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Abstract

significantly more accurate classifiers.
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Background: Set-level classification of gene expression data has received significant attention recently. In this
setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of
features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a
decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent
empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable
classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on
the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to
defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated
expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers.
Methods: We define two families of gene sets using information on regulatory interactions, and evaluate them on
phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set
families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent
(testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach.

Results: The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more
accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to

Conclusion: Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene
expression data. The experimental scripts and other material needed to reproduce the experiments are available at
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Background

Set-level classification of gene expression data has
received significant attention recently [1-6]. Unlike in
more conventional gene expression analysis, the set-level
approach assumes that high-dimensional vectors of gene
expressions are represented by lower-dimensional vec-
tors of aggregated expressions. The latter are aggregated
over apriori defined gene sets. The sets are specified in
terms of formalized biological background knowledge; a
single set may e.g. collect all genes acting in a specific
metabolic pathway. In this setting, predictive classifiers
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are learned using the lower-dimensional set-level repre-
sentation. Besides obvious benefits in the interpretability
of the learned classifiers, the set-level approach is mainly
motivated by the problem of high feature dimension con-
trasting with the low number of available samples, which
has been characteristic of gene expression data analysis.

Given the entailed reduction in sample dimensional-
ity, the set-level approach should lead to a decreased
risk of overfitting potentially resulting in improved accu-
racy of induced predictive models. Unfortunately, this
expectation was not confirmed by empirical research
[1,2,5,6].

In this paper we hypothesize that the lack of predictive
accuracy improvements observed in the previous studies
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was due to the adoption of unsuitable types of gene sets.
In set-level gene expression analysis (e.g., [1-3, 5]), a
usual way to define prior gene sets is through the Gene
Ontology [7] (GO) terms or the KEGG [8] database of
metabolic pathways. In the former case, a gene set cor-
responds to an ontology term (representing a function,
process, or a cellular component) and collects all genes
annotated by that term. In the latter, a gene set contains
genes whose product acts in a specific cellular pathway.
This type of prior knowledge is also frequently used in
tasks of gene enrichment analysis [9], gene functional
clustering [4, 10], pattern mining [11, 12], as a regular-
ization technique in machine learning [13], and also in
clinical studies [14, 15].

When transforming expression data from the gene level
to the lower-dimensional gene-set level, some informa-
tion is obviously lost. Intuitively, this loss is minimized
when the set-level representation preserves most of the
variance of the original data. This happens when the
defined sets aggregate genes highly correlated in terms
of their expression, thus minimizing variance inside the
sets, and maintaining variance between them. The GO
and KEGG gene sets mentioned above do not tend to
gather genes with strongly correlated expression as they
are defined through properties of and functional relations
among protein products of the genes rather than interac-
tions directly pertaining to transcription regulation. This
reasoning is empirically supported, for example, by an
improvement of gene expression estimations using the
operon structure [16] and relatively higher consistence of
genes contained in the same operon as opposed to gene
groups defined by a common GO term or KEGG pathway
membership [17].

On the other hand, high correlation can be expected
between expressions of genes which share activating
regulatory proteins (transcription factors). We use two
sources of available formalized knowledge to define such
gene sets. One is represented by a regulation network
where directed edges connect transcription factors with
their gene targets. The other source, which is specific
to prokaryotes, is the known operon structure of the
genome. Operons are clusters of genes transcribed into
an mRNA as a single unit. To harness and compare
both information on operons and transcription factors,
we restrict our experimental material to prokaryotic gene
expression data sets.

Note that the aggregated expression of genes positively
regulated by a transcription factor may be seen as a proxy
for the activity of that transcription factor and its presence
in sufficient concentration in the cell. Such information is
obviously highly relevant to the prediction of the target
phenotype, and it cannot be inferred from the microarray-
measured values of expression of the transcription
factor only.

Page 2 of 8

The main purpose of this paper is to evaluate the per-
formance of the newly designed gene sets in the context
of predictive classification, against the gene sets used in
previous work and against the conventional gene-level
classification. To this end, the next section exposes the
details concerning the design of the novel gene sets and
other methodological ingredients of our approach. Subse-
quently, we address the empirical questions regarding the
classification performance and the intra-set expression
correlation, and then conclude the study.

Methods

Here we first explain the proposed novel gene sets as
well as the conventional gene sets used for reference in
comparative experiments. Then we briefly describe the
machine learning scenarios which we follow to assess
the quality of the gene sets. Lastly, we describe the pro-
tocols for collecting the training data and for statistical
validation.

Gene sets

As motivated in the Background, sets of co-regulated
genes should form good features for phenotype
prediction.

The adjective co-regulated allows multiple interpreta-
tions. Here we explore various such interpretations giv-
ing rise to six different novel types of gene sets. Three
of them exploit the known operon-based structure of
the prokaryotic genome, for which we do not need to
know the exact regulatory network. For the other three,
we exploit information about the gene-gene regulatory
interactions.

We will define gene sets by specifying a condition that
the member genes should satisfy, e.g. genes “controlled
by transcription factor T”. Without restating it explicitly,
we will always consider that such sets are maximal, that
is, all genes satisfying the defining condition of a set are
included in the set.

Operon structure based gene sets
In prokaryotes, genes are organized into contiguous clus-
ters called operons. We exploit the operon structure to
define three types of gene sets.

Operon (OPR) An operon is generally transcribed into
messenger RNA as a single unit. Thus we can expect the
expressions of genes in a single operon to be more corre-
lated than those of randomly selected genes. Therefore the
most basic type of gene sets is defined by genes located in
the same operon.

Some operons may also have multiple promoters, pos-
sibly located even inside the operon, which means that
sometimes only a subset of genes of the operon may be
jointly transcribed. This motivates two more definitions of
gene set types.
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Transcription Unit (TU) A transcription unit is a group
of genes transcribed from a single promoter. Unlike oper-
ons, transcription units may overlap and one transcription
unit can be completely contained in another one (Fig. 1a).

TU sets include all OPR sets as well some of their sub-
sets. Thus for some TU sets (at least for the OPR ones)
again only a part of a transcription unit is transcribed into
mRNA. Therefore, we also consider the following gene set

type.

Continuous Operon Subsequence (COPR) A COPR
gene set is a maximal non-interrupted subsequence
(“chunk”) of an operon, i.e. no promoter is located
between any two genes contained in that subset. It follows
that the expression of genes in COPR set should be highly
correlated. COPR sets do not overlap.

COPR sets are maximal non-overlapping sequences of
genes which divide an operon such that no TU starts or
ends inside of any chunk (Fig. 1b).

Transcription factor based gene sets
Next we define gene sets based on gene-gene regulation
interactions.

Transcription Factor (TF) The simplest of this type of
gene sets are TF gene sets (Fig. 2a) which are composed
of sets of genes having a regulating transcription factor in
common. If is further assumed that the nature of the regu-
latory influence (activation, repression, dual or unknown)
of the transcription factor is the same for all the genes in
the set. Thus we can have up to four gene sets composed
of genes regulated by a single transcription factor.

While the shared transcription factor in a TF set con-
tributes to positive correlation of the expression of the
member genes, this effect is naturally limited as the genes
may as well be co-regulated by other transcription factors
which are not shared within the set. This is a motivation
for introducing two additional transcription factor based
gene sets.

a
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Fig. 1 Example of operon based gene sets. a The operon bcsABZC
contains genes besC, besZ, besB, besA, and contains transcription units
bcsABZC and besBZ. b COPR sets are consecutive set of genes in
operons which are always co-transcribed
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Fig. 2 Example of transcription-factor based gene sets. a A
transcription factor Fur regulates altogether 130 genes including
positively regulated genes e.g., sucA, sucD and negatively regulated
genes e.g., cyoB, sucB, sucC, entD. All these regulated genes constitute
the gene set. b A complex regulon defined by genes sucA, sucD, sucB
and sucC can be divided into two strict regulons defined by two pairs
of genes (sucA, sucD) and (sucB, sucC). All the three mentioned
regulons are regulated only by a common set of transcription factors
CRP, ArcA, IHF, Fur and FNR

Regulon (REG) The second of this type of gene sets
are Regulon gene sets (Fig. 2b) which are based on the
notion of regulon from [18]. A REG gene set consists
of genes which are regulated by exactly the same set of
transcription factors.

Since the type of regulatory relations is not considered
in a REG set, the expressions of the member genes in it
may be uncorrelated simply due to a transcription factor
having a positive effect on some of the members and neg-
ative on others. The following gene set definition aims to
avoid this.

Strict Regulon (SREG) The third type of transcription
factor based gene sets is based on strict regulons [19]
(Fig. 2b). A strict regulon is a set of genes controlled by the
same set of regulatory genes each of which must have the
same role for all of the regulated genes. Thus the only dif-
ference between REG sets and SREG sets is the additional
condition regarding the regulation type.

The members of all the defined gene sets were deter-
mined from the transcriptional regulation network of
Escherichia coli K-12 as described in the RegulonDB
(ver. 8.2) [20].
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Baseline gene sets

Gene Ontology and KEGG (GO+KEGG) In set-level
gene expression analysis, a frequent way of defining prior
gene sets is through the Gene Ontology [7] (GO) terms
or the KEGG [8] database of metabolic pathways. In
the former case, a set is defined by a GO term and
collects all genes annotated by that term. In the latter
case, a set pertaining to a pathway includes all genes
whose product act in that pathway. The sets derived
from these two conventional sources are combined into a
single reference family of sets used in comparative exper-
iments. We extracted these gene sets from the R package
Genome wide annotation for Escherichia coli strain K12
(version 2.9.0).

Randomized gene sets For all the gene sets of the types
defined above, we also defined their randomized coun-
terparts. For a given gene-set type, genes in the ran-
domized gene sets are shuffled among all gene sets of
that type. Thus, the size proportions of the gene sets
remain unchanged. The reason for defining such random-
ized controls is to isolate the effects of involving relevant
background knowledge (as in the case of the genuine sets
defined through biological principles) from those of plain
dimensionality reduction through feature aggregation (as
in the case of randomized gene sets).

Table 1 provides a summary of all the constructed gene
sets and their quantitiative properties.

Machine learning

To evaluate the quality of the proposed gene sets, we
performed experiments in which a machine-learning
algorithm was used to learn a classifier for predicting
a phenotype class from measured gene expressions. We

Table 1 A summary of gene-set types and their properties

Gene-set type #sets #genes  #of genesin set

Median Mean Max.

Operon Based

Operon (OPR) 2649 4524 1 1.708 16

Transcriptional unit (TU) 3213 4524 1 1685 16

Continuous subsequence (COPR) 3164 4524 1 1430 12
Transcription Factor Based

Transcription factor (TF) 186 1685 7 24.720 534

Regulon (REG) 459 1685 2 3671 61

Strict regulon (SREG) 541 1685 2 3115 51
Conventional

GO+KEGG 260 2734 12 31.830 847

For each of the type, the smallest sets contain exactly one gene. The "# genes”
column contains the number of genes included in at least one set of the given type.
Since the sets are not disjoint, # genes / # sets # mean. The table does not list the
seven randomized gene set collections, which possess exactly the same statistics as
the respective listed types except their member genes are permuted
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used the support vector machine learning algorithm [21].
In this approach, samples are viewed as points in a vector
space with coordinates given by the values of the sample’s
features. A classifier is sought in the form of a hyper-
plane that separates training samples of distinct classes
and maximizes the distance to the points nearest to the
hyperplane (i.e. maximizing the margin) in that space.
We used the implementation from the R package e1071,
version 1.6-1.

In the conventional gene-level setting, features of a sam-
ple correspond to the expressions of the individual genes.
In the set-level approach, however, features correspond
to the pre-defined gene sets and their values for a given
sample aggregate the expressions of the member genes
in that sample. Thus, we need a data aggregation func-
tion to compute a single real number representing the
aggregated expression of genes in a gene set. The simplest
option, which we adopt here, is the arithmetic average,
although other aggregation methods have been proposed
in the context of set-level gene expression analysis before,
such as the median value, or the set-signature (SET-SIG)
method [1], which fits the aggregation function using class
labels available in training data.

Gene-expression data

Our experimental evaluation involves microarray gene
expression datasets measured in the bacteria Escherichia
coli. We selected this popular model organism for the
following reasons. First, it is estimated that about 2/3 of
its transcriptional regulatory proteins and most of their
targets are already known and described in the publicly
available database RegulonDB [20] (201 regulatory pro-
teins are currently available from the 314 predicted [22]).
Second, a significant number of gene-expression datasets
for Escherichia coli is available in the Gene Expression
Omnibus database [23].

We downloaded the 10 largest series of gene expression
data for E. coli K12 from the Gene Expression Omnibus
[24]. Table 2 lists the series identifiers. For data homo-
geneity, we limited ourselves to Affymetrix microarray
platforms only; particularly, the GeneChip® E. coli Anti-
sense Genome array and the GeneChip® E. coli Genome
2.0 array. Two of the series could possibly confound the
experiments because they were used for the develop-
ment of the RegulonDB; therefore, we excluded them. We
verified that the remaining series were not used in the
development of RegulonDB.

Each of the series contains samples corresponding to
several phenotypes (see Table 2), i.e., the data instances are
partitioned into more than two classes. From these series,
we first constructed a pool of binary-class datasets that
a SVM algorithm can natively process. In particular, for
each of the series and each pair of its phenotypes, we com-
bined the samples pertaining to these phenotypes into a
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Table 2 List of gene expression series collected from the Gene
Expression Omnibus (10 largest series for E. coli K12)

Series id Platform id # phenotypes
GSE6836 GPL199 62
GSE33147 GPL199 30
GSE10160-1 GPL199 9
GSE10160-2 GPL3154 4
GSE35371 GPL3154 20
GSE21869 GPL199 5
GSE17505 GPL199 10
GSE34023° GPL3154 7
GSE73982 GPL199 8
GSE4778 GPL199 4

The series marked with @ were omitted due their involvement in the development
of the RegulonDB

new (binary-class) dataset and added it to the pool. Each
dataset in the pool contains 6—10 samples.

Next, we extracted a collection of non-overlapping zest-
ing datasets from this pool as follows. We started by
randomly choosing the first dataset, and then repeatedly
added a random dataset sharing no phenotype-class (and
therefore no sample) with the already included datasets,
until such datasets are exhausted. The resulting 71 testing
are intended for the final statistical comparisons.

Lastly, we also extracted an auxiliary collection of 100
selection datasets which may overlap mutually but are dis-
joint from the testing datasets. The selection datasets were
drawn at random from the pool. They are intended for
selecting the best performing of newly proposed gene set

types.

Experimental protocol
The purpose of the experiments is to assess

® (Question 1) whether classifiers learned with the
novel gene sets are more accurate than those learned
with the state-of-the-art gene sets and those learned
with the conventional gene-level approach, and

¢ (Question 2) whether the novel sets contain genes
more correlated in expression than the
state-of-the-art gene sets and than random genes.

Our experimental procedure has three steps.

First, we select the best performing of the newly pro-
posed gene set types. We select one type from the three
types of operon-based gene sets (OPR, TU, COPR) and
one type from the three transcription-factor-based gene
sets (TF, REG, SREG). We measure the average classifica-
tion accuracy estimated by leave-one-out cross-validation
on the selection datasets, and the gene set types are
ranked using the sum of ranks from the Friedman’s rank-
sum test. This prior selection step is employed to reduce
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the number of statistical tests conducted on the testing
datasets.

Second, we address Question 1 above. In particular, we
evaluate the performance of the selected gene sets on
the testing datasets against the baseline gene sets (see
paragraph Baseline gene sets above) and against the con-
ventional gene-level approach using leave-one-out cross-
validation and the one-sided paired Wilcoxon test. Recall
that the testing datasets are independent of the selection
data sets. For learning the conventional gene-level classi-
fiers, we use the set of genes corresponding to the union
of all the gene sets of the type the conventional classifier
is compared to. This is to make sure that both the com-
pared approaches receive the same amount of information
on their inputs.

Third, we visit Question 2 in that we evaluate the cor-
relation of expression of genes in the selected novel gene
sets in comparison to the state-of-the-art gene sets and to
random genes. We employ a sampling based approach for
scalability. In particular, we sample 5000 pairs of genes,
calculate the expression correlation coefficient for each
sampled pair on all the available data sets, and plot the
resulting densities of the obtained coefficients. More pre-
cisely, for each gene set type the following two steps are
iterated 5000 times: (i) randomly select a gene set of the
given type, with probability corresponding to the number
of 2-combinations of its size, (ii) from the selected gene
set, randomly select a pair of two distinct genes and com-
pute their correlation coefficient. We omit single-gene
sets. The procedure to calculate the correlation histogram
for random gene pairs (not bound to any gene set) is sim-
ilar, except the gene pairs are sampled from among all
genes rather than a (sampled) gene set.

Results and discussion

Selection

The results obtained on the 100 selection data sets are
shown in Table 3. The best performing types of gene sets
in terms of the sum-of-ranks criterion (here co-inciding
also with the mean-accuracy criterion) are the Continuous
Operon Subsequence (COPR) type out of the operon-
based family, and the Regulon (REG) type out of the
transcription-factor-based family.

Therefore we select the two mentioned gene set types
for the subsequent comparison with state-of-the-art gene
sets and conventional (gene-level) classification on the
independent testing data sets.

Classification

Table 4 presents the main statistical findings. The results
are based on the counts of wins, ties, and losses on the
71 testing data sets for each pair of tested methods';
these counts are detailed in the Additional file 1. The
compared variants include the two selected novel gene-
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Table 3 Results obtained with the newly proposed gene sets on
the selection data sets

Gene-set type Mean accuracy [%] Sum of ranks

Operon (OPR) 81.50 196.00
Transcriptional unit (TU) 82.17 198.50
Continuous subsequence (COPR) 83.00 205.50
Transcription factor (TF) 78.69 179.00
Regulon (REG) 82.67 211.50
Strict regulon (SREG) 82.50 209.50

Columns contain the mean accuracies and sum-of-ranks indicators over the
datasets, higher rank indicates better performance. Here, the best ranked gene-set
types from the two categories (operon-based, transcription-factor based) are COPR
and REG, respectively

set types (COPR, REG), the state-of-the-art gene-set type
(GO+KEGQG) as well the randomized and gene-level vari-
ants of the former three methods. As mentioned already,
the gene-level variant of a method works with features
corresponding to genes from the union of the gene sets
pertaining to that method. In other words, the gene sets
are ‘dissolved’ into individual genes. In the special case of
COPR, this union in fact contains all genes from the orig-
inal data sets because every gene of Ecoli K12 is associated
to an operon.

The observations confirm the main hypothesis of our
study, that is, the selected newly proposed gene sets based
on regulation-interaction information (COPR, REG) sig-
nificantly outperform their randomized counterparts as
well as their gene-level counterparts. This is however not
the case for the conventional gene-set type (KEGG+GO),
confirming the observations of the recent line of research
1,25, 6].

Correlation

Our explanation for the observed favorable results of the
new gene-set types in comparison to the state-of-the-
art type is that the former collect genes more correlated
in terms of expression. Here we validate this hypothesis.
Figure 3 shows the density plots induced on histograms

Table 4 Summary of the main experimental findings

Control Novel sets Conventional sets
COPR sets REG sets KEGG+GO sets

Randomized 4 better 1 better tsame(p=1)
(p =0.02950) (p =0.0186)

Gene-level 4 better 1 better 4 worse (p = 0.00254)
(p=001776)  (p = 0.03809)

Both the selected types of the newly proposed gene sets (i.e., COPR and REG)
perform significantly better than their randomized and gene-level versions. On the
contrary, the state-of-the-art gene set type (KEGG+GO) performs indistinguishably
from its randomized version and significantly worse than its gene-level version. As
detailed in main text, the p-values correspond to the one-sided paired Wilcoxon test
applied on the win/tie/loss counts determined by leave-one-out cross-validation of
predictive accuracies
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of pair-wise gene expression correlation coefficients for
random gene pairs, and for pairs sampled jointly from a
random gene set of the given type. The types include the
state-of-the-art gene-set type (KO+KEGG) and the two
selected novel types (REG, COPR).

As could be anticipated, the histogram pertaining to
random gene pairs is almost symmetrical around the
mean correlation 0. The GO+KEGG histogram is only
slightly skewed towards the right, indicating a weak posi-
tive correlation trend. The REG histogram is significantly
more skewed to the positive correlation, and the COPR
histogram even more so. These observations confirm the
assumption that the novel gene set types are more corre-
lated than the conventional type.

Additional comparisons
To gain further insights into the performance of the novel
gene sets, we performed several additional experiments.

First, we compared predictive accuracy obtained with
the REG and COPR gene sets to predictive accuracy
obtained with representation based on transcription fac-
tors as single genes. While classifiers based on REG and
COPR gene sets outperformed classifiers based on tran-
scription factors, which is a result consistent with our
expectations that the novel gene sets based on regu-
lons better capture the activity and concentration of the
transcription factors, the difference was not statistically
significant (REG p = 0.15, COPR p = 0.25 using one-sided
Wilcoxon signed-rank test).

Second, we tested if more advanced aggregation meth-
ods could lead to better predictive performance. We
repeated the experiments with aggregation based on prin-
cipal component analysis (PCAgg) and with SetSig aggre-
gation [1]. We found that both PCAgg and SetSig lead
to worse predictive accuracy than aggregation by aver-
aging when using the novel gene sets and to statistically
insignificant differences for GO+KEGG gene sets. This
may be explained by the relatively small sizes of the
prokaryotic datasets used in the experiments presented
in this paper causing high variance of the PCAgg/SetSig
calculations.

Third, we experimented with a method constructing ad-
hoc gene sets on training data by a hierarchical clustering
algorithm, cutting the resulting dendrograms at such a
depth so that the number of clusters would be equal to
the number of the respective gene sets. We compared the
predictive performance of this method to performance of
the classifiers based on COPR and REG gene sets. The
method using REG gene sets was significantly better than
CLUST (p = 0.04 using one-sided Wilcoxon signed-rank
test) whereas the method using COPR gene sets was bet-
ter only insignificantly (p = 0.16 using one-sided Wilcoxon
signed-rank test). A disadvantage of CLUST compared to
our novel gene sets is also that the created clusters often
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Pair-wise gene expression correlation
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Fig. 3 Density plots of pair-wise gene expression correlations. Random: each two genes are randomly sampled from among all genes. Remaining
plots: a gene-set is first sampled from a given category (GO+KEGG, REG, COPR), and the two genes are then sampled from that set

do not have to be biologically meaningful which negatively
affects interpretability.

Extendibility to eukaryotic organisms

The gene sets introduced in this paper were designed pri-
marily for prokaryotic organisms which have their genes
organized in operon structures. Since eukaryotic organ-
isms have different and more complicated structure of
genomes, not all of our results are directly extendable
to eukaryotic organisms. This is true specifically for the
gene sets based on the operon structures as we cannot
even define the COPR gene sets for eukaryotes. It might
be interesting to replace the operon-based family by ana-
logical eukaryotic concepts such as posttranscriptional
operons [25]. On the other hand, the ideas of the gene sets
based on transcription factor regulation can be extended
to eukaryotes directly. However, the main problem is that
the current knowledge of transcription factor regulatory
networks is rather incomplete and therefore the quality
of the gene sets based on transcription factors can be
expected to be low.

Conclusions

We evaluated the performance of a new type of gene
sets based on the structure of transcription-regulation
networks and on the operon structure of bacterial
genomes using attribute-value machine learning and

gene-set aggregation. All the proposed gene sets are new
in the context of predictive classification and are a salient
contribution of this paper.

We hypothesized that these new gene sets would col-
lect genes more correlated in expression than the most
usual state-of-the-art gene sets based on the gene ontol-
ogy and KEGG database information, and that they would
also enable to construct more accurate classifiers.

Our experiments on prokaryotic gene expression data
series from the Gene Expression Omnibus confirm the
hypothesis. In particular, the newly proposed gene sets
based on regulation-interaction information significantly
outperform their randomized counterparts as well as their
gene-level counterparts in terms of classification accuracy.
This is however not the case for the state-of-the-art gene-
set type (KEGG+GO), confirming the observations of the
recent line of research [1, 2, 5, 6]. It also turns out that
the new gene sets are contain genes with more correlated
expression than the state-of-the-art gene sets.

Endnote

1\We base the comparisons on the win/tie/loss count to
adhere to the methodology [26] for comparing classifiers
on multiple data sets. Demsar[26] specifically deems it
incorrect to rank classifiers by averaging accuracies over
multiple data sets.
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