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Abstract: Instrumentation failure in the context of spine surgery is attributed to cyclic loading leading
to formation of fatigue cracks, which later propagate and result in rod fracture. A biomechanical
analysis of the potential impact of electrocautery on the fatigue life of spinal implants has not been
previously performed. The aim of this study was to assess the fatigue life of titanium (Ti) and
cobalt-chrome (CoCr) rod-screw constructs after being treated with electrocautery. Twelve spinal
constructs with CoCr and Ti rods were examined. Specimens were divided into four groups by rod
material (Ti and CoCr) and application of monopolar electrocautery on the rods’ surface (control-group
and electrocautery-group). Electrocautery was applied on each rod at three locations, then constructs
were cyclically tested. Outcome measures were load-to-failure, total number of cycles-to-failure, and
location of rod failure. Ti-rods treated with electrocautery demonstrated a significantly decreased
fatigue life compared to non-treated Ti-rods. Intergroup comparison of cycles-to-failure revealed a
significant mean decrease of almost 9 × 105 cycles (p = 0.03). No CoCr-rods failed in this experiment.
Electrocautery application on the surface of Ti-rods significantly reduces their fatigue life. Surgeons
should exercise caution when using electrocautery in the vicinity of Ti-rods to mitigate the risk of
rod failure.
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1. Introduction

Electrocautery and spinal implants are principal tools in the spine surgeon’s armamentarium.
These tools are utilized in complex surgeries to treat a multitude of spinal conditions and to ameliorate
patients’ disabilities [1,2].

Technological advancements in biomechanics and biomaterials have revolutionized the sphere
of spinal instrumentation, enabling surgeons to widen the indications for corrective surgery, and
broadened the array of surgical techniques. In this context, spinal fusion was first introduced by Hibbs
and Peltier to stabilize a spine affected by tuberculosis [3,4]. Albee used the tibia as graft material
for spine stabilization [5]. King [6] and Lange [7] attempted internal fixation [1,4]. Harrington [8]
introduced an innovative rod distraction system to correct coronal deformity [4], and Cotrel and
Dubousset metamorphosed the profession with their segmental instrumentation for simultaneous
correction of coronal and sagittal planes, thereby facilitating a three-dimensional (3D) approach to
treat a 3D spine deformity [9]. These surgeries demand sophisticated technical aptitude and hence
require meticulous preoperative planning. Consequently, one of the major preoperative decisions is
choosing the correct deformity-specific, pathology-appropriate, spinal fusion construct [1].
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Spinal implants must fulfil many criteria to be considered safe and efficient. Qualities such as
biocompatibility, osseointegration, high strength, low Young’s modulus, high corrosion, and wear
resistance are pivotal to implants’ long-term performance. Because no current material can fulfil all the
clinical and biomedical requirements, material scientists have endeavored to enhance these qualities
utilizing many surface modification techniques [10]. These processes include mechanical treatment,
sol-gel application, thermal spraying, chemical and electrochemical treatment, micro-arc oxidation,
laser surface modification, friction stir processing, and ion application [11,12].

Heating techniques and plasmochemical techniques occupy an important role in the sphere
of biomedical engineering and materials science. Heat treatment is utilized to increase the fatigue
strength of an alloy and to orchestrate an optimal balance of the material’s ductility, machinability, and
stability [10]. Plasma implementation is non-toxic because it is free of solvents [13]. Implementing
techniques such as plasma assisted microwave chemical vapor deposition, plasma etching, plasma
nitriding, and deposition of a-DLC (amorphous diamond-like carbon) layers inoculated with nitrogen
and silicon have been shown to have a significant impact on the microstructure and surface
characteristics of alloys [13].

Accurate and appropriate surface modification techniques diversify and optimize the clinical
use of alloys in surgical fields. However, spine surgeries are overburdened with post-operative
complications [2], including implant-related failure and rod fracture (RF) [1]. The overall complication
rates of surgical corrections of spine-deformity are reported to be 30% within two-years after surgery [14–
18]. An important source of complications remains the intrinsic limitation of the robustness of spinal
implants [15,19–24]. In a prospective multicenter assessment of risk factors for early RF following adult
spinal deformity (ASD) surgery with one-year follow-up, Smith et al. [16] identified that RF occurred
in as many as 9% of ASD patients, and up to 22% in patients who underwent pedicle subtraction
osteotomy (PSO), a powerful technique for the correction of sagittal spino-pelvic malalignment.
In another retrospective study, Smith et al. [23] found that most RF occurred within one year of
index surgery.

In the literature to date, several risk factors for RF have been analyzed. They could be
patient-related—e.g., higher Body Mass Index (BMI), patient age, history of spine surgery, development
of pseudarthrosis, and greater baseline sagittal spinopelvic malalignment (Sagittal Vertical Axis
(SVA), Pelvic Tilt (PT), and Pelvic Incidence-Lumbar Lordosis (PI-LL) mismatch), and a greater
need for sagittal correction—or implant-related (implant material, or in situ rod contouring in the
context of PSO) [16,21,23,24]. Notably, the arthroplasty literature provided a clue to an underlying
confounder camouflaged behind the subtleties of RF: the thermal damage of electrocautery to the
microstructure of implants. Huber et al. [25] were the first to document a case of shaft breakage of a hip
endoprosthesis secondary to contact with an electrocautery device. Subsequently, Konrads et al. [26]
reported on four similar cases which occurred after revision surgery. These authors argued that the
thermal microstructural disruption ensued from an intra-operative electric arc seen post-contact of the
electrosurgical electrode with the implant; this could have eventually led to breakage of the implant at
the contact point. In addition, Yuan et al. [27] examined 1859 explanted hip implants and concluded that
“iatrogenic arc melting” due to electrocautery was responsible for the color changes and corrosion on
the surface of the studied implants. Furthermore, via fatigue testing, metallurgic analysis, and electron
microscopy, Sonntag et al. [28] delineated a microstructural change in the Ti6A14V base material with
high-frequency electrosurgery on hip endoprosthesis, resulting in a decreased load-to-failure when the
electrocautery tip was applied to high-load areas of the stem during revision surgery.

Clinically speaking, it is difficult to avoid contact between the electrocautery tip and the
implant during spine surgery. Particularly in cases of revision surgery, these electrical arcs could be
deemed common.

To the best of our knowledge, this is the first biomechanical study that addresses this topic in
spine surgery. In concordance with the American Standard for Testing and Materials, our objective
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was to assess the impact of electrocautery contact on the fatigue life of titanium (Ti) and cobalt-chrome
(CoCr) spinal implants.

2. Materials and Methods

2.1. Spinal Fusion Constructs and Vertebrectomy Models

Twelve unused specimens of CoCr and Ti implants were included (Expedium Spine, DePuy,
Raynham, MA, USA). All rods and pedicle screw constructs had the same diameter (5 mm) and were
cut to a length of 100 mm. Monoaxial pedicle screws (Ti6-Al4-V, 5.5 mm × 7 mm × 30 mm) and locking
screws (Ti6-Al4-V, 7 mm) were used to rigidly couple the rods on the vertebrectomy model according
to manufacturer-specific instructions using original instruments. Models were composed of dual
Polypoxymethylene (POM) with dimensions as described by the American Standard for Testing and
Materials (ASTM) F1717 [29]. This standard provides a uniform approach to conduct fatigue testing on
spinal implants. The two blocks comprising each vertebrectomy model simulate two adjacent vertebrae
fixed by posterior-instrumentation. The standard distance between the two blocks was 56 mm.

Specimens were divided into four groups by rod material and application of
monopolar-electrocautery device on the rods’ surface (Table 1).

Table 1. Specimen grouping matrix.

Group Description Samples

Ti-CG Titanium rods control group (without electrocautery application) n = 3
Ti-EG Titanium electrocautery group n = 3

CoCr-CG Cobalt-Chrome control group (without electrocautery application) n = 3
CoCr-EG Cobalt-chrome electrocautery group n = 3

Ti = titanium; CoCr = cobalt-chrome; CG = control group; EG = electrocautery group.

2.2. Electrocautery Contact

Electrocautery application (VIO-300, Erbe Elektromedizin, Tübingen, Germany) was performed by
an experienced spine surgeon. Analogous settings used in the operation room of our institution were
utilized (mode: swift-coag, 90 Watt, effect: 3, duration: ~4 s). High-frequency monopolar-electrocautery
was applied on the surface of each rod at three defined positions (Figure 1). Under these conditions
electric light arc was visible in all cases and discoloration of the rod surface was observed.
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Figure 1. Electrocautery application. (a) Electric light arc, (b) sites, and (c) magnified view of the
surface impact post electrocautery application. The first site was approximately 5 mm from the cephalic
pedicle screw (#1). (#2 was at the center and #3 was analogous to #1 on the other side).
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2.3. Dynamic Mechanical Testing

Models were mounted in a servo-hydraulic uniaxial testing apparatus (HCE, Bosch-Rexroth, Lohr
a. Main, Germany) under dry conditions such that the rods were aligned in the direction of vertical
force application. The upper and lower vertebrae blocks were free to rotate in order to account for any
bending of the rods during dynamic testing. A multistep fatigue test was performed at a frequency of
12 Hz (Figure 2).
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Tests started at an initial maximum sinusoidal load of 100 N (minimal load: 10 N). After one
million cycles, the maximum load was increased by 50 N, and the load ratio R was kept constant at
0.1, until construct failure occurred. Based on the total number of steps and cycles completed, the
estimated load-to-failure was calculated using this formula:

FD = F−1 + 50N·
n

1, 000, 000
(1)

where F−1 is the maximum force of the previous step before fracture, and n is the number of cycles in
the step where the specimen failed.

2.4. Outcome Measures

Primary outcomes estimated load-to-failure, total number of cycles to failure, and location of
rod failure.

2.5. Statistical Analysis

One-way analysis of variance (ANOVA) with post-hoc-test correction of least statistical difference
was used to compare continuous values of the outcome measures. All data are presented as mean
values ± standard deviation and 95% confidence interval. Statistical tests were computed using
statistical package (SPSS-v.24, IBM, Armonk, NY, USA). The threshold of statistical significance was set
at 0.05.

3. Results

Results of the biomechanical test are summarized in Tables 2 and 3.
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Table 2. Summary of the dynamic biomechanical test results.

Spinal
Construct

Electrocautery
Application

Completed
Load Level

Min/Max
Load at

Failure (N)

No. Cycles
to Failure Failure Site Fatigue

Strength (N)

Ti-CG1 No #4 30/300 4,473,034 Unilateral rod-screw junction 273.6
Ti-CG2 No #4 30/300 4,388,472 Bilateral rod-screw junction 269.4
Ti-CG3 No #3 25/250 3,995,938 Unilateral rod-screw junction 249.8
Ti-EG1 Yes #3 25/250 3,093,921 Bilateral peripheral rod fractures 204.7
Ti-EG2 Yes #3 25/250 3,328,583 Unilateral peripheral rod fracture * 216.4
Ti-EG3 Yes #3 25/250 3,770,073 Bilateral central rod fractures 238.5

CoCr-CG1 No #6 40/400 6,351,621 Bilateral pedicle screws ** 367.6
CoCr-CG2 No #7 40/400 7,000,000 Bilateral pedicle screws ** 400
CoCr-CG3 No #7 45/450 7,183,433 Bilateral pedicle screws ** 409.2
CoCr-EG1 Yes #7 45/450 7,079,071 Bilateral pedicle screws ** 403.9
CoCr-EG2 Yes #7 45/450 7,118,378 Bilateral pedicle screws ** 405.9189
CoCr-EG3 Yes #6 40/400 6,112,167 Bilateral pedicle screws ** 355.60835

CG = Control Group; EG = Electrocautery Group; N = Newton; Ti = Titanium; CoCr = Cobalt-Chrome. * Ti-EG2
fracture site occurred at the level of the locking screws, not at the site of electrocautery application. ** all pedicle
screws were made of titanium. No CoCr rods failed in this biomechanical investigation.

Table 3. Summary of load-to-failure and total number of cycles to failure for all tested groups.

Load to Failure (N) * 95% CI p No. Cycles to Failure * 95% CI p

Ti-CG 264.3 ± 12.7 [232.7–295.9] p = 0.02 4.3 × 106
± 25 × 103 [3.6 × 106–4.9 × 106] p = 0.03

Ti-EG 219.8 ± 17.2 [177.2–262.5] 3.4 × 106
± 34 × 103 [2.5 × 106–4.2 × 106]

CoCr-CG 392.2 ± 21.8 [338.1–446.5] p > 0.05 6.8 × 106
± 43 × 103 [5.7 × 106–7.9 × 106] p > 0.05

CoCr-EG 388.5 ± 28.5 [317.7–459.3] 6.8 × 106
± 57 × 103 [5.3 × 106–8.2 × 106]

* Mean ± standard deviation, CI = Confidence Interval, N = Newton, p: Bold denotes statistical significance,
Ti = Titanium, CoCr = Cobalt-Chrome, CG = Control Group, EG = Electrocautery Group.

3.1. Titanium Control Group (Ti-CG)

All specimens exhibited fatigue fracture of the rod at the rod-screw junction (Figure 3).
Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

 

 

Figure 3. Sites of rod fracture of titanium control group (Ti-CG) post biomechanical testing and fatigue 

fractures of the rods at the rod-screw junction. 

 

Figure 4. Sites of rod fracture of titanium electrocautery group (Ti-EG) post biomechanical testing. 

 

Figure 5. Boxplot representing the mean and 25% and 75% interquartile range of the total number of 

cycles to failure among the four tested groups. 

Figure 3. Sites of rod fracture of titanium control group (Ti-CG) post biomechanical testing and fatigue
fractures of the rods at the rod-screw junction.

3.2. Titanium Electrocautery Group (Ti-EG)

In two specimens (Ti-EG1 and Ti-EG3), failure sites corresponded to the sites of electrocautery
application (Figure 4).
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Ti-EG revealed a significantly lower load-to-failure than Ti-CG (17% decrease, p = 0.023). Intergroup
comparison of cycles to failure revealed a significant mean decrease of almost 9 × 105 cycles (p = 0.03).
(Figure 5).
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Figure 6. Microscopic analysis of fractured titanium rod after electrocautery (VHX-5000, Keyence,
Osaka, Japan). (a) Post-fracture situation at the electrocautery mark. (b) Fracture surface with typical
signs of fatigue fracture (beach lines and forced fracture area). The circle shows the location of crack
initiation at the electrocautery mark.
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Notably, Ti-EG2 failed at the rod-screw junction similar to all of the Ti-CG rods.

3.3. CoCr Control Group (CoCr-CG) and Electrocautery Group (CoCr-EG)

In all tested constructs, the Ti pedicle screw failed. None of the CoCr-CG or CoCr-EG rods had
fractured, exhibiting an increased load-to-failure in comparison to their Ti counterparts.

Intergroup differences were insignificant across all outcome measures. This implies that, in these
tested constructs, the pedicle screw proved to be the weakest component under cyclic loading. In all
specimens of these two groups, fatigue fracture transpired at the first thread of the titanium pedicle
screw (Figures 7 and 8).
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Figure 8. Magnified frontal (a) and lateral (b) views of the titanium screw fracture of one of CoCr
electrocautery group constructs (CoCr-EG 3).

4. Discussion

The human body is an intricate biomechanical composite that exerts cyclic loading on spinal
instrumentation, which could lead to their failure [21,30]. The predominant use of electrocautery in
operating-rooms mandates spine surgeons and implant engineers to contemplate the potential negative
impact of electrocautery on the long-term integrity of spinal fusion constructs. Thus, addressing
differences between the mechanical properties of these materials and studying the thermal effect of
electrocautery are essential to predict the in vivo behavior of implants.

The micro-architecture of Ti and CoCr materials dictates their biomechanical performance and
fatigue life [21,22,31]. Instrumentation failure is thought to be caused by recurring loading which
generates oscillating stresses that may be well below the yield stress of the material. Unfortunately,
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this process is unnoticeable, either by the patient during daily activities or by the surgeon throughout
follow-up visits, until final construct failure develops [21,32,33].

In vivo loading on spinal implants has been previously measured and reported to be 250 N in
the prone position, 400 N whilst walking, and up to 700 N during exercise [34–37]. Notably, Ti-EG
constructs failed at a maximum load of 250 N. This underlines the potential detrimental impact of
electrocautery on the safety of Ti constructs, even within daily physiological loading.

4.1. Thermal Damage and Notch Sensitivity: A Threat to Ti Biomechanical Integrity

Previous investigations have emphasized that the load-to-failure is contingent upon a material’s
resistance to surface alterations. Fatigue fractures almost always nucleate at the exact location of
notches or “discontinuity of geometrical structure” on the material’s surface [21,24,31,38,39]. This
is particularly important when the site of the notch corresponds to areas where maximal loading is
applied. Very small cracks relative to the dimensions of the micro-structure have been shown to cause
failure faster than a long crack [40,41]. Therefore, the radius of the notch is, as a geometrical function,
important [42]. Jang et al. demonstrated that thermal damage of laser etching on hip implants led to
their early fracture [43]. Huber et al. [25] and Konrads et al. [26] reported a decrease in the fatigue life of
Ti hip implants due to the thermal damage of electrocautery. In this context, Sonntag et al. [28] further
demonstrated that this thermal damage caused a significant alteration of Ti microstructure. Ti6Al4V
alloy has a bimodal microstructure consisting of a globular α-matrix phase, enveloped by the so-called
Widmannstätten structure (α + β) [32,44–46]. Thermal energy affects the internal kinetics of theses
phases and triggers a cascade of diffusion processes, as well as transforming the dimensions of the α

and β phases. Alteration of those dimensions correlates with their load-to-failure and susceptibility to
internal crack initiation. It could even be regarded as an internal notch [33,47–49].

In the light of these findings, the thermal energy applied on the tested Ti rods and the marks
seen on their surface, which may be due to a corrosive attack [27] could set the stage for premature
rod failure.

4.2. Pathogenesis of Ti Rod Fractures at the Rod-Screw Junction

Among all Ti-CG and one of the Ti-EG specimens, a crack nucleation site was visually detected
in the proximity of the locking screw. Tightening of the screw leaves surface marks on the rods and
could account for this failure (Figure 9). The presented results echo previously published findings:
Lindsey et al. and Ngyuen et al. [21,22] detected an increased trend of CoCr rod failure at the same
location of our tested constructs. Yamanaka et al. [40] described the same phenomenon on Ti rods.
Dick et al. [31] suggested that surgeons should avoid severe tightening of the screws as this would
lead to notch formation on the surface of Ti rods. Hence, a modification of the operating manual might
be indicated to avoid severe tightening of the screw. This, however, requires specific testing and is a
secondary outcome of this study.Materials 2019, 12, x FOR PEER REVIEW 10 of 14 
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rod-screw junction, illustrating surface marks of the tightened screws on the rod.
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4.3. CoCr Versus Ti Rods

CoCr exhibited a higher fatigue life than Ti, which is in line with previous investigations [23,50,51].
However, we are not aware of previous studies addressing spinal CoCr susceptibility to thermal
modification of electrocautery. Uniquely, our tested constructs were not affected by this thermal
modification as the pedicle screws failed. This could be explained by their superior rigidity, corrosion,
and wear resistance [52]. This biomechanical superiority is also the reason for their implementation in
demanding surgical techniques such as PSO. Paradoxically, in the context of PSO, CoCr constructs
were associated with higher rates of RF. This could be due to the notch effect of in situ bending inherent
within the PSOs, and the unusually high loading they need to withstand [16]. However, the superior
performance of CoCr comes at the expense of greater stiffness at both ends of the construct, resulting
in increased incidence of adjacent segment disease [53–55]. This could be attributed to the fact that
Ti-6Al-4V alloy has a much lower Young’s modulus (∼112 GPa) when compared to Co-Cr alloys
(∼210 GPa) [56,57].

One of the strengths of our study could be its clinical implications. Patient expectations of
surgical outcomes have reached unparalleled heights [58]. However, implant-related complications
have significant drawbacks on post-operative Health-Related Quality of Life (HRQoL) and were
associated with slower rates of improvement [1,23,59]. Moreover, the negative economic impact of
instrumentation failure and post-operative complications on the health-care system in the context of
spine surgery is high [60,61].

This study provides a biomechanical strongpoint by testing constructs under high sinusoidal
loading levels (n = 8, each 106 cycles) in which rod diameter was uniform, which makes the results
comparable. Previous biomechanical investigations have tested constructs with different rod diameters
and were tested under lower load levels [21,22]. Higher loading levels would give more confidence to
the conclusion of long-term fatigue endurance. Intuitively, the longer a spinal implant persists intact in
the body, the more cyclic loading it has to withstand. Testing constructs under short- and long-term
mechanical loading enabled the conclusion that CoCr rods, even under long-term cyclic loading
(8 × 106 cycles), proved unaffected by thermal damage. Furthermore, constructs were examined
according to a standard for spinal instrumentation testing [29]. The application of the ASTM F1717
standard enabled the delineation of electrocautery’s impact on the mechanical properties of materials
and efficiently eliminated potential confounding factors, such as implant design or donor variability in
the context of cadaver studies.

On the other hand, intrinsic to in vitro biomechanical investigations, this study was conducted
within a scaffold of limitations and simplifying premises that are important to discuss. First, severity
of the electrocautery attack cannot be fully controlled during manual application which could lead to
heterogeneity of thermal damage on the tested rods. This could explain why the Ti-EG specimens
fractured at different locations. Second, the use of only one cautery mode precludes conclusions on
other electrocautery modes. Third, in vivo clinical translation of the findings is impeded by the dry
conditions of these experiments which were conducted at room temperature; fatigue life could differ
when implants are at body temperature and surrounded by body fluids [39]. Fourth, the application of
the ASTM F1717 sinusoidal testing environment represents a “worst case scenario”; constructs alone
bore the burden of the axial loading which does not fully represent the in vivo state where the load is
also shared by the spine and neighboring soft tissue. However, physiological stresses on implants
could be as high as 700 N which permits us to draw our conclusions, as Ti rods failed in the range of
250 N. Fifth, tested constructs underwent only axial loading, resulting in a bending moment which
mimics one modality of human movement, flexion-extension, and does not take into account lateral
bending and axial rotation. Finally, we did not perform a power analysis prior to conducting this study
to determine the minimum sample size required for the CI of 95%. Also, the wide CI is attributed to
the small sample size. However, this limitation means that the impact of electrocautery could have
been underestimated in our results. Subsequently, a larger sample size would enable calculation
of a statistically significant hazard ratio to quantify the negative impact of thermal damage on the
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fatigue life of Ti rods. Future biomechanical studies with a larger sample size are merited to analyze
different settings of coagulation and cutting modes, and to assess loadings exerted by bending and
axial rotation of vertebrae. Randomized controlled studies are required to determine the absolute
effect of electrocautery on spinal implants. Nevertheless, our findings disentangle a potential culprit
underlying post-operative Ti rod fracture.

5. Conclusions

This biomechanical study showed that the impact of electrocautery on Ti rods could have
significant clinical and biomechanical repercussions for patient safety and satisfaction, surgical training,
and implant design. Ti rods exhibited decreased fatigue life and failed at the site of electrocautery
application. Spine surgeons should exercise caution in the vicinity of spinal implants, especially during
revisions. Similarly, it is also reasonable for manufacturers to devise strategies against thermal damage
and explore methods to increase the long-term structural integrity of Ti rods.
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