel with ongoing DNA
repair, homologous chromosomes pair and formation of the SC is initiated.
Partial SCs define the next meiotic stage, zygonema. When all chromosomes
are synapsed along their axes, cells are in pachynema, which is when the bulk
of double-Holliday junctions form. During late pachynema/early diplonema,
double-Holliday junctions are resolved into crossovers and SC disassembly
begins. Cells then exit meiotic prophase and prepare for the first meiotic
division.

cells exit prophase. In addition, signaling events suppress
inappropriate repair patterns, control crossover maturation,
and create dependent relationships between DSB repair and
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chromosome morphogenesis. Our understanding of this network
has grown substantially as more connections are being uncovered
and dissected at the molecular level, although available data
suggest that this network is likely significantly more complex.

Dynamic protein phosphorylation has emerged as a major
mediator of this signaling during meiotic prophase. Protein
phosphorylation is a very versatile way of communication
mediated by kinases and phosphatases. Kinases catalyze the
transfer of the gamma-phosphate group of ATP onto suitable
targets (in eukaryotes primarily the hydroxyl groups of serine,
threonine, and tyrosine). Phosphatases reverse this process
by hydrolyzing the resulting phosphoesters. Both classes of
enzymes have important roles in the regulation of meiotic
prophase, although research has primarily focused on the role
of kinases (Figure 2). In part this bias arises because eukaryotic
genomes encode more kinases than phosphatases (Smoly et al.,
2017). However, phosphatases have crucial roles in controlling
signaling dynamics and in executing large transitions during
meiotic prophase.

FUNCTIONS OF PHOSPHORYLATION

Research over the past two decades has greatly improved our
understanding of how phosphorylation events regulate meiotic
prophase. It has also revealed a number of recurrent regulatory
modes that create dependencies, allow local decision-making,
and integrate signals. We would like to highlight some of these
modes before discussing the regulation of individual prophase
processes in more detail.

Creating Dependent Relationships
A key function of kinase signaling in meiotic prophase is the
establishment of dependent relationships, whereby the ongoing
activity of one process, such as the presence of DSBs, is
communicated to other metabolically independent processes,
such as centromere coupling or cell-cycle progression (Lydall
et al., 1996; Falk et al., 2010). These dependent relationships
can promote the co-occurrence of processes, or they can create
a “wait” signal to ensure that one process is completed before
the next process initiates (MacQueen and Hochwagen, 2011;
Subramanian and Hochwagen, 2014). The creation of a wait
signal is often referred to as a checkpoint (Hartwell and Weinert,
1989). Many of the known dependent relationships in meiotic
prophase are established by a core kinase signaling network,
consisting of the DNA-damage sensor kinases ATM and ATR
and the transducer kinase CHK2 (Pereira et al., 2020). ATM
and ATR sense protein-linked DNA ends and RPA-coated single-
stranded DNA, respectively (Marechal and Zou, 2013; Awasthi
et al., 2015). CHK2 gets activated by ATM/ATR and targets an
additional set of substrates (Stracker et al., 2009). In meiotic
prophase, all three kinases have an expanded substrate spectrum
that includes numerous meiosis-specific proteins (Carballo et al.,
2008, 2013; Falk et al., 2010; Kim et al., 2015; Penedos et al., 2015).
In addition, the architecture of the signaling cascade appears to
be rewired in multiple ways. All three kinases display altered
(DSB-independent) modalities of activation in at least some

organisms (Barchi et al., 2005; Bellani et al., 2005; Bhalla and
Dernburg, 2005; Blanco-Rodríguez, 2012; Widger et al., 2018).
In addition, several cell-cycle kinases, including Dbf4-dependent
kinase (DDK) and Polo-like kinases (PLKs), have been tied
into this network to establish dependencies (Clyne et al., 2003;
Sasanuma et al., 2008; Sourirajan and Lichten, 2008; Wan et al.,
2008; Labella et al., 2011; Murakami and Keeney, 2014; Nadarajan
et al., 2017). On the other hand, several well-known mediators of
canonical DNA-damage signaling, including the Saccharomyces
cerevisiae adaptor protein Rad953BP1 and the metazoan effector
protein p53 appear to have less pronounced roles (Lydall et al.,
1996; Odorisio et al., 1998; Murakami and Nurse, 1999; Ward
et al., 2003; Ashley et al., 2004).

Local Versus Global Signaling
The inherent asynchrony of DNA metabolism within the genome
of each nucleus during meiotic prophase, including differences
in the local timing of DNA replication, DSB formation, and
repair kinetics, necessitates spatially restricted communication
to coordinate processes at individual loci or on individual
chromosomes. For example, DSB formation in yeast is locally
licensed by DDK, which is thought to ride along with the
DNA replication machinery and thus promote DSB formation
specifically in DNA regions where replication is completed
(Murakami and Keeney, 2014). Spatially constrained signaling
is also inherent to ATM and ATR. Their damage dependency
ensures that both kinases are principally active when tethered
to DSB sites (Marechal and Zou, 2013; Awasthi et al., 2015;
Paull, 2015) and helps establish local signaling hubs around
DSB sites (Cimprich and Cortez, 2008; Blackford and Jackson,
2017). In mammalian spermatocytes, ATR is also activated
independently of meiotic DSBs through the recruitment to
unpaired chromosome axes (Keegan et al., 1996; Moens et al.,
1999; Turner, 2015), thereby constraining kinase activity to
specific chromosomal regions. An analogous situation occurs
in S. cerevisiae where the meiotic CHK2-like transducer kinase,
Mek1, depends on interactions with axis components to become
active (Carballo et al., 2008). With kinase activity confined to
these regions, it depends on the diffusibility of the respective
kinase substrates whether signaling is locally constrained as seen
for chromatin-associated phosphorylation events (Rogakou et al.,
1999; He et al., 2020; Raina and Vader, 2020) or whether the
signal is able to spread through the nucleus or the whole cell.
Finally, dephosphorylation can also be spatially constrained. For
example, meiotic cohesin is retained around centromeres during
and after meiosis I due to localized activity of protein phosphatase
2A (PP2A) in these regions (Wassmann, 2013). These localized
mechanisms allow signaling to occur independently at multiple
locations despite their presence in a common nuclear space.

Signal Amplification and Integration
A number of instances have been described in meiotic prophase
where phosphorylation of one residue by an initiator kinase
primes the protein for additional phosphorylation events
mediated by another kinase. Such priming events can help
amplify a signal by creating a larger region of phosphorylation
(Wan et al., 2008; Falk et al., 2010; Chen et al., 2015). They
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FIGURE 2 | Stages of meiosis and kinases that regulate them. Kinases along with phosphatases are the main actors of phosphorylation-based regulatory control.
This figure highlights kinases with defined roles in different meiotic stages. Meiosis-specific kinases are colored blue.

also provide an opportunity to integrate multiple signals if
the two kinases are differentially regulated. For example, DSB
formation in S. cerevisiae requires priming phosphorylation of
the DSB activator Mer2 by cyclin-dependent kinase (CDK)
(Henderson et al., 2006; Sasanuma et al., 2008; Wan et al.,

2008). This phosphorylation event creates a substrate recognition
site for DDK, which subsequently phosphorylates additional
sites (Sasanuma et al., 2008; Wan et al., 2008). Both of these
phosphorylation events have to occur for DSB formation to
initiate, but the two kinases are independently regulated. DDK
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is commonly observed as a responder to priming events, because
it preferentially phosphorylates serines and threonines that are
followed by residues with a negative charge, which can also be
provided by phosphorylation. Several kinases, including DDK,
CHK2, and PLK, also have phospho-binding domains that allow
binding to specific phosphorylated targets and stimulate further
phosphorylation. In addition, signal integration can also occur if
two different kinases simply phosphorylate the same substrate.
This pattern has emerged in a number of cases where a protein is
phosphorylated by general cell cycle kinases with a wide spectrum
of substrates, such as CDK, but also by a signal response kinase,
such as ATM/ATR or CHK2 (Sopko et al., 2002; Callender et al.,
2016; Chen et al., 2018). In these cases, phosphorylation by the
cell-cycle kinase may communicate the appropriate cell cycle
state and thus license the protein for regulation by the response
kinase (or phosphatase).

CONTROL OF MEIOTIC PROPHASE

This review intends to provide a solid overview of our current
understanding of phospho-regulation of meiotic prophase in
common model organisms of meiosis. However, given the wide
spectrum of available examples, we apologize if space constraints
prevented us from including all examples of this regulation.

DNA REPLICATION

Premeiotic S phase, though not formally part of meiotic prophase,
is the first stage of meiosis-associated DNA metabolism and
appears tightly integrated with subsequent prophase events. The
phospho-regulation of premeiotic S phase has so far primarily
been studied in S. cerevisiae and Schizosaccharomyces pombe,
and, similar to mitotically proliferating cells, relies heavily on
the activity of CDKs (MacKenzie and Lacefield, 2020). In
S. cerevisiae, S-CDK (Cdc28CDK bound to the cyclins Clb5
and Clb6) is essential for initiating premeiotic DNA replication
(Stuart and Wittenberg, 1998; Benjamin et al., 2003). In S. pombe,
the cyclin Cig2 bound to Cdc2CDK similarly promotes premeiotic
S phase, although cig2 mutants only have a partial replication
defect, because altered expression of later cyclins substitutes
for the necessary CDK activity (Borgne et al., 2002; Malapeira
et al., 2005). Cyclin gene expression patterns are consistent with
CDKs also driving premeiotic S phase in mammals (Chotiner
et al., 2019). One unusual feature of premeiotic S phase in both
yeasts is the additional involvement of non-canonical CDKs. In
S. cerevisiae, efficient S-CDK activation requires the meiosis-
specific CDK2-like kinase Ime2, which promotes degradation
of the CDK inhibitor Sic1 (Dirick et al., 1998; Benjamin et al.,
2003; Sedgwick et al., 2006; Szwarcwort-Cohen et al., 2009).
Like CDKs, Ime2 activation requires phosphorylation in its
T-loop by the CDK-activating kinase Cak1 (Schindler et al.,
2003). However, it does not require binding of a canonical
cyclin (Honigberg, 2004). Ime2 likely has additional roles in
activating DNA replication, because deletion of Sic1 does not
rescue the DNA replication defects conferred by the absence

of Ime2 (Dirick et al., 1998; Clifford et al., 2004). Although
a large number of Ime2-dependent phosphorylation sites have
been defined (Clifford et al., 2004; Holt et al., 2007), the
relevant targets for premeiotic S phase activation remain to be
determined. It is possible that the effect on S-phase activation
occurs in part through Ime2’s role in promoting the meiotic gene
expression program (Brush et al., 2012). A similar situation is
observed in S. pombe where the CDK5-like kinase Pef1 promotes
premeiotic DNA replication by inducing the expression of key
replication factors (Matsuda et al., 2021). In both S. cerevisiae
and S. pombe, timely activation of premeiotic DNA replication
also requires DDK (Ogino and Masai, 2006; Valentin et al., 2006).
In mitotically dividing cells, S-CDK and DDK phosphorylate
numerous components of the pre-replicative complex to activate
replication (Bell and Labib, 2016), although whether the same
or additional targets become phosphorylated in meiosis remains
to be determined.

DSB FORMATION

Connecting DSB Formation to DNA
Replication
Meiotic DSB formation must be delayed until premeiotic DNA
replication is largely complete because Spo11-induced DSBs on
unreplicated DNA are difficult to repair and also interfere with
the completion of DNA replication (Blitzblau and Hochwagen,
2013). Initiation of premeiotic DNA replication requires
substantially lower levels of DDK activity than DSB formation
(Wan et al., 2006), providing a basal mechanism to temporally
separate the two processes. In addition, evidence suggests that
formation of DSBs is coordinated with DNA replication in a
local manner, as a delay in DNA replication in one region of a
chromosome leads to a delay in DSB formation specifically in
that region (Borde et al., 2000; Murakami and Keeney, 2014).
However, the dependence of DSB formation on the completion
of DNA replication is not strict, as both S. cerevisiae and
S. pombe, can form DSBs in the absence of DNA replication
(Hochwagen et al., 2005; Tonami et al., 2005; Ogino and Masai,
2006; Blitzblau et al., 2012). In S. cerevisiae, coordination between
DNA replication and DSB formation involves phosphorylation
of the Spo11-accessory protein Mer2. Mer2 is phosphorylated
on S30 by CDK, which primes phosphorylation on S29 by DDK
(Henderson et al., 2006; Sasanuma et al., 2008; Wan et al.,
2008). Phosphorylation of these sites is required for formation
of DSBs (Henderson et al., 2006; Sasanuma et al., 2008; Wan
et al., 2008) and promotes localization of other components of
the meiotic DSB machinery to chromosome axes (Panizza et al.,
2011). Additional DDK-dependent phosphorylation events in the
N-terminus of Mer2 also contribute to DSB formation, albeit
more weakly (Sasanuma et al., 2008).

Double-strand break formation is thought to be connected
to local completion of DNA replication through the activity of
DDK. According to this model, DDK is recruited to replisomes
and phosphorylates chromatin-bound Mer2 as replisomes pass
through replicating DNA (Murakami and Keeney, 2014). Mer2
may not be the only target of this control mechanism as
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phospho-mimetic mutants of S29 or S30 cannot bypass the need
for DDK or CDK for DSB formation (Wan et al., 2008), although
it is also possible that the phospho-mimetic substitutions did not
fully substitute for the lack of phosphorylation. The DSB factor
Rec104 is phosphorylated during meiosis in a Spo11-independent
manner and has a different electrophoretic mobility when DNA
replication is blocked (Kee et al., 2004; Blitzblau and Hochwagen,
2013). Thus, it is possible that Rec104 provides a further link
between replication and DSB formation. However, this model can
still not explain how DSB formation can happen in the absence
of DNA replication. A potential answer is suggested by the
observations that DDK activity progressively increases in meiotic
prophase (Matos et al., 2008; Wan et al., 2008) and that induced
overexpression of DDK abrogates local differences in DSB
timing (Murakami and Keeney, 2014). We therefore speculate
that replication fork passage facilitates Mer2 phosphorylation,
but that this barrier can also be overcome independently of
replication once nuclear DDK activity is sufficiently high.

Whether and how DSB formation is linked to DNA replication
in other organisms is less clear. Perhaps the most intriguing
link comes from analysis of Caenorhabditis elegans CHK-
2CHK2, which has emerged as a master regulator of meiotic
recombination in this organism. chk-2 mutants are defective
in numerous aspects of meiotic recombination, including
chromosome pairing and nuclear organization (MacQueen and
Villeneuve, 2001; Oishi et al., 2001). CHK-2 is also essential
for meiotic DSB formation through controlling chromatin
association of the DSB regulator DSB-1 (Stamper et al.,
2013). It has been proposed that CHK-2 activity provides a
link between DNA replication and recombination (MacQueen
and Villeneuve, 2001), although inhibiting premeiotic DNA
replication compromises meiotic progression in both wild-type
and chk-2 mutants (MacQueen and Villeneuve, 2001). It also
remains puzzling is how CHK-2 would be activated in this model
because mutants lacking both canonical activators of CHK2
kinases (atl-1ATR and atm-1ATM) have less severe recombination
defects than chk-2 mutants (Li and Yanowitz, 2019). Perhaps
other kinases substitute for ATM/ATR. Alternatively, CHK-2
activity may be primarily regulated at the level of gene expression
(Mohammad et al., 2018).

Role of the Replication Checkpoint
Research in S. cerevisiae and S. pombe has also revealed a
mechanism that further delays DSB formation in response to
persistent blocks in replication fork progression. In S. cerevisiae,
the checkpoint kinases Mec1ATR and Rad53CHK2 attenuate DDK
activity in response to replication problems, thereby providing
a mechanism to block DSB formation during replication
stress (Blitzblau and Hochwagen, 2013). Mer2 phosphorylation
happens independently of replication in mec1ATR and rad53CHK2

mutants, suggesting that DDK’s association with replisomes is
not essential for its ability to target and phosphorylate Mer2
(Blitzblau and Hochwagen, 2013). In addition to inhibiting DDK,
replication stress controls DSB formation by downregulating
Spo11 transcript levels (Blitzblau and Hochwagen, 2013), but
how the replication checkpoint intersects with transcriptional
regulation has not been investigated. In S. pombe, Rad3ATR

along with Cds1CHK2 is similarly required for preventing DSB
formation in response to replication stress by downregulating
expression of the transcription factor Mei4 (Tonami et al.,
2005; Ogino and Masai, 2006). One key factor affected by this
regulation is Mde2, which tethers the DSB machinery to the
meiotic chromosome axis and is essential for DSB formation (Abe
and Shimoda, 2000; Miyoshi et al., 2012, 2013). In addition, Mei4
downregulation leads to prolonged nuclear movement (Ruan
et al., 2015). Whether similar regulation exists in mammals
remains unclear. One potential candidate for checkpoint-
dependent regulation is the protein ANKRD31, which interacts
with the DSB factor REC114 (Boekhout et al., 2019; Papanikos
et al., 2019). Mouse Ankrd31−/− mutants experience a delay
in DSB formation along with other defects in recombination,
including DSB patterning (Boekhout et al., 2019; Papanikos et al.,
2019). ANKRD31 harbors 24 ATM/ATR consensus sites and
thus has the potential to be a target for ATM/ATR-dependent
regulation for DSB formation (Boekhout et al., 2019).

Control of DSB Numbers
The number of meiotic DSBs per cell must be carefully
titrated to ensure sufficient DSB formation for successful
meiotic recombination while minimizing the risk of chromosome
abnormalities associated with excessive DSB numbers. ATM
mutants in various organisms exhibit increased DSB formation,
suggesting a universal role for ATM in the regulation of DSB
levels (Joyce et al., 2011; Lange et al., 2011; Checchi et al., 2014;
Garcia et al., 2015; Mohibullah and Keeney, 2017; Fowler et al.,
2018; Kurzbauer et al., 2021). In S. cerevisiae and S. pombe,
ATM regulates DSB numbers by preventing double-cutting in
proximity of DSBs (Garcia et al., 2015; Fowler et al., 2018). The
activity of S. cerevisiae Tel1ATM also limits DSB formation at
a given locus to one DSB per quartet of chromatids (Zhang
et al., 2011). Conversely, Mec1ATR is suggested to promote
DSB formation by blocking prophase exit until enough DSBs
are made (Gray et al., 2013). Antagonistic roles of ATM and
ATR in DSB formation have also been observed in C. elegans
(Li and Yanowitz, 2019).

The definition of the relevant ATM substrates remains
incomplete. In the protist Tetrahymena thermophila, the DSB
factor Pars11 gets phosphorylated by ATR upon DSB formation
(this organism lacks ATM) and is removed from chromatin and
degraded (Tian and Loidl, 2018). Mutants lacking ATR during
meiosis or expressing non-phosphorylatable versions of Pars11
exhibit elevated DSB numbers (Tian and Loidl, 2018), suggesting
that Pars11 is a major mediator of feedback control in this
organism. In S. cerevisiae, negative feedback of DSB formation
is suggested to be partially achieved through the essential DSB
factor Rec114, which gets phosphorylated by Tel1ATM/Mec1ATR

at multiple sites after DSB formation (Carballo et al., 2013).
These phosphorylation events were found to reduce binding of
Rec114 at DSB hotspots and reduce DSB levels (Carballo et al.,
2013). However, altering Rec114 phosphorylation had little effect
on DSB numbers in another study and did not recapitulate the
increased DSB numbers or double cutting observed in ATM
mutants (Garcia et al., 2015; Mohibullah and Keeney, 2017).
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It has been suggested that Rec114 might be only one of the
targets of Tel1ATM, with each target contributing slightly to
DSB-number regulation (Garcia et al., 2015; Mohibullah and
Keeney, 2017). In C. elegans, the proteins DSB-1 and DSB-2 are
required for DSB formation, and are suggested to be involved in a
negative feedback regulation of DSB formation (Rosu et al., 2013;
Stamper et al., 2013). DSB-1 and DSB-2 have clustered ATM/ATR
phosphorylation sites, a feature that is also seen in other meiotic
ATM/ATR targets like Rec114 (Carballo et al., 2013; Rosu et al.,
2013; Stamper et al., 2013). Whether ATM/ATR function through
these proteins to modulate DSB levels remains to be determined.
Notably, feedback on DSB numbers in C. elegans also involves
the polo-like kinases PLK-1 and PLK-2, which phosphorylate
the SC protein SYP-4 on S269 (Nadarajan et al., 2017). This
phosphorylation event takes place after a DSB site is designated
as a crossover, connecting crossover designation to preventing
further DSB formation in this organism (Nadarajan et al., 2017).

Other kinases also contribute to DSB formation. For example,
casein kinase I (CKI) regulates DSB formation in fission
yeast (Phadnis et al., 2015; Sakuno and Watanabe, 2015) by
phosphorylating the meiosis specific cohesin subunit Rec11STAG3,
which regulates loading of the DSB-promoting axis protein Rec10
(Phadnis et al., 2015; Sakuno and Watanabe, 2015). STAG3 is
also phosphorylated in a SPO11-independent manner in mouse
but the role of this phosphorylation has not been explored
(Fukuda et al., 2012).

CHROMOSOME DYNAMICS

Protein phosphorylation has several key functions in controlling
nuclear organization, chromosome movement, pairing, and
synapsis in meiotic prophase.

Nuclear Organization and Chromosome
Movement
Meiotic chromosomes form connections with the nuclear
envelope (Scherthan, 2001) and move to facilitate homolog
pairing and resolution of chromosome entanglements (Zickler
and Kleckner, 2016). These movements are mediated by SUN
and KASH domain-containing proteins, which span the nuclear
envelope and connect the chromosomes to the cytoskeleton
(Hiraoka and Dernburg, 2009). In C. elegans, meiotic
chromosome pairing and movement is initiated by the CHK-2-
dependent phosphorylation and recruitment of chromosome-
specific pairing proteins to subtelomeric pairing centers (Phillips
and Dernburg, 2006; Kim et al., 2015; Figure 3). Some of the
CHK-2-dependent phosphorylation sites (e.g., phosphorylation
of HIM-8 on T64) occur in polo-box motifs and lead to the
recruitment of PLK-2 (Kim et al., 2015). One output of this
signaling is the CHK-2 and PLK-2 dependent phosphorylation
of the SUN-domain protein SUN-1 (Penkner et al., 2009; Harper
et al., 2011; Labella et al., 2011). SUN-1 phosphorylation stabilizes
PLK-2 binding and promotes chromosome synapsis (Woglar
et al., 2013), but there are likely additional substrates, because
PLK-2 also promotes other processes, including chromosome
pairing and movement, which were not disrupted by mutating

FIGURE 3 | Linking chromosome movements and synapsis in Caenorhabditis
elegans. A CHK-2 mediated signal localizes pairing centers (PCs) to the
nuclear envelope. CHK-2 phosphorylates PC proteins like HIM-8 at PLK
binding motifs (Kim et al., 2015). This phosphorylation leads to PLK-2
localization to PCs and promotes SUN-1 phosphorylation (Penkner et al.,
2009; Harper et al., 2011; Labella et al., 2011). Phosphorylation of SUN-1
stabilizes PLK-2 at PCs and is thought to be part of a checkpoint that
responds to synapsis and recombination defects (Woglar et al., 2013). SUN-1
phosphorylation promotes efficient SC formation (Woglar et al., 2013).

SUN-1 phosphorylation sites (Harper et al., 2011; Labella et al.,
2011; Woglar et al., 2013). Interestingly, CHK-2 itself appears to
respond to phosphorylation, because its phospho-binding FHA
domain is required for binding to pairing centers (Kim et al.,
2015). However, the nature of the CHK-2 docking site remains
to be determined.

Phospho-regulation also contributes to telomere tethering in
mammals because mice lacking CDK2 or the atypical CDK
activator Speedy A are defective in tethering telomeres to the
nuclear envelope (Viera et al., 2015; Tu et al., 2017). CDK2 is
required for the proper distribution of SUN1 in the nuclear
envelope and can phosphorylate SUN1 in vitro (Viera et al., 2015),
but whether this phosphorylation takes place in vivo and whether
it is necessary for SUN1 distribution remains to be determined.

Finally, protein kinases also regulate the characteristic
nuclear reorganization seen in several organisms during meiotic
prophase. In C. elegans, CHK-2 and PLK-2 signaling organizes
meiotic chromatin into a crescent shaped domain within the
nucleus (MacQueen and Villeneuve, 2001; Harper et al., 2011;
Labella et al., 2011), whereas the dramatic elongation of the
meiotic micronucleus in the ciliate T. thermophila is induced by
ATR in response to meiotic DSB induction (Mochizuki et al.,
2008; Loidl and Mochizuki, 2009). In both instances the relevant
kinase targets are currently unknown.

Chromosome Pairing and Synapsis
As chromosomes undergo recombination at the DNA level, their
axes pair up and, in many organisms, become stably aligned by
the SC. This process is regulated by phosphorylation at multiple
levels (Gao and Colaiácovo, 2018; Kim and Choi, 2019). In
Arabidopsis thaliana, CDKA;1 phosphorylates the axis protein
ASY1HORMAD, which is required for its recruitment to the axial
element (Yang et al., 2020). Loss of another CDK, CDKG1, causes
incomplete synapsis in male meiosis in a temperature-dependent
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manner (Zheng et al., 2014). In S. cerevisiae, reduced CDK
activity also leads to defects in the formation of full-length
SCs but the relevant phosphorylation targets remain to be
determined (Zhu et al., 2010). In C. elegans, CDK-dependent
phosphorylation of the SC protein SYP-1 primes recruitment
of the PLK-2 to the SC (Sato-Carlton et al., 2018; Brandt
et al., 2020). Interestingly, PLK-2 is prevented from binding
to these primed sites until a chromosome undergoes crossover
designation, whereupon CDK-1 dependent PLK-2 recruitment
helps partition the holocentric chromosomes of C. elegans into
short and long arms in preparation for the meiotic divisions
(Sato-Carlton et al., 2018; Brandt et al., 2020).

Phosphorylation of SC proteins also helps break chromosomal
interactions. In S. cerevisiae, the SC protein Zip1 connects pairs of
centromeres independently of homology (Tsubouchi and Roeder,
2005). This association occurs separately from SC formation
and is thought to provide a backup system for chromosomes
that failed to undergo crossover formation (Obeso et al., 2014).
Mec1ATR-dependent phosphorylation of Zip1 on S75 leads to
the transient disruption of centromere coupling during meiotic
prophase, presumably to enable homology-dependent pairing
(Falk et al., 2010; Obeso et al., 2014). In the process, S75
phosphorylation primes Zip1 for phosphorylation on multiple
additional residues that may amplify the effect of the initial
phosphorylation event (Falk et al., 2010), but the nature and role
of these additional events remains unknown.

Other kinases also impact SC formation and stability. In
C. elegans, the ERK kinase MPK-1 is highly active in early-
mid pachytene when it phosphorylates the SC proteins HTP-
1 and SYP-2 (Lee et al., 2007; Nadarajan et al., 2016; Das
et al., 2020). HTP-1 phosphorylation on S325 is essential for
complete synapsis, as large stretches of chromosomes remain
asynapsed in S325A mutants (Das et al., 2020). On the other
hand, phosphorylation of SYP-2 prevents breakdown of SC on
long chromosome arms (Nadarajan et al., 2016). A phospho-
mimetic mutant of SYP-2 for this phosphorylation fails to
disassemble its SC, similar to what is seen in mutants with
sustained MPK-1 activity (Nadarajan et al., 2016). Pro-crossover
proteins help to downregulate MPK-1 in late pachytene, thereby
maintaining SC stability until after crossover formation has
occurred (Nadarajan et al., 2016).

DSB REPAIR AND CROSSOVER
FORMATION

Crossover formation is a multi-step process with several decision
points. Following break resection, DSBs must be targeted to the
appropriate homologous repair template. A subset of DSBs is
then designated to form joint molecules and double-Holliday
junctions that are ultimately resolved as crossovers when cells exit
meiotic prophase. Many of these processes and decision points
are regulated by phosphorylation.

Resection
Following DSB formation, SPO11 remains covalently linked
to DSB ends. Processing of these protein-linked ends as well

as the subsequent production of ssDNA ends by resection
depends on the MRN complex and its activator CtIP. In
S. cerevisiae, Sae2CtIP tetramerization as well as its interaction
with MRXMRN is controlled by CDK-dependent phosphorylation
of Sae2 S267, which is required for efficient resection (Huertas
et al., 2008; Manfrini et al., 2010; Cannavo et al., 2018).
Sae2 is also phosphorylated in a DSB-dependent manner
by Mec1ATR /Tel1ATM (Baroni et al., 2004; Terasawa et al.,
2008), but these modifications appear to be specifically
required for Spo11 release from DSB ends and do not affect
resection in vitro (Baroni et al., 2004; Terasawa et al., 2008;
Cannavo et al., 2018).

Suppression of Sister Repair
To encourage crossover recombination between homologous
chromosomes, the use of the more readily available sister
chromatid as a repair template must be suppressed. This
suppression involves the combined action of the meiotic
chromosome axes and specialized recombinase activities
(Hollingsworth, 2010; Lao and Hunter, 2010; Humphryes
and Hochwagen, 2014; Brown and Bishop, 2015; Rinaldi
et al., 2017). In S. cerevisiae, phospho-regulation of repair
template choice requires ATM/ATR-dependent phosphorylation
of Hop1HORMAD on T318 (Carballo et al., 2008). This
phosphorylation event occurs specifically in the context of
the axial element (Lin et al., 2010; Raina and Vader, 2020)
and recruits the phospho-binding FHA domain of Mek1CHK2,
resulting in the stabilization of phospho-T318 and Mek1CHK2

activation (Carballo et al., 2008; Chuang et al., 2012). Structural
studies suggested that the FHA domain of Mek1CHK2 prefers
hydrophobic amino acids at +2 and +3 positions from the
phosphorylated residue (Xie et al., 2018), and the amino acids
surrounding T318 fit this description. Whether any other
phosphorylation events recruit Mek1CHK2 in a similar manner
as Hop1HORMAD is not yet known. Once activated, Mek1CHK2

phosphorylates at least two targets to suppress Rad51-mediated
intersister repair. These include Rad54, a Rad51-interacting
protein that stimulates Rad51 activity (Niu et al., 2009), and
Hed1, a meiosis-specific protein that binds to Rad51 and
displaces Rad54 (Callender et al., 2016). Mek1CHK2-dependent
phosphorylation of Rad54 on T132 reduces its interaction with
Rad51 (Niu et al., 2009), whereas phosphorylation of Hed1 T40
stabilizes Hed1 and thus downregulates Rad51 activity (Callender
et al., 2016). Mek1CHK2 may phosphorylate additional meiotic
factors to establish repair template choice because elimination of
Rad54 phosphorylation and Hed1 together leads only to a two-
fold decrease in homolog bias, whilst suppression of intersister
repair is completely lost in the absence of Mek1CHK2 (Goldfarb
and Lichten, 2010; Kim et al., 2010; Liu et al., 2014), but the
relevant factors remain to be determined. ATM/ATR-dependent
phosphorylation of the N-terminus of Rad51 may also contribute
because it stabilizes Rad51 and is important for inter-homolog
bias under certain conditions (Woo et al., 2020). A role for ATM
in promoting interhomolog repair has also been suggested in
C. elegans (Li and Yanowitz, 2019).

In several organisms, the suppression of sister repair is
ultimately alleviated to promote repair of persisting meiotic
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DSBs. In S. cerevisiae, the recruitment of the AAA-ATPase
Pch2TRIP13 to synapsing chromosomes leads to the removal of
phospho-Hop1HORMAD-T318, partial inactivation of Mek1CHK2,
and increased inter-sister repair (Subramanian et al., 2016).
A transition of repair patterns during pachynema has also been
reported for mouse spermatogenesis (Enguita-Marruedo et al.,
2019). In C. elegans, ATM/ATR redundantly promote inter-sister
repair in response to persistent DSBs (Garcia-Muse et al., 2019).
A similar function has also been proposed for ATM in Arabidopsis
(Yao et al., 2020). Notably, Arabidopsis atr mutants do not exhibit
any meiotic phenotypes but exacerbate the meiotic defects of atm
mutants, thus ATR likely plays a supporting role (Culligan and
Britt, 2008; Yao et al., 2020).

One of the downstream phosphorylation targets of this
response in C. elegans is the SC protein SYP-1, which is
phosphorylated at six sites, none of which are in consensus
ATM/ATR motifs, suggesting catalysis by other kinases (Garcia-
Muse et al., 2019). Of note, one of these residues, T452, has
also been implicated in crossover patterning and synapsis (Sato-
Carlton et al., 2018). Puzzlingly, phospho-dead syp-1 T452A
exhibit lower rates of embryo survival (∼60%) than syp-1 6A
mutants (∼80%) (Sato-Carlton et al., 2018; Garcia-Muse et al.,
2019), but whether mutation of the additional sites in the 6A
mutant masks the effects of T452A remains to be investigated.

Regulation of Crossover Designation
Once DSBs have encountered the homologous chromosome,
repair intermediates that give rise to well-spaced (interfering)
crossovers are stabilized by pro-crossover proteins. ATR mutants
show defects in crossover patterning in multiple organisms
(Brady et al., 2018; Li and Yanowitz, 2019; Shinohara et al., 2019).
In S. cerevisiae, two key pro-crossover proteins, the SC protein
Zip1 and the SUMO ligase Zip3RNF212 are both phosphorylated
in this process. Phosphorylation on up to four consecutive serines
in the C-terminus of Zip1 is important to promote crossover
formation and to ensure efficient chromosome synapsis (Chen
et al., 2015). One of these sites, S816, is phosphorylated by DDK
in a DSB and Mek1CHK2-dependent manner (Chen et al., 2015).
Since DDK uses prior phosphorylation events to recognize its
targets, it is possible that there are other kinases that prime
Zip1 at S817 or S818 to recruit DDK (Chen et al., 2015). As
this region does not contain a canonical Mek1CHK2 motif, DDK-
dependent phosphorylation might be primed by a different kinase
than Mek1CHK2 or by Mek1CHK2 in a non-canonical manner
(Chen et al., 2015). Zip3RNF212, which marks crossover sites,
is phosphorylated in a Mec1ATR/Tel1ATM-dependent manner
(Serrentino et al., 2013) and mutation of ATM/ATM consensus
sites leads to a reduction of Zip3RNF212 recruitment to DSB sites
and lower crossover frequency (Serrentino et al., 2013).

Phosphorylation of the SC protein SYP-1 also contributes to
regulation of crossovers in C. elegans. Phosphorylation on SYP-
1 T452 is required for wild-type crossover levels and patterning
(Sato-Carlton et al., 2018). T452 is located in a polo-recognition
motif and its phosphorylation promotes recruitment of PLK-2 to
the short arms of chromosomes where phosphorylated SYP-1 is
localized (Sato-Carlton et al., 2018).

Other phosphorylation events have been implicated in
crossover formation in S. cerevisiae, although their exact
mechanism and effect on crossover formation remain elusive.
Like mutation of Zip3RNF212, mutation of phospho-sites in the
meiotic cohesin Rec8 also causes a reduction in Zip3RNF212

foci (Yoon et al., 2016). In addition, Rfa2RPA is phosphorylated
at S122 by Mec1ATR both in mitosis and meiosis, and
a phosphomimetic mutant exhibits changes in crossover
patterning in some intervals but not in others (Bartrand et al.,
2006). However, how these phosphorylation events impact
crossover-related phenomena has not been studied in detail.

One novel form of phospho-regulation was recently identified
for the MutSγ complex, which contributes to formation of
crossovers in many organisms (Hunter, 2015; Gray and Cohen,
2016). In S. cerevisiae, Msh4, one of the subunits of MutSγ, is
phosphorylated in its N-terminus by DDK in a DSB-dependent
manner (He et al., 2020). Phosphorylated Msh4 is enriched
in the chromatin-bound fraction of Msh4 and depends on
pro-crossover factors, suggesting that Msh4 phosphorylation
occurs at sites of recombination (He et al., 2020). The
activities of ATM/ATR and Mek1CHK2 are also required for this
phosphorylation, although it is not clear whether their roles
are direct (He et al., 2020). Intriguingly, Msh4 phosphorylation
disrupts a degron sequence that would lead to proteasome-
mediated degradation and thus may selectively stabilize Msh4 at
crossover designated DSBs (He et al., 2020).

A Role for CDKs
Cyclin-dependent kinases regulate crossover formation in mice
and Arabidopsis. In Arabidopsis, reduction in CDKA;1 activity
leads to a reduction in the number of crossovers and to
changes in crossover distribution in certain genomic regions
(Wijnker et al., 2019). In mice, CDK2 localizes to crossover
sites (Ashley et al., 2001) and is required for completion of
DSB repair (Viera et al., 2009). In hyperactive CDK2 mutants,
the number of chromosomal foci of MHL1, a subunit of the
pro-crossover MutLγ complex, increases although the number
of crossovers does not change (Palmer et al., 2020). On the
other hand, reduction of CDK2 activity blocks formation of
crossovers (Palmer et al., 2020). How and through which targets
CDKs promote crossover formation in these organisms remains
to be answered, but they might be acting through similar
pathways. Interestingly, a cyclin-related protein, COSA-1/Cntd1,
marks crossover sites and is required for crossover formation in
C. elegans and mice (Yokoo et al., 2012; Holloway et al., 2014;
Gray et al., 2020). COSA-1/Cntd1 might partner up with CDK to
promote crossover formation, although co-immunoprecipitation
experiments in mice argue against a stable interaction between
Cndt1 and CDK2 (Bondarieva et al., 2020; Gray et al., 2020).

Regulation of Joint Molecule Resolution
and Dissolution
In S. cerevisiae, Cdc5PLK and its kinase activity are required for
joint-molecule resolution into crossovers at the end of meiotic
prophase (Clyne et al., 2003; Sourirajan and Lichten, 2008;
Sanchez et al., 2020). Recent work has shed light on how different
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repair pathways are regulated by Cdc5PLK to accomplish the
appropriate processing of these repair intermediates.

Resolution of repair intermediates that were subject to
crossover interference requires the interaction of Cdc5PLK with
the nuclease Exo1 (Sanchez et al., 2020). During meiosis, Exo1
forms a complex with the repair complex MutLγ, which is
required for crossover formation and marks crossover sites
(Zakharyevich et al., 2012). Unlike other examples involving
PLK discussed in this review, the interaction between Exo1 and
Cdc5PLK does not depend on phosphorylation of Exo1 by another
kinase (Sanchez et al., 2020). Since kinase activity of Cdc5PLK is
required for crossover formation independently of its interaction
with Exo1, it is proposed that Cdc5PLK phosphorylates yet
unidentified targets to promote crossover resolution (Sanchez
et al., 2020). The Mus81-Mms4 endonuclease complex also
promotes joint-molecule resolution and is responsible for
formation of non-interfering crossovers (de los Santos et al., 2003;
Jessop and Lichten, 2008). Phosphorylation of Mms4 by Cdc5PLK

boosts Mus81-Mms4 activity in late pachynema, and this boost
is required for timely resolution of repair intermediates (Matos
et al., 2011). By contrast the endonuclease Yen1 is inhibited by
Cdc28CDK until the onset of meiosis II and likely serves only
as a last resort to resolve persistent repair intermediates (Matos
et al., 2011; Arter et al., 2018). Indeed, phosphorylation-resistant
Yen1 is constitutively active, and this abnormal activation leads
to early resolution of repair intermediates and aberrant crossover
patterning (Arter et al., 2018).

The BLM helicase Sgs1 mediates the dissolution of joint
molecules and is also regulated via phosphorylation by Cdc28CDK

(Grigaitis et al., 2020). Contrary to Yen1, Sgs1 activity is
upregulated by Cdc28CDK-dependent phosphorylation, which
is required for resolving some repair intermediates into
non-crossovers (Grigaitis et al., 2020). In late pachynema,
Sgs1 becomes hyper-phosphorylated by Cdc5PLK, and this
phosphorylation is dependent on prior CDK phosphorylation
(Grigaitis et al., 2020). Cdc5PLK-dependent phosphorylation of
Sgs1 has been suggested to reduce its activity, thereby favoring
joint-molecule resolution into crossovers in late pachynema
(Grigaitis et al., 2020).

THE PACHYTENE CHECKPOINT

Many organisms delay meiotic progression in response to
problems in meiotic DSB repair or defects in chromosome
synapsis. These delays are similar to the cell-cycle delays
observed in the canonical DNA-damage response and
help to ensure that cells do not initiate the meiotic
divisions with broken chromosomes (Mei et al., 2015;
ElInati et al., 2020). The pachytene checkpoint employs
the canonical DNA-damage sensor kinases ATR and
ATM in most organisms (Hochwagen and Amon, 2006;
Subramanian and Hochwagen, 2014). However, there
are differences in downstream targets and effectors of
this checkpoint.

In budding yeast, where this checkpoint is best understood,
Mec1ATR/Tel1ATM phosphorylate the axis protein Hop1HORMAD

at T318 as well as other sites (Carballo et al., 2008).
Phosphorylated Hop1 recruits and activates Mek1CHK2

(Carballo et al., 2008) by mediating Mek1CHK2 dimerization and
autophosphorylation (Niu et al., 2005, 2007). Phosphorylation of
a different Mec1ATR / Tel1ATM site on Hop1, S298, is important to
stabilize this interaction especially under checkpoint-activating
conditions (Penedos et al., 2015). Mek1CHK2 phosphorylates
a large number of downstream targets (Suhandynata et al.,
2016), one of which is the meiosis-specific transcription factor
Ndt80 (Prugar et al., 2017; Chen et al., 2018). Phosphorylation
of Ndt80 attenuates its DNA binding and transcriptional
activity and prevents expression of Cdc5PLK (Chen et al.,
2018), thereby blocking resolution of joint molecules and
completion of meiotic prophase (Clyne et al., 2003; Sourirajan
and Lichten, 2008; Figure 4). In S. pombe, Mek1CHK2 instead
delays meiotic progression by phosphorylating the CDK-
activating phosphatase Cdc25 and blocking its localization to
the nucleus (Pérez-Hidalgo et al., 2003, 2008). Cdc25 promotes
cell-cycle progression by removing the Wee1-dependent
inhibitory phosphorylation on Cdc2CDK Y15 (Pérez-Hidalgo
et al., 2003, 2008). A role for tyrosine phosphorylation of
CDK is also seen in S. cerevisiae (Leu and Roeder, 1999),
although its regulation is not understood. In mice, ATM and
CHK2 are also involved in the establishment of a checkpoint
arrest in response to recombination defects (Bolcun-Filas
et al., 2014; Pacheco et al., 2015; Rinaldi et al., 2017). Several
chromosomal proteins are phosphorylated in a DSB-dependent
manner in mice, including the Hop1 homologs HORMAD1/2
(Fukuda et al., 2012), but whether these phosphorylation
events are important for checkpoint regulation remains to
be investigated.

In multicellular organisms, the pachytene checkpoint also
activates apoptosis to eliminate germ cells that exhibit repair
defects (Gartner et al., 2000; Barchi et al., 2005; ElInati
et al., 2020). In Drosophila melanogaster, unrepaired breaks
activate Mei-41ATR and lead to the phosphorylation of MnkCHK2

(Ghabrial and Schüpbach, 1999; Abdu et al., 2002; Figure 5).
Brca2 is also involved in the activation of this checkpoint,
presumably through its interaction with the checkpoint protein
Rad9 (Klovstad et al., 2008). MnkCHK2 in turn activates the
pro-apoptosis protein p53 in response to persistent DSBs (Lu
et al., 2010). Genetic experiments also identified a function
for ATM and parallel roles for p53 and the p53-like regulator
TAp63 in activating apoptosis during mouse spermatogenesis
(Marcet-Ortega et al., 2017). In C. elegans, induction of apoptosis
requires activation of the transducer kinase CHK-1 by ATL-1ATR

(Jaramillo-Lambert et al., 2010). The regulation in worms shows
pronounced differences between hermaphrodites and males,
possibly related to the inherent asynapsis of the monosomic X
chromosome in C. elegans males (Gartner et al., 2000; Jaramillo-
Lambert et al., 2010; Woglar et al., 2013). Moreover, the cell-death
response varies depending on the mode of checkpoint activation
(Ye et al., 2014).

Intriguingly, the pachytene checkpoint can also affect
subsequent germline development. In Drosophila, this pathway
reduces the levels of the developmental regulator Gurken, leading
to impaired egg chamber polarization (Abdu et al., 2002),
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FIGURE 4 | Phosphorylation-based regulation of middle gene transcription in Saccharomyces cerevisiae. Transcriptional control of middle genes in S. cerevisiae is
under the control of several kinases. Formation of DSBs activates Mec1ATR, which in turn activates Mek1CHK2 through Hop1 phosphorylation and Mek1CHK2

autophosphorylation. Tel1ATM contributes only weakly (Carballo et al., 2008). Ndt80 binding to middle sporulation elements (MSEs) is downregulated by Mek1CHK2

phosphorylation (Chen et al., 2018). Thus, when DSBs are present expression of middle sporulation genes is blocked. On the other hand, Ime2CDK -dependent
phosphorylation promotes Ndt80 activity and facilitates competition with the Sum1 transcriptional repressor complex on MSEs (Sopko et al., 2002; Benjamin et al.,
2003). Ime2CDK , along with Cdc28CDK and Cdc7DDK , also phosphorylates Sum1 to promote dissociation of the repressor complex from MSEs (Lo et al., 2008;
Sasanuma et al., 2008; Ahmed et al., 2009; Corbi et al., 2014).

whereas the combined activity of CHK1 and CHK2 is required
to reduce oocyte number and promote folliculogenesis in mice
(Martínez-Marchal et al., 2020).

The Role of Chromosome Architecture in
Checkpoint Activation
Research in a number of organisms has led to the realization that
the pachytene checkpoint senses more than just the accumulation
of unrepaired DSBs. Although ATM/ATR clearly respond to
DSB formation using canonical DNA damage response factors
(Subramanian and Hochwagen, 2014), a number of observations
indicate additional dependencies for full ATM/ATR activation.
For example, the strong arrest response seen in S. cerevisiae
mutants lacking the Dmc1 recombinase is weakened in mutants
that also lack the second recombinase, Rad51, even though both
mutants are severely defective in DSB repair (Shinohara et al.,
2003). Similarly, the crossover factors MSH-4/5 and ZHP-3RNF212

are required for full checkpoint activation in C. elegans, raising
the possibility that a downstream DNA repair intermediate helps
activate the pachytene checkpoint (Silva et al., 2013). Perhaps
most strikingly, research in mouse spermatocytes indicates that
ATM/ATR are activated by unsynapsed chromosomal regions
because the ATM/ATR-dependent γ-H2AX epitope is observed

on unpaired X and Y chromosomes even in the absence of
SPO11-induced DSBs (Mahadevaiah et al., 2001). Perhaps this
activation is related to persistent SPO11-independent damage
on asynaptic meiotic chromosomes as seen in mouse oocytes
(Rinaldi et al., 2017).

Although the mechanisms of meiotic ATM/ATR activation
remain enigmatic, available evidence suggests an important
role for chromosome-structure proteins in stimulating full
checkpoint activity. Components of the SC are required
for checkpoint activation in S. cerevisiae, C. elegans, and
mice (Xu et al., 1997; Daniel et al., 2011; Kogo et al.,
2012; Wojtasz et al., 2012; Kim et al., 2015; Bohr et al.,
2016), and altering the relative levels of individual SC
components can lead to a severely disrupted checkpoint response
without affecting other meiotic processes (Ontoso et al., 2013;
Herruzo et al., 2016; Markowitz et al., 2017; Castellano-Pozo
et al., 2020; Raina and Vader, 2020). Work in S. cerevisiae,
C. elegans, and mouse has strongly implicated meiotic HORMAD
proteins and their regulator Pch2/TRIP13 in this response.
HORMAD proteins are very dynamic chromosomal constituents
(Borner et al., 2008; Wojtasz et al., 2009; Subramanian et al.,
2016) whose HORMA domain transitions between closed and
unbuckled states, a behavior akin to the closed and open
conformations of the essential spindle-checkpoint component
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FIGURE 5 | Recombination and meiotic progression in Drosophila. DSBs
activate the DNA-damage sensor kinase Mei-41ATR, which in turn activates
the effector kinase MnkCHK2 (Ghabrial and Schüpbach, 1999; Abdu et al.,
2002). MnkCHK2 triggers p53-dependent apoptosis in response to persistent
repair defects (Lu et al., 2010). MnkCHK2 also suppresses translation of
Gurken (Grk), which promotes egg chamber polarization (Abdu et al., 2002).
In addition, MnkChk2 prevents meiotic progression by inhibiting Nhk-1, which
normally prompts SC disassembly and induces karyosome formation by
phosphorylating BAF (Ivanovska et al., 2005; Lancaster et al., 2007, 2010).
Another kinase, SRPK, positively regulates karyosome formation in a
MnkCHK2- independent manner (Loh et al., 2012). Dashed lines indicate
activation in response to persistent DNA damage signal.

MAD2 (Mapelli et al., 2007; Kim et al., 2014; West et al., 2018).
The AAA+-ATPase Pch2/TRIP13 facilitates the formation of the
unbuckled conformation (Ye et al., 2015; West et al., 2018).

Synapsis defects and recombination defects are signaled
through a shared signaling network in several organisms
(Hochwagen and Amon, 2006; Kim et al., 2015; Rinaldi et al.,
2017). Early work in C. elegans suggested that Pch2TRIP13

specifically mediates the response to synapsis defects (Bhalla
and Dernburg, 2005), and analyses in S. cerevisiae indicated the
existence of Pch2TRIP13-dependent and Pch2TRIP13-independent
checkpoint signaling (Wu and Burgess, 2006), which had been
interpreted as separate synapsis and DNA damage sensing
pathways (MacQueen and Hochwagen, 2011; Subramanian and
Hochwagen, 2014). However, Pch2 responds to defects in DSB
repair in Drosophila (Joyce and McKim, 2009), and S. cerevisiae
mutants with defects in both synapsis and DNA repair show
more severe Pch2TRIP13-dependent delays than mutants that only
affect synapsis (San-Segundo and Roeder, 1999; Humphryes et al.,
2013; Herruzo et al., 2016), indicating that Pch2TRIP13 acts in the
response to DNA repair defects.

Intriguingly, the mode of Pch2TRIP13 checkpoint function
depends on its binding to the SC (Raina and Vader, 2020).
A plausible model is that Pch2TRIP13-mediated accumulation
of unbuckled Hop1HORMAD in the nucleoplasm leads to
a cell cycle delay whereas an accumulation of unbuckled
Hop1HORMAD on chromosomes leads to a checkpoint silencing
(Raina and Vader, 2020). Consistent with this model Pch2TRIP13

executes its checkpoint-activating function when not bound to

chromosomes (Herruzo et al., 2019), and Pch2TRIP13-dependent
action on chromosomal Hop1HORMAD silences Mek1CHK2-
dependent signaling (Subramanian et al., 2016). The proposed
action of Pch2TRIP13 on Hop1HORMAD is reminiscent of the
function of TRIP13 and MAD2 in the spindle checkpoint
(Vader, 2015), and nicely explains why pch2 mutations tend to
alleviate arrests caused by synapsis defects but often strengthen
arrests caused by DNA repair defects (Raina and Vader, 2020).
What remains unclear is how Hop1HORMAD conformation
is interpreted to create the appropriate checkpoint response.
Hop1HORMAD phosphorylation is specifically detected on the
chromosome-bound pool of Hop1HORMAD (Herruzo et al., 2016;
Raina and Vader, 2020), which polymerizes along chromosomes
(West et al., 2019). By contrast Hop1 in the nucleoplasm is
unphosphorylated and may be monomeric. Notably, Pch2 is
necessary for preventing the phosphorylation of nucleoplasmic
Hop1 (Lo et al., 2014), perhaps by keeping the HORMA domain
unbuckled. However, which receptor interprets this form of
Hop1 as a checkpoint signal is unknown. Pch2TRIP13 physically
interacts with the phospho-binding BRCT domain of the DNA-
damage response factor Xrs2NBS1, and this domain is required
for pachytene checkpoint function (Ho and Burgess, 2011).
Thus, perhaps the BRCT domain provides a mechanism to
distinguish phosphorylated chromosomal and unphosphorylated
non-chromosomal Hop1HORMAD.

FORMATION OF NUCLEAR BODIES

Several organisms form distinct nuclear bodies in the course of
meiotic prophase, including the XY body in mammals and the
karyosome in Drosophila. The formation of these structures is
coordinated with meiotic progression and is regulated by protein
phosphorylation.

XY-Body Formation
Failure of chromosome synapsis leads to transcriptional silencing
of asynaptic chromosomes in mammals, a phenomenon named
meiotic silencing of unsynapsed chromatin (Schimenti, 2005;
Turner et al., 2005). An example of this process in action
is meiotic sex-chromosome inactivation, which is a regular
occurrence during meiosis in spermatocytes (Schimenti, 2005;
Turner et al., 2005). As mammalian X and Y sex chromosomes
only share sequence homology in their pseudo-autosomal
regions, they are mostly asynaptic during meiosis. Asynaptic
sex chromosomes become transcriptionally silenced and form a
cytologically detectable structure called the sex-body or XY-body
through meiotic sex-chromosome inactivation (Solari, 1974;
McKee and Handel, 1993).

The XY-body is strongly enriched for the canonical DNA
damage mark, γH2AX (histone H2AX phosphorylated on S139),
which localizes to the axes and chromatin loops of the asynaptic
X and Y chromosomes in spermatocytes (Mahadevaiah et al.,
2001). Knockout studies have shown that the H2AX histone
variant is required for the establishment of the XY-body,
although whether the γH2AX epitope is required has not been
answered (Fernandez-Capetillo et al., 2003; Ichijima et al., 2011).
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γH2AX accumulation on the XY-body requires the DNA-damage
response protein BRCA1, which recruits ATR to asynaptic
chromosomes (Keegan et al., 1996; Turner et al., 2004; Bellani
et al., 2005; Royo et al., 2013). The other canonical DNA-
damage kinases ATM and DNA-PK are dispensable (Turner
et al., 2004; Bellani et al., 2005). ATR-dependent phosphorylation
of H2AX on the XY axes initially recruits the DNA-damage
checkpoint factor MDC1, which mediates the expansion of
γH2AX throughout the X and Y chromatin (Ichijima et al., 2011).
Mutating a nearby phosphorylatable residue on H2AX, Y142,
impairs expansion of the γH2AX signal similar to the loss of
MDC1 (Abe et al., 2020). Interestingly, this failure in XY body
formation caused a high level of ATR binding and accumulation
of other DNA-damage marks on autosomes despite largely
normal DSB levels (Abe et al., 2020). This observation led to the
proposal that the XY body may provide a sink for DNA-damage
signaling molecules, thereby allowing meiotic progression once
repair has occurred (Abe et al., 2020). However, it is unclear
why no such sink would be necessary during oogenesis, which
involves similar levels of recombination but lacks a domain
comparable to the XY body. DSB levels, as inferred from RAD51
foci, were elevated on the sex chromosomes in H2ax-Y142A but
not Mdc1KO spermatocytes (Abe et al., 2020), which may point
to a role for this residue in regulating DSB repair on asynaptic
chromosomes, presumably by inter-sister repair. Interestingly,
recruitment of the FHA domain of NBS1 to XY axes requires
protein phosphorylation but not MDC1 (Zhang et al., 2020), and
may thus be influenced by these histone marks.

In addition to ATR, sex chromosome silencing and XY
body formation also requires CDK2 (Viera et al., 2009; Wang
et al., 2014), which localizes to the XY body in its activated
T160-phosphorylated form (Wang et al., 2014). The T160
phosphorylation enhances the interaction between γH2AX and
CDK2 (Wang et al., 2014), but it is likely needed at later stages
of XY body formation and gene silencing, because γH2AX
localization to XY chromatin was unaffected in the CDK2 T160A
mutant (Palmer et al., 2020).

Karyosome Formation
Following recombination in Drosophila oocytes, chromosomes
cluster into a spherical body called the karyosome, which
subsequently nucleates acentrosomal spindle formation for the
first meiotic division. A number of mutants with meiotic DSB-
repair defects show abnormal karyosome formation (Ghabrial
et al., 1998), which can be rescued by inactivation of the
checkpoint kinase MnkCHK2 (Abdu et al., 2002), indicating
a dependent relationship between karyosome formation and
meiotic recombination (Figure 5). MnkCHK2 impairs the activity
of the nucleosomal histone kinase Nhk-1, which phosphorylates
the anchoring factor BAF to release chromosomes from the
nuclear envelope (Lancaster et al., 2007, 2010). In addition,
karyosome formation is regulated by the conserved kinase
SRPK, which is required for heterochromatin clustering (Loh
et al., 2012). A spherical chromosome assembly has also been
reported in other organisms, including maturing human oocytes
(Bogolyubov, 2018), but whether this structure is regulated in a
similar manner remains to be determined.

MEIOTIC PROGRESSION

Upon completion of meiotic recombination, meiocytes transition
out of meiotic prophase by disassembling their SC and initiating
the next steps of the meiotic program. These steps must be
coordinated with meiotic recombination to prevent premature
prophase exit or persistent SC during the meiotic divisions.

SC Disassembly
Synaptonemal complex disassembly is regulated by
phosphorylation in several organisms. SC disassembly in
Drosophila requires Nhk-1 (Ivanovska et al., 2005), whose
regulation by MnkCHK2 helps tie SC disassembly to meiotic DNA
repair (Lancaster et al., 2010; Figure 5). A similar dependence
exists in C. elegans, where pro-crossover factors promote
the downregulation of MPK-1, leading to the loss of SYP-2
phosphorylation and SC disassembly (Nadarajan et al., 2016).
In S. cerevisiae, several kinases have been implicated in SC
disassembly, including CDK, DDK, Cdc5PLK, and Ipl1AuroraB

(Sourirajan and Lichten, 2008; Jordan et al., 2009; Argunhan
et al., 2017). PLK and Aurora B and C kinases are also required
for desynapsis in mammals (Jordan et al., 2012; Wellard et al.,
2020). SC disassembly in S. cerevisiae is tied to the successful
completion of meiotic DSB repair through the control of
Cdc5PLK expression, which is maintained at a low level by
proteasome-dependent degradation during meiotic prophase
(Okaz et al., 2012) and whose expression is regulated at the
transcriptional level by Mek1CHK2 (Tung et al., 2000; Pak and
Segall, 2002b; Chen et al., 2018). However, the targets of Cdc5PLK

in promoting SC disassembly remain to be identified.

Transcriptional Regulation of Prophase
Exit
In S. cerevisiae, exit from meiotic prophase is marked by a
strong shift in gene expression, which activates the “middle”
genes necessary for completion of the meiotic divisions and
spore maturation (Chu and Herskowitz, 1998). Expression
of middle genes is under the control of the meiosis-specific
transcription factor Ndt80 and the transcriptional repressor
complex Sum1/Rfm1/Hst1 (Chu and Herskowitz, 1998; Xie et al.,
1999; McCord et al., 2003), which compete for binding to a
shared middle-sporulation element in the promoters of target
genes. Three kinases are known to regulate Sum1 during meiosis
(Figure 4). Ime2CDK phosphorylates Sum1 at T306, which
interferes with Hst1 binding and promotes Sum1’s dissociation
from middle-sporulation elements (Moore et al., 2007; Ahmed
et al., 2009). In addition, CDKCdc28 phosphorylates Sum1 at
multiple sites, including S379 and S512, which prime Sum1 to be
phosphorylated by DDK (Lo et al., 2008; Sasanuma et al., 2008;
Corbi et al., 2014). Phosphorylation promotes Sum1 removal
from middle sporulation elements (MSEs) and is essential for the
initiation of NDT80 transcription (Pak and Segall, 2002a; Ahmed
et al., 2009). Once Ndt80 production starts, Ndt80 can compete
with Sum1 to bind to MSEs (Pierce et al., 2003). Ime2-dependent
phosphorylation of Ndt80 promotes the ability of Ndt80 to
bind DNA, and thus increases its activity (Sopko et al., 2002;
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Benjamin et al., 2003). Conversely, phosphorylation of Ndt80 by
Mek1CHK2 reduces its ability to bind to DNA, and thus connects
completion of DSB repair to exit from meiotic prophase (Chen
et al., 2018; Hollingsworth and Gaglione, 2019).

REVERSAL OF PHOSPHORYLATION

Several phosphatases have been implicated in the regulation of
meiotic prophase, although their functions in many cases remain
poorly defined. Perhaps the best understood among these is
protein phosphatase 4 (PP4), which acts to reverse ATR/ATM-
dependent phosphorylation events similar to its function in
the canonical DNA damage response (Nakada et al., 2008;
Falk et al., 2010; Hustedt et al., 2015). Inactivation of PP4
leads to a number of meiotic defects in S. cerevisiae and
C. elegans, including problems with chromosome synapsis and
impaired crossover recombination (Falk et al., 2010; Sato-
Carlton et al., 2014). However, so far only a small number
of substrates have been identified in S. cerevisiae, including
γH2AX, Hop1-T318, and Zip1-S75 (Falk et al., 2010; Chuang
et al., 2012; Subramanian et al., 2016). PP4 appears to be
continuously active during meiotic prophase and may thus
require that ATR/ATM repeatedly phosphorylate the same
substrates to maintain the DSB response (Falk et al., 2010).
This arrangement would permit rapid removal of ATM/ATR-
dependent phospho-marks once DSBs are repaired, and ATM
and ATR are no longer active. In line with such dynamic
regulation of phosphorylation events, binding of the FHA
domain of Mek1CHK2 stabilizes the phosphorylation of Hop1-
T318 (Chuang et al., 2012), possibly by blocking PP4 access.
The rapid turnover of phosphorylated histone H2AV during
meiotic prophase in Drosophila (Joyce et al., 2011) may result
from a similar balance of kinase and phosphatase activities.
In addition, continued PP4 activity may also help remove
spurious or very transient phosphorylation events, as seen for
the mitotic checkpoint kinase Rad53CHK2, which accumulates
in a phosphorylated form in pp4 mutants, but is not detectably
phosphorylated in response to meiotic DSBs in wild-type cells
(Cartagena-Lirola et al., 2008; Falk et al., 2010).

Protein phosphatase 1 (PP1) is another phosphatase
implicated in the regulation of meiotic prophase, although its
function may differ among organisms. In C. elegans, the PP1-
interacting protein LAB-1 helps recruit PP1 to chromosomes to
restrict the activity of AIR-1AuroraB and promote SC assembly
and DSB repair (Tzur et al., 2012). By contrast, PP1 activity is
kept low in S. cerevisiae through binding of the FK506-binding
protein Fpr3, which is important to maintain the activity of the
pachytene checkpoint, as premature activation of PP1, or PP1
overexpression, allows DSB-repair mutants to enter the meiotic
divisions (Bailis and Roeder, 2000; Hochwagen et al., 2005).
Phosphatase inhibition is also important in Drosophila where
overexpression of Wrd, a B56 subunit of protein phosphatase 2A,
leads to delayed assembly and precocious disassembly of the SC,
as well as karyosome defects (Barbosa et al., 2021). In this case,
low Wrd levels in meiotic prophase depend on the ubiquitin
ligase SCF (Barbosa et al., 2021), which presumably targets Wrd

for proteasome-mediated degradation. Disruption of PP2A-
Cdc55 has also been shown to affect premeiotic DNA replication
and interhomolog recombination in S. cerevisiae (Nolt et al.,
2011). Finally, the transient activation of the phosphatase LIP-1 is
thought to counteract the activity of MPK-1, to create a window
for damage-dependent germ cell apoptosis in C. elegans (Hajnal
and Berset, 2002; Rutkowski et al., 2011).

CHALLENGES AHEAD

Research over the past two decades has revealed many profound
roles for protein phosphorylation in coordinating the processes
of meiotic prophase. However, the rate at which new signaling
connections are reported has not slowed, indicating that
there are still many regulatory connections that remain to be
uncovered before we can gain a systematic understanding of
this impressive signaling network. The extent of the unknown
is highlighted by a recent phospho-proteomic study, which
identified a large number of novel phosphorylation events that
were differentially regulated between wild-type and mek1CHK2

mutants in S. cerevisiae (Suhandynata et al., 2016). Although this
study also identified many events that resulted from premature
prophase exit in mek1 mutants, a substantial number of novel
phosphorylation events of unknown function could be attributed
to Mek1 based on consensus sequences. Further targeted and
stage-specific proteomic analyses therefore promise to provide
a wealth of new information on the phospho-proteome of
meiotic prophase.

With identification of phosphorylation sites becoming easier,
pinpointing which ones are functionally important will be
the difficult question to answer. Kinases can have somewhat
promiscuous activity leading to “accidental” phosphorylation
events (Levy et al., 2012). These accidental events can be
influenced by several factors, including high concentration
of a target protein in the proximity to the kinase (Levy
et al., 2012). It has been suggested that integration of
absolute protein abundance data with phosphorylation data
or using stoichiometry of phosphorylation can help prioritize
sites for characterization (Levy et al., 2012). However, even
mutation of high-confidence sites frequently fails to yield
an easily observable phenotype. For example, γH2AX and
Mek1-dependent phosphorylation of histone H3 T11 are well-
characterized chromatin marks that nevertheless appear to be
dispensable for meiotic prophase in S. cerevisiae (Shroff et al.,
2004; Kniewel et al., 2017). Some phosphorylation events may
be unnecessary under standard laboratory conditions but have
functions in specific environments or mutant situations. Others
may have redundant activities. For example, in S. cerevisiae
the cohesin Rec8 is phosphorylated at many sites, and the
general level of phosphorylation rather than phosphorylation of
any individual site is required for function (Brar et al., 2006).
Such multi-site phosphorylations can mediate progressive charge
accumulation or activate multiple low affinity sites to establish
thresholds rather than switches, which can also be established by
single phosphorylation events (Nash et al., 2001; Gunawardena,
2005; Salazar and Höfer, 2009). However, in the case of the
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abundantly phosphorylated S. cerevisiae axis protein Red1, even
large-scale mutational sweeps of phosphorylation sites have failed
to yield a detectable phenotype (Lai et al., 2011).

Evolutionary conservation is one of the predictors for
functional importance of phosphorylation sites (Beltrao et al.,
2012; Studer et al., 2016). Implementation of this predictor
for meiotic phosphorylation events may be challenging as
many meiotic proteins have very little sequence conservation
across species (Cole et al., 2010; Kumar et al., 2010). In
line with this, there are several examples for phosphorylation
events that are important for meiosis but whose sites are
not well conserved. These include Hop1 T318, which is
essential for meiosis in S. cerevisiae but only conserved
in yeasts and plants (Carballo et al., 2008) and Mer2
S30, which is absolutely required for formation of DSBs
in S. cerevisiae but only conserved in yeasts (Wan et al.,
2008). Even so, the general mechanisms by which these
phosphorylation events act may be conserved even when exact
sites are not. For example, mouse HORMAD1 and HORMAD2
contain S/TQ sites, and HORMAD1 is phosphorylated in
an ATM/ATR dependent manner like Hop1 (Fukuda et al.,
2012). It has been suggested that phosphorylation events
that promote interactions through phosphopeptide binding
domains (as is the case for Hop1 T318) may evolve more
rapidly and may be less dependent on exact location for
their function, while phosphorylation events that promote
conformational changes may be more conserved (Holt et al.,
2009). Similarly, clusters of target sites may show functional
redundancy and thus, conservation of some of these sites
may be enough to maintain function without a requirement
for conservation of the exact position (Holt et al., 2009;
Freschi et al., 2014).

A better understanding of phospho-regulation of meiotic
prophase will also require a more detailed analysis of the
spatial relationships of phosphorylation events. A number of
experiments have demonstrated the power of phospho-specific
antibodies in dissecting regulatory connections in C. elegans
and other organisms (Carballo et al., 2008; Penkner et al., 2009;
Labella et al., 2011; Woglar et al., 2013; Herruzo et al., 2016;
Subramanian et al., 2016; Nadarajan et al., 2017), although

the use of these reagents has often been limited to cytological
analyses of fixed samples. Using the same antibodies in ChIP-
seq experiments could provide complementary information
at high genomic resolution, but this experimental route
remains comparatively underused. In addition phospho-specific
nanobodies and FRET-based kinase sensors (Oldach and
Zhang, 2014; Traenkle and Rothbauer, 2017) may provide
an opportunity to follow in vivo phospho-dynamics, which
remains a key frontier in understanding the regulation of meiotic
prophase. Finally, it will also be important to understand the
crosstalk between protein phosphorylation with other signaling
modes and protein modifications, including ubiquitylation
and sumoylation, which are abundantly present in meiotic
prophase (Cheng et al., 2006; Watts and Hoffmann, 2011;
Nottke et al., 2017; Rao et al., 2017; Bhagwat et al., 2021),
and to integrate nuclear events with regulation outside of
the nucleus. For example, B-type cyclins in S. cerevisiae are
translationally regulated by phosphorylation of an RNA-binding
protein (Berchowitz et al., 2015; Carpenter et al., 2018) and
mitochondrial localization is controlled by Ime2 kinase (Sawyer
et al., 2019). Thus, notwithstanding the impressive progress
in understanding the phospho-regulation of meiotic prophase,
much remains to be discovered about this intricate signaling
network that ensures the faithful passage of genetic material from
one generation to the next.
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