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Abstract 

Background:  Kidney disease (KD) is a public health problem worldwide and is an important factor in peripheral vas‑
cular disease, arrhythmias, heart failure, acute myocardial infarction, stroke, and angina. Obesity has been indicated as 
an effective cause of kidney diseases. So, this study aims to use two new strains of Lactobacillus to reduce the meta‑
bolic disorders and kidney insufficiency associated with obesity.

Methods:  Fifty BALB/c male mice were divided into five groups (control, obesity, obesity pro1, obesity pro2, and obe‑
sity mix). The bodyweight, cholesterol profile, urea, and creatinine levels in urine and serum were all measured. Histo‑
pathological analysis and expression of Opn, Vim, Ngal, Kim-1, and αKlotho genes for kidney tissues were performed.

Results:  The results indicated that body weight, cholesterol profile, urea, and creatinine levels in serum and urine had 
the lowest significance (P ˂ 0.05) in the obesity mix group and the highest significance in the obesity group. HDL had 
the highest significance (P ˂ 0.05) in the obesity mix group and the lowest significance (P ˂ 0.05) in the obesity group. 
Expression of Opn, Vim, Ngal, and Kim-1 genes was the most upregulated in the obesity group compared with the 
other groups, and there were nonsignificant differences (P > 0.05) between the obesity pro1 and obesity mix groups 
and the control group. Expression of αKlotho gene was significantly reduced (P ˂ 0.05) in the obesity group compared 
with the control group.

Conclusion:  This study demonstrated that the combination of pro1 and pro2 strains could reduce kidney inflamma‑
tion and necrosis.
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Background
Obesity has been linked to a variety of serious diseases, 
including obstructive sleep apnea, type 2 diabetes, fatty 
liver, bile ducts, cardiovascular disease, hypertension, 
and kidney cancer [1–3]. It also played a significant role 
in the progression of chronic kidney disease [4, 5]. In 
fact, the effect of obesity on albuminuria and blood pres-
sure in kidney disease was reported as early as 1923 [6] 

when being overweight was identified as a risk reason 
for death, but was neglected when cardiovascular mor-
tality was considered the main reason for death-related 
obesity [7]. As determined by meta-analysis, kidney dis-
ease is correlated with being overweight (BMI = 25–29.9) 
and obese (BMI > 30) [8]. Obesity has pathophysiological 
effects on the kidneys through the production of adipose 
tissue, inflammation, and modifications in renal hemody-
namics and growth factor [9]. As a result, obesity leads 
to increased renal metabolic demand and expansion of 
the renal mesangial, resulting in hypertension, hyper-
trophy of the kidney, and glomerular hyper filtration, 
increasing glomerular filtration fraction, and subsequent 
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glomerulosclerosis and proteinuria [10]. Moreover, obe-
sity affects the advanced loss of kidney function among 
those with chronic kidney disease (CKD) [7] and causes 
cell carcinoma of the kidney [11].

Probiotics have multifactorial physiological functions 
such as controlling nutrient absorption and metabo-
lism, regulating the normal function of the intestinal 
barrier, and preventing the spread of pathogenic organ-
isms [12]. Probiotics have the ability to reduce the pro-
duction of uremic toxins and to improve renal function 
because they have multifactorial physiological functions 
[13]. Chronic inflammation is considered a biomarker 
inversely associated with kidney function, and probiot-
ics may control this inflammation [14]. Fibroblast growth 
factor 23 (FGF23) is released from osteoblasts and osteo-
cytes, and it regulates vitamin D activation 6 and renal 
phosphate reabsorption [15]. FGF23 needs α-Klotho 
as a co-receptor for binding to fibroblast growth factor 
receptors (FGFRs). α-Klotho limits the organs targeted 
by FGF23 to those where it is mainly expressed in the 
kidney, the parathyroid glands, and the epithelium of 
the choroid plexus [16]. Patients with advanced chronic 
kidney disease (CKD) usually display secondary hyper-
parathyroidism correlated with high levels of FGF23, 
phosphate, and a low level of 1,25(OH) 2D in serum [15]. 
The CKD-enhanced low level of α-Klotho expression in 
the parathyroid glands reduces the functionality of the 
α Klotho/FGFR complex for FGF23 signalling [17]. It is 
also known that FGF23 is increased from the early stage 
in patients with chronic kidney disease [15]. The expres-
sion of osteopontin (Opn), vimentin (Vim) neutrophil 
gelatinase-associated lipocalin (Ngal), and kidney injury 
molecule 1 (Kim-1) genes increased significantly in the 
CKD model mice [13]. Although convincing epidemio-
logical evidence suggests that excess body fat is a strong 
risk factor for kidney disease, the mechanisms involved 
in the pathogenesis of chronic kidney disease in obe-
sity have not been fully elucidated. Therefore, this study 
aims to investigate the effect of obesity on kidney func-
tion through biochemical analysis and histopathological 
examination and to determine the expression of some 
genes expressed in the kidneys. In addition, evaluate the 
role of two new strains of probiotics in handling kidney 
diseases.

Methods
Chemicals
All the used chemicals, media, and kits were purchased 
from Sigma Aldrich Co., Ltd. (Saint Louis, MO, USA).

Induction of obesity
To study the effect of obesity as a risk factor in kidney 
injury, 500  mg of cholesterol and 100  mg of oxgall were 

added to 400  ml of drinking water and then provided to 
BALB/c mice to develop a mouse model by manipulation 
to model the human condition. After BALB/c mice were 
given drinking water containing a high level of cholesterol 
for 8 weeks, we successfully induced the obese mice [18].

Preparation of probiotics supplement
In this study, Lactobacillus plantarum pro1 (MT505334.1) 
and Lactobacillus rhamnosus pro2 (MT505335.1) were 
used in this study. Twenty-milliliter culture tubes contain-
ing 10 ml of MRS medium were inoculated with a loop-
ful of the tested probiotic bacterial strains and incubated 
at 37  °C overnight. An equal volume (10  ml) of a strain 
containing 2.5 × 106/ml viable bacteria was centrifuged at 
6000 rpm for 5 min and suspended with 400 ml of drink-
ing water supplemented with 0.5  g cholesterol + 0.1  g 
oxgall. In the case of the mix group, 10  ml of each pro-
biotic strain containing 2.5 × 106/ml viable bacteria was 
centrifuged as above and suspended with 400 ml of drink-
ing water supplemented with 0.5  g cholesterol + 0.1  g 
oxgall. This water was used as syrup to feed mice [19].

Experimental design
The experimental procedure used in this investigation 
was approved by the Animal Care and Use Committee 
of the National Research Centre, Egypt. Fifty BALB/c 
mice weighing 21–24  g were divided into five groups 
and housed in cages at 22.2  °C, 50–5% humidity, and a 
light–dark cycle of 12 h. The animals were bought from 
Animal House at the National Research Centre. They 
were divided into five separate groups as follows: (1) con-
trol: fed on a normal diet (7% simple sugars, 3% fat, 50% 
polysaccharide, 15% protein (w/w), energy 3.5  kcal/g) 
for 8 weeks; (2) obesity: given 0.5 g cholesterol and 0.1 g 
oxgall in 400 ml of drinking water for 8 weeks; (3) obe-
sity pro2: given 0.5  g cholesterol and 0.1  g oxgall and 
plus 10  ml of bacterial suspension (L. rhamnosus pro2) 
in 400 ml of drinking water for 8 weeks; (4) obesity pro1: 
given 0.5  g cholesterol and 0.1  g oxgall, and plus 10  ml 
of bacterial suspension (L. plantarum Pro1) in 400  ml 
of drinking water for 8 weeks; and (5) obesity mix: given 
0.5 g cholesterol and 0.1 g oxgall and plus 10 ml of bac-
terial suspension (L. rhamnosus Pro2 and L. plantarum 
Pro1) in 400  ml of drinking water for 8  weeks. During 
this period, the individual’s weight for all mice in both 
groups was measured every 2 weeks.

Biochemical analysis
Total cholesterol (TC), triglyceride (TG), low-density lipo-
protein (LDL), high-density lipoprotein (HDL)-cholesterol 
levels, urea, and creatinine were measured in serum at 
546  nm using commercial diagnostic kits by spectropho-
tometer model UV-240, Shimadzu (Burladingen, Germany).
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Kidney histopathology
The samples of kidney tissues were fixed in 10% neu-
tral buffered formalin, dehydrated in alcohol, cleared in 
benzene, and embedded in paraffin wax. Sections of 5 μl 
thickness were prepared and stained with hematoxylin 
and eosin (H&E). Light microscopy was used in histo-
pathological examination, and then photomicrographs 
were taken.

Gene expression
The left kidneys were suspended and homogenized in 
TRIZOl reagent to extract total RNA according to the 
manufacturer’s instructions. RNA was run on an ethidium 
bromide-stain agarose gel to assess its integrity. The quantity 
and purity of RNA were measured by a NanoDrop spectro-
photometer (2000c, Thermo Fisher Scientific, Wilmington, 
Delaware, USA). One microgram of RNA was treated with 
the RQ1 RNase-free DNase kit (Promega, Madison, WI, 
USA) to get rid of any gDNA contamination. DNase-treated 
RNA was transcribed into cDNA using the COSMO cDNA 
synthesis kit (willowfort.co.uk) according to the manufac-
turer’s instructions. Primer sequences were synthesized by 
Macrogen Co., Ltd., Korea (Table 1). Real-time quantitative 
PCR (RT-qPCR) analysis was carried out on the Stratagene 
Mx3000P Real-Time PCR System (Agilent Technologies) in 
a 20-μl reaction volume containing 1 μl cDNA, 0.5 μl of for-
ward primer (10 μM) and 0.5 μl of reverse primer (10 μm), 
10 μl of Hot FIREPol EvaGreen qPCR Mix Plus (Solis Bio-
dyne, Tartu, Estonia), and 8 μl of DNAse-free water. Ampli-
fication began with a 10-min period at 95  °C, followed by 
40 cycles of 30 s at 95 °C, 30 s at 60 °C, and 30 s at 72 °C. 
The relative expression levels of genes normalized to β-actin 
were calculated using the 2−ΔΔCT method [20].

Statistical analysis
A one-way ANOVA test was performed on the observed 
data using SPSS (PASW statistics software version 18). 

The significant differences between the means were cal-
culated using Duncan at P < 0.05.

Results
Body weight
Bodyweight measurements showed a significant increase 
in the obesity group (P ˂ 0.05) compared with the other 
groups and a significant reduction (P ˂ 0.05) in the obe-
sity pro1 group compared with the other groups. There 
were nonsignificant differences (P > 0.05) between the 
obesity mix group and the control group (Table 2).

Biochemical analysis
Lipid profile
The obesity group recorded the significantly highest 
values (P ˂ 0.05) of cholesterol, triglycerides, and LDL 
in serum and recorded the significantly lowest value 
(P ˂ 0.05) of HDL in serum compared with the other 
groups. The obesity mix group recorded the signifi-
cantly highest value (P ˂ 0.05) of HDL in serum and 
recorded the significantly lowest values (P ˂ 0.05) of 
cholesterol, triglyceride, and LDL in serum compared 
with the other treated groups. There are nonsignifi-
cant differences (P > 0.05) in the cholesterol profile 
between the obesity pro1 group and the obesity mix 
group (Table 3).

Kidney functions
Serum content of urea recorded the highest significant 
value (P ˂ 0.05) in the obesity group compared with the 
other groups. There were nonsignificant differences 
(P > 0.05) observed between the obesity group and the 
obesity pro2 group in the level of creatinine in serum 
and urine. While the obesity mix group recorded the 
significantly lowest values (P ˂ 0.05) of urea levels in 
serum and creatinine level in urine compared with the 
other groups (Table 3).

Table 1  Sequence of employed primers

Gene Accession no Nucleotide sequence 5′–3′ Size (bp)

Opn NM_001204203.1 F5-TCC​AAA​GAG​AGC​CAG​GAG​AG-3′
R5-GGC​TTT​GGA​ACT​TGC​TTG​AC-3′

66

Vim NM_011701.4 F5-CTG​CAC​GAT​GAA​GAG​ATC​CA-3′
R5-AGC​CAC​GCT​TTC​ATA​CTG​CT-3

132

Ngal NM_008491.1 F5-GAA​ATA​TGC​ACA​GGT​ATC​CTC-3′
R5-GTA​ATT​TTG​AAG​TAT​TGC​TTG​TTT​-3′

124

Kim-1 NM_001166632.1 F5-CTG​GAA​TGG​CAC​TGT​GAC​ATCC-3′
R5-GCA​GAT​GCC​AAC​ATA​GAA​GCCC-3′

112

αKlotho NM_013823.2 F5-CCC​GAT​GTA​TGT​GAC​AGC​CAA​TGG​-3′
R5-CTT​GGG​AGC​TGA​GCG​ATC​ACT​AAG​-3

175

β-actin NM_007393.5 F5′-GGC​ACC​ACA​CCT​TCT​ACA​ATG-3′
R5′-GGG​GTG​TTG​AAG​GTC​TCA​AAC-3′

74
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Histopathological results
Histopathological examination of the kidney of the obe-
sity group revealed vacuolar degeneration of the epi-
thelial lining of most of the renal tubules (Fig.  1b). The 
renal glomeruli showed partial hyalinization of the glo-
merulus tuft (focal glomerular sclerosis) with dilatation 
of glomerular capillaries and accumulation of glomeru-
lar foam cells (Fig. 1c). Meanwhile, others showed severe 
hyalinization of the glomerular tuft (glomerular sclerosis) 
(Fig. 1d). In one case, renal interstitial tissue was highly 
infiltrated with mononuclear inflammatory cells associ-
ated with fibrosis. Moreover, degeneration and necro-
sis of the epithelial lining of renal tubules were noticed. 
Some renal tubules appeared cystically dilated and lined 
with flattened epithelium. Glomerular hyalinization (glo-
merular sclerosis) was also seen. The renal blood vessels 
appeared dilated and congested (Fig. 1e). Moreover, per-
iglomerular and perivascular aggregations of mononu-
clear cells, mainly lymphocytes and macrophages, were 
observed (Fig. 1f ).

The kidney of the obesity pro2 group revealed vacu-
olar degeneration of the epithelial lining of the renal 
tubules. The renal glomeruli showed vacuolation of 
the glomerular tuft with an accumulation of foam cells 
(Fig. 2a). Multifocal aggregations of inflammatory cells 
in the renal parenchyma associated with dilatation and 

congestion of renal blood vessels were observed. More-
over, there were severe medullary hemorrhages at the 
corticomedullary junction (Fig. 2b). The kidneys of the 
obesity pro1 group showed enlarged renal glomeruli 
associated with dilatation of glomerular capillaries and 
the presence of foam cells (Fig.  2c). The epithelium of 
renal tubules showed vacuolar degeneration associated 
with necrosis of epithelial cells (Fig.  2d). Focal inter-
stitial and perivascular aggregations of mononuclear 
inflammatory cells were observed (Fig.  2e). The kid-
ney of the obesity mix group revealed mild to moder-
ate vacuolar degeneration of the epithelial lining of the 
renal tubules in a focal manner. The renal glomeruli 
appeared enlarged in size with vacuolation of glomeru-
lar capillaries (Fig. 2f ). No evidence of an inflammatory 
reaction was seen.

Gene expression
Opn, Vim, Ngal, and Kim-1 genes were significantly 
upregulated in the obesity group compared with the 
other groups. Opn, Ngal, and Kim-1 were significantly 
upregulated in the obesity pro2 group compared with the 
control. There were nonsignificant differences between 
the control group and the obesity mix group in the 
expression of Opn, Vim, Ngal, and Kim-1 genes. Expres-
sion of α-koloth was significantly increased in the obesity 

Table 2  Body weight of mice during the experiment period in all groups

All data are expressed as the mean ± SE values within a column with different superscripts
a,b,c Differ significantly at P < 0.05

Control Obesity Obesity pro2 Obesity pro1 Obesity mix

Zero time 22 ± 0.6 22.5 ± 0.5 23 ± 0.8 22.8 ± 0.7 22.6 ± 0.5

2 weeks 24.6b ± 0.4 27.5a ± 0.1 26.6a ± 0.9 20.4c ± 0.2 25b ± 0.1

4 weeks 26.4b ± 0.8 29.5a ± 0.3 26.4b ± 0.9 21.4c ± 1.1 26b ± 0.2

6 weeks 27.6b ± 0.6 29.5a ± 0.1 27.8b ± 0.1 23.6c ± 0.8 27b ± 0.3

8 weeks 26.8b ± 0.2 31.5a ± 0.4 29.8a ± 0.3 25.6c ± 0.1 27.5b ± 0.5

Table 3  Lipid profile analysis

HDL High-density lipoprotein, LDL Low-density lipoprotein

All data were expressed as the

mean ± SE values within a column with different superscripts
a,b,c Differ significantly at P < 0.05

Analysis type (mg/dl) Control Obesitys Obesity pro2 Obesity pro1 Obesity mix

Cholesterol 126d ± 0.3 250.9a ± 0.7 185.4b ± 0.6 165c ± 0.1 162c ± 0.3

Triglyceride 102d ± 0.2 220.5a ± 0.1 141b ± 0.9 130c ± 0.2 129c ± 0.1

HDL 60c ± 0.8 55d ± 0.3 70b ± 0.4 73.6a ± 1.1 74a ± 0.2

LDL 48d ± 0.6 139.8a ± 0.1 85.2b ± 0.1 65c ± 0.8 63c ± 0.3

Urea 52.1b ± 0.4 67.3a ± 0.2 47.2c ± 0.3 30d ± 0.3 24.9e ± 0.5

Creatinine in serum 3.2b ± 0.3 4a ± 0.03 4a ± 0.2 3.4b ± 0.1 3.1b ± 0.4

Creatinine in urine 158.3c ± 0.2 201.3a ± 0.3 200a ± 0.5 175b ± 0.2 155d ± 0.4
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Fig. 1  a Kidney of normal control group, showing normal renal tubules and glomeruli; b kidney of obesity group showing vacuolar degenertion 
of epithelial lining of most of renal tubules (black long arrows); c kidney of obesity group showing dilatation of glomerular capillaries with partial 
hyalinization of glomerulus tuft (focal glomerular sclerosis) (black long arrow) and accumulation of glomerular foam cells (black short arrows); d 
kidney of obesity group showing severe glomerular hyalinization (glomerular sclerosis) (black stars) and vacuolation of glomerular tuft; e kidney of 
obesity group showing glomerular hyalinization (glomerular sclerosis), severe necrosis of renal tubules (black long arrows), cyctic dilatation of renal 
tubules, and interstitial fibrosis associated with inflammatoy cell infiltration (black short arrows); and f kidney of obesity group, showing marked 
cytic dillatation of renal tubules (black stars), massive perivscular agreggations of inflammatory cells (black long arrows), dilatation, and congestion 
of blood vessel (H&E, × 100)

Fig. 2  a kidney of obesity pro2 group, showing vacuolar degeneration and necrosis of epithelial lining of renal tubules (black long arrows), 
vacuolation of glomerular tuft with presence of foam cells (black short arrows), b kidney of obesity pro2 group, showing extensive hemorrhage, 
dilatation & congestion of blood vessel (black stars) and focal aggregation of inflammatory cells (black long arrows), c kidney of obesity pro1 group, 
showing marked vacuolation of glomerular tuft (black long arrows), d kidney of obesity pro1 group, showing vacuolar degeneration associated with 
necrosis of epithelial cells (black long arrows), e kidney of obesity mix group, showing perivascular and interstitial aggregations of mononuclear 
inflammatory cells (black long arrows), and (f) kidney of obesity mix group, showing mild vacuolar degeneration of epithelial lining of some renal 
tubules (black long arrows) (H&E, × 200)
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mix group compared with the control group while signif-
icantly downregulated in the obesity group (Fig. 3).

Discussion
Adipose tissue acts as an endocrine and exocrine organ 
with neurohumoral and vasoactive effects that are associ-
ated with the development of obesity-related organ dam-
age involving the kidney. Besides angiotensinogen and 
renin, adipose tissue produces growth factors, bioactive 
adipokines, and several cytokines correlated with kidney 
injury [21]. Obesity is associated with an increased risk of 
renal cell carcinoma [11].

Obesity causes pathophysiological changes accom-
panied by alterations in the inflammatory milieu, renal 
hemodynamics, and production of adipokine and growth 
factor [22]. Also, it causes renal mesangial hypertro-
phy and an increase in metabolic demand, as well as an 
increase in the glomerular filtration fraction, glomerulo-
sclerosis, and proteinuria [10].

In the present study, obesity caused vacuolar degenera-
tion of the epithelial lining of most renal tubules, partial 
hyalinization of renal glomerulus tuft with dilatation of 
glomerular capillaries, accumulation of glomerular foam 
cells, and degeneration and necrosis of the epithelial lin-
ing of renal tubules. In addition, the renal blood vessels 
appeared dilated and congested. Also, in the presence of 
periglomerular and perivascular aggregations of mono-
nuclear cells, mainly lymphocytes and macrophages, 
these pathophysiological changes were associated with 
disorders in kidney function, such as increasing serum 

levels of urea and creatinine and urine levels of creati-
nine that significantly increased in the obesity group 
compared with the control group. Lower urine pH [23] 
and increased urinary oxalate [24], uric acid, salt, and 
phosphate excretion are linked to increased body weight 
[25]. Protein- and sodium-rich diets may cause more 
acidic urine and a decrease in urinary citrate, which 
might increase the risk of kidney stones. Obesity-related 
insulin resistance may further predispose to nephro-
lithiasis [26] by influencing the tubular Na–H exchanger 
[27] and ammonia genesis [28], as well as promoting an 
acidic environment [29]. Andrade-Oliveira et  al. [30] 
were able to recently increase plasma short-chain fatty 
acids and protect mice from renal ischemia–reperfu-
sion injury by modulating inflammation with probiotics 
in a mouse model of acute kidney injury. Serum levels 
of tumor necrosis factor- and interleukin-6, both pro-
inflammatory cytokines, were reduced after 6  months 
of taking a probiotic capsule daily [31]. In the present 
study, the combination of two new strains of Lactobacil-
lus reduced vacuolar degeneration of the epithelial lin-
ing of renal tubules in a focal manner. In addition, there 
was no observed evidence of an inflammatory reaction 
in the kidneys of obese mice treated with this combina-
tion. Probiotics may be able to improve renal function 
during treatment due to their beneficial effects, such as 
reducing inflammation and uremic toxins [32]. The pro-
duction of t10, c12-conjugated linoleic acid by the probi-
otic, reduced serum leptin and fatty acid formation and 
thus bodyweight [33]. Also, L. plantarum PL62 reduced 

Fig. 3  a shows significant up-regulation of Opn gene in the obesity group, b shows significant up-regulation of Vim gene in the obesity group and 
obesity pro2 group, c shows significant up-regulation of Ngal gene in the obesity group, d shows significant up-regulation of Kim-1 gene in the 
obesity group, and (e) shows significant down-regulation of α-Klotho gene in the obesity group and also significant up-regulation of α-Klotho gene 
in the obesity mix group compared with the control group
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epididymal, inguinal, mesenteric, and perineal white adi-
pose tissue mass [1935]. L. rahmanosus LGG increased 
the expression of fatty acid oxidative genes in the liver 
while it decreased gluconeogenic genes [34]. L. plan-
tarum LG42 caused a significant reduction in epididymal 
and back fat and a decrease in hepatic triglyceride levels 
[35]. Furthermore, L. plantarum TN8 was found to be 
protective against hepatic lipid and renal profiles in obese 
rats [36]. These beneficial effects of probiotics accom-
panied by reductions in lipid accumulation may be due 
to stimulating adiponectin secretion and downstream 
activation of AMPK, an enzyme involved in controlling 
the energy status of cells [32]. Blood urea nitrogen and 
ammonia levels were reduced by Bifidobacterium gen-
era [37]. Lactobacillus delbrueckii and Sporosarcina pas-
teurii hydrolyze urea in vitro and have been shown to be 
potential urea-targeted agents for enteric dialysis [6]. Liv-
ing transgenic cells encapsulated with urease-producing 
Escherichia coli were able to reduce blood urea levels in 
uremic mice and reduce the conversion of urea to ammo-
nium by living transgenic cells [38]. Bacillus pasteurii or 
Sporosarcina pasteurii reduced the development of kid-
ney disease and helped to extend the life span. The pro-
biotic LC40 improved renal function in NZBWF1 mice 
by increasing urinary creatinine and urea excretion and 
delaying the onset of albuminuria and high blood pres-
sure [39]. In our previous study on this combination of 
L. plantarum pro1 and L. rhamnosus pro2, we were able 
to reduce diabetes-associated disorders induced by a 
high level of fructose [3]. In the current study, the results 
indicated that the level of urea in serum and the level of 
creatinine in urine and serum were significantly reduced 
in obese mice treated with the combination of new Lac-
tobacillus strains compared with the other groups. In the 
previous study, Opn, Vim, Ngal, and Kim-1 genes were 
upregulated in the CKD model mice [13]. The − Klotho 
gene was downregulated in the parathyroid glands 
of patients with CKD [40]. It has been shown to pro-
tect tissues from harm by reducing oxidative stress and 
reducing inflammation. Moreover, − α-klotho has been 
demonstrated to have a protective effect on the heart and 
kidneys [41]. In the present study, upregulation of Opn, 
Vim, Ngal, and Kim-1 genes was associated with the 
obesity group. There is no significant difference between 
obese mice treated with the combination of two new L. 
rhamnosus or L. plantarum and control in the expression 
of these genes. Also, the downregulation of the α-Klotho 
gene was correlated with the obesity group, and it 
became upregulated in mice treated with a combination 
of two strains. Therefore, this study demonstrated that 
the combination of pro1 and pro2 strains could reduce 
kidney injury induced by obesity.

Conclusion
Obesity increased serum creatinine and urea lev-
els, as well as inflammation and necrosis of renal tis-
sue and inflammation and necrosis in kidney tissues. 
These physiological and histopathological changes 
were accompanied by alterations in the genes expressed 
in the kidneys, such as Opn, Vim, Ngal, Kim-1, and 
α-klotho genes. The combination of two new Lactoba-
cillus strains (Pro1 + Pro2) significantly reduced levels 
of urea and creatinine in serum and reduced inflam-
mation in kidney tissues. Also, increased expression of 
α-klotho gene is associated with a reduction in inflam-
mation. Therefore, using the combination of two new 
Lactobacillus strains (Pro1 + Pro2) in supplementation 
of many drinks such as milk or juice may be useful in 
reducing obesity risks associated with kidney injury.
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