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Various disease conditions can alter EEG event-related responses and fMRI-BOLD

signals. We hypothesized that event-related responses and their clinical alterations are

imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat).

We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e.,

absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral

model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind

visualization of task-related neural networks. Two (spatio)spectral patterns (high δ4 band

and low β1 band) demonstrated significant negative linear relationship (pFWE < 0.05) to

the frequent stimulus and three patterns (two low δ2 and δ3 bands, and narrow θ1 band)

demonstrated significant positive relationship (p < 0.05) to the target stimulus. These

patterns were identified as ERSPats. EEG-fMRI F-map of each δ4 model showed strong

engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and

dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable

trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified

the relationship to the frequent stimulus. For the δ4 model, we detected a reduced HRF

peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN,

default mode network (DMN) and in the frontal white matter. The frequent-related β1

patterns visualized less significant and distinct suprathreshold spatial associations. Each

θ1 model showed strong involvement of lateralized left-sided sensory-motor and motor

networks with simultaneous basal ganglia co-activations and reduced HRF peak and

amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ1 model

preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ4,

β1, and θ1 bands, all models provided high local F-statistics in expected regions. The

most robust EEG-fMRI associations were observed for ASM and RSSM.

Keywords: simultaneous EEG-fMRI, task-related network visualization, spectral and spatiospectral models, visual
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INTRODUCTION

Ives et al. and Huang-Hellinger et al. optimized initial
simultaneous EEG-fMRI data acquisition (1, 2) and Allen et al.
and Goldman et al. implemented first algorithms suppressing
gradient MR artifacts induced in the simultaneous EEG
recordings (3, 4). The development of various multimodal data
fusion strategies has taken off driven by themotivation to gain the
most information from EEG high temporal resolution and fMRI
high spatial resolution. The first published data fusion approach
cross-correlated EEG α band power fluctuations with the fMRI-
BOLD signals of the resting-state paradigm (5, 6), followed by
the general linear model (GLM) implementation (7, 8). The GLM
became a prominent method frequently applied in the field and
not only for the EEG spectra integration with resting-state (9–
14) or task induced (15–20) datasets. GLMs inducing event-
related potential (ERP) amplitudes or timings (21, 22), and spike-
informed GLMs (23–25) have been proposed and optimized.

The voxelwise GLM results self-organize into large scale
brain network (LSBN) structures (19). Concurrent fusion
strategy often rotates fMRI data into space of linearly mixtured
spatially independent components, i.e., the LSBNs, with their
representative clusterwise induced BOLD fluctuations, which
are compared to various EEG dynamics (26–31). In parallel,
regression or correlation approaches inferring EEG and fMRI
dynamics, joint independent component analysis (32), graph
build approach (33), dynamic functional connectivity (34), or
multimodal dynamic causal modeling (35) have been proposed
to fuse EEG-fMRI data with various result interpretations. Many
regression or deconvolution approaches reported that EEG-fMRI
hemodynamic response function (HRF) demonstrates varying
timings and shapes (10, 19, 20, 36–42). In physiologic situations,
the BOLD signal is delayed to EEG events but an extreme
example is the epileptic spike EEG-fMRI where BOLD signal
peaks can precede the EEG spikes (41, 42). Thus, it is a preferable
approach to model variable HRF than to use fixed canonical
HRF, which has still been dominating in the common practice
(5–9, 11–18, 21–26, 28–33, 43).

Over various existing EEG-fMRI data fusion techniques,
the ability to blindly and automatically visualize and quantify
robust task-related functional networks and their EEG-fMRI
associations (e.g., via variable HRF) is lacking. We have
focused on the simple GLM fusion approach with variable
HRF aggregating automatically induced EEG spectra (19,
20) and tested whether we can identify fusion settings that
blindly visualizes task-related networks. This automated method
may offer high reproducibility with tremendous potential in
the clinical research or even clinical practice applications to
quantitatively measure cognitive dysfunction.

Cognitive dysfunction may occur in various neurologic and
psychiatric conditions including epilepsy and can be estimated
from EEG, e.g., by measuring cognitive event-related responses
such as P300 potential. The P300 response is time-locked to an
event and is elicited by a task/event when a tested individual
is requested to respond to a single stimulus or a set of stimuli
as in the oddball paradigm. The P300 has been increasingly

investigated as a marker of cognitive processing. Specifically, the
P300 response represents a neural signature of the processing of
stimulus context depending on the attention and state of arousal
leading to an appropriate response (44). Although the P300 has
been almost exclusively assessed in the temporal domain via ERPs
(45, 46), the characterization in the frequency/spectral domain,
since time and frequency are fully complementary domains,
may provide additional insight into the data. Spectral (Equation
1) (16, 17, 43, 47) and spatiospectral (Equation 2) (19, 43)
models have already been proposed for the blind visualization
of task-related networks from simultaneous EEG-fMRI data. The
1st model (Equation 1) assumes that local fMRI BOLD signal
fluctuations (b) are proportional to fluctuations of the frequency-
specific (ω) weighted EEG absolute/relative power spectra (p)
with modeled between-signal delay via HRF convolution kernel
(h). The weighting function g(ω) can be considered a frequency
specific filter modulating the power spectra and final power
fluctuations are often estimated as an average over channels (16,
17, 43, 47). The 2nd model (Equation 2) is similar but considers
the filtering property to be channel (c) specific. The identification
of a robust task-related weighting function g(ω) or g(c,ω), i.e.,
event-related (spatio)spectral patterns (ERSPat) in EEG spectra,
remains a not fully optimized challenge in the fusion process.

b ∝
( ∫

g(ω)p(ω) dω

)

∗ h (1)

b ∝
( ∫ ∫

g(c,ω)p(c,ω) dc dω

)

∗ h (2)

The EEG absolute/relative power spectra consist of a linear
mixture of stable spatiospectral patterns [i.e., different stable
g(c,ω) functions in Equation (2)] with temporal fluctuations that
were more task-related for the relative power rather than the
absolute power (48, 49). Absolute EEG power identified 14 stable
patterns with highly significant EEG-fMRI associations at visual
oddball dataset (19, 48). Relative EEG power identified 10 stable
patterns similar to the absolute power patterns and two other
relative power specific stable patterns, for which the EEG-fMRI
relationships have not been investigated yet (49).

Several studies utilized the spectral model for the visualization
of task-related neuronal networks from EEG-fMRI data (15–
18) or the spatiospectral model (19, 43) with few mutual
discrepancies: (i) the response function was fixed or variable; (ii)
different tasks were used. Therefore, a direct and fair comparison
between models still needs to be investigated.

Within the current study, we are presenting the full
comparison between absolute/relative power based spectral
(Equation 1) and spatiospectral (Equation 2) models for
fully automatic EEG-fMRI fusion. The goal is to optimize
the automatic visualization and quantification of task-
related neuronal networks. The robustness over models
was objectively assessed.
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MATERIALS AND METHODS

Experimental Design
The identical simultaneous EEG-fMRI dataset of visual oddball
paradigm was used as previously described (18, 19, 48, 49). The
event-related designed visual oddball task was performed by 21
healthy subjects (13 right-handed men, one left-handed man,
seven right-handed women; age 23 ± 2 years). Three stimulus
types were presented randomly to each subject. Each stimulus
consisted of a single yellow uppercase letter shown for 500ms
on a black background. Inter-stimulus intervals were either
4, 5, or 6 s (drawn uniformly and randomly). A total of 336
stimuli (divided into four consequential sessions) were presented,
consisting of targets (letter X, 15%), frequents (letter O, 70%),
and distractors (letters other than X and O, 15%). Subjects were
instructed to press a button on the box held in their right hand
whenever the target stimulus appeared and not to respond to
distractor or frequent stimuli.

This study was approved by and carried out in accordance
with the recommendations of the Masaryk University Ethics
committee guidelines and all subjects signed the approved
written informed consent in accordance with the Declaration
of Helsinki.

Simultaneous EEG-fMRI Data Acquisition
The scalp EEG data, with reference between Cz and Fz electrodes,
were acquired with an MR compatible 32-channel 10/20 EEG
system (BrainProducts, Germany) and a sampling frequency
of 5 kHz. Two channels were used for ECG and EOG. Via
the BrainVision Recorder system (BrainProducts, Germany),
the EEG data were synchronized and acquired simultaneously
with fMRI data during gradient echo imaging sequences
[1.5 T Siemens Symphony scanner equipped with Numaris
4 System (Mrease)]. Gradient echo, echo-planar functional
imaging sequence was acquired with following parameter setting:
TR = 1,660ms; TE = 45ms; FOV = 250 × 250mm; FA = 80◦;
matrix size = 64 × 64 (3.9 × 3.9mm); slice thickness = 6mm;
15 transverse slices covering the whole brain except the inferior
part of the cerebellum. The task was divided into four equal runs
of 256 scans and 84 stimuli.

Following simultaneous EEG-fMRI acquisition, high-
resolution anatomical T1-weighted images were acquired using
an MPRAGE sequence with 160 sagittal slices, matrix size 256 ×
256 resampled to 512× 512; TR= 1,700ms; TE= 3.96ms; FOV
= 246mm; FA= 15◦; and slice thickness= 1.17 mm.

EEG Data Preprocessing
The EEG data were preprocessed as described in (19, 48) using
BrainVision Analyzer 2.02 (BrainProducts, Germany) with the
implemented manufacturer’s pipeline. Gradient artifacts were
removed using average artifact subtraction (used sliding window
with window length=21∗TR) at the acquisition sampling rate
5 kHz (3) and filtered with a Butterworth zero phase 1–40Hz
band-pass filter. Then, EEG signals were resampled to 250Hz
(antialiasing filter included). Ballistocardiogram (BCG) artifacts
were removed by average artifact subtraction (used sliding
window with window length= 21∗BCG epochs) waveform from

each channel (50) and signals were re-referenced to the average.
Eye-blinking artifacts were removed by conducting a temporal
ICA decomposition and removing eye-blink artifacts from the
back-reconstructed time course.

EEG Spatiospectral Decomposition
The decomposition was the same as implemented and previously
described (48, 49). The preprocessed EEG signal from each
lead and session was normalized to 0 mean and variance 1,
and divided into 1.66 s (repetition time of fMRI scanning TR)
epochs without overlap. Each epochwas transformed to a spectral
domain with the fast Fourier transform (FFT), generating a
vector (length = 67) of complex valued spectral coefficients
between 0 and 40Hz. Complex values were converted to absolute
power by taking the absolute value and squaring, or converted
to relative power value by dividing the squared value by the
power of the whole epoch. The output vector of 67 real
absolute/relative power values comprised a 3D matrix E with
dimensions nt , nc, and nω. The dimension nt represents the
number of spatiospectral epochs (nt = 256), the dimension
nc is the total number of leads (nc = 30), the dimension nω

is the total number of spectral coefficients (nω = 67). The
EEG spatiospectral decomposition (Equation 3) decomposes
the matrix of spatiospectral maps E into a source matrix S

of dimensions S(m,n∗cnω) containing independent spatiospectral
patterns and a mixing matrix W of dimensions W(nt ,m)
containing the patterns’ dynamics. Dimensionm is the number of
decomposed independent spatiospectral components (m= 20).

E = WS (3)

Using the GIFT toolbox (http://mialab.mrn.org/software/gift/)
(51), the matrix E was dimensionally reduced using PCA (single-
subject reduction to 50 principle components and group-based
reduction to 20 components), followed by INFOMAX group-
ICA (52) with 10 ICASSO runs (53).

Only spatiospectral patterns, which were reported to be stable
and observed in both absolute/relative power spectra (48, 49), i.e.,
10 patterns, have been selected from output source matrices S of
separate group-ICA runs for absolute/relative powers.

Individual subject’s time courses were generated by PCA
based back-reconstruction (i.e., the individual partition of the
PCA reducing matrix is matrix multiplied by the individual
partition of the aggregate reducing matrix) (51) of the group
spatiospectral patterns on the individual subject spatiospectral
maps and time-courses.

Selection of Stable EEG Spatiospectral
Patterns With Relationship to the Task
For each subject and session, we have one matrix W with
dimensions W(nt , 20) containing the back-reconstructed time
course of each spatiospectral component. Let a matrix U

of dimensions U (4∗nt ,10) to be a single-subject matrix of
fluctuations of stable spatiospectral patterns over all four sessions.
Relationships between these dynamics and stimulus vector
timings (in matrix X) were assessed with a single-subject general
linear model (Equation 4, GLM) (54) solved with the least mean
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square algorithm (Equation 5) and a continuous group one-
sample t-test for the k-th stimulus vector (Equation 6) (48).
Variable c is the vector of binary positive contrast at the stimulus
vector of interest, the brackets <> characterize the expectation
over subjects, variable σ is the standard deviation and variable s is
the total number of subjects. Model matrix X contained frequent,
target and distractor timings in 12 separate binary vectors for
each stimulus and session and four vectors for theDC component
in each session.

U = Xβ + ǫ (4)

β = (XTX)−1XTU (5)

tk =
√
s
〈cT

k
βk〉

σ〈cT
k
βk〉

(6)

These spatiospectral patterns, where any |t|-value was higher than
3.25 (critical value at pFWE < 0.05 for 10 multiple comparisons,
i.e., 10 selected stable patterns, and 16 degrees of freedom,
i.e., 16 variables in model matrix X) for any stimulus type
in absolute or relative power, were considered as a pattern
with task-related EEG power fluctuations. Second selection
criteria was to demonstrate mean |t|-value averaged over all
spatiospectral/spectral models with p < 0.05 (∼|t| > 2.0) with
relatively small standard deviation in the averaged |t|-value over
models, i.e., STD|t| < 0.5.

Task-Related EEG Spectral Patterns
All 10 stable spatiospectral patterns observed in both power types
were averaged over leads and provided 10 spectral filters g(ω)
(Equation 1). The filters were used for filtering of power spectra
of matrix E reshaped at dimensions E(nt , nc, nω). Separate for
each filter, time point and channel, the absolute/relative power
value p(t,c) was filtered as Equation 7. Time-course p(t) of each
channel c was normalized to mean 0 and variance 1, and final
absolute/relative power fluctuation ¯p(t) was estimated as an
average over channels for each specific spectral pattern.

p(t, c) =
nω
∑

ω=1

g(ω)E(t, c,ω) (7)

Task-related spectral patterns were evaluated and identified with
the same methodology as described in sub-chapter Selection of
Stable EEG Spatiospectral PatternsWith Relationship to the Task,
but matrix U (Equations 4, 5) consisted of 10 pattern-specific
averaged ¯p(t) fluctuations.

fMRI Data Preprocessing
The fMRI data were preprocessed with SPM8 (Wellcome Trust
Center for Neuroimaging, London, UK) software library. Motion
artifacts were minimized by alignment of all functional scans,
followed by co-registration with the subject’s anatomical image
and normalization into standardized MNI space (Montreal
Neurological Institute template) (55). Functional scans were
spatially smoothed with an isotropic 3D Gaussian filter (FWHM
= 8mm) to increase the signal to noise ratio (SNR) and to make
the random errors more normally distributed. Periods longer
than 128 s were linearly detrended to remove slow drifts and
physiological noise.

EEG-fMRI General Linear Modeling With
Variable HRFs
Relationships between fMRI voxel time-courses (Y) and EEG
task-related spectral/spatiospectral pattern time-courses were
examined using the individual GLMs (Equation 8) (54) with
the EEG time course convolved with the canonical HRF (x1),
convolved with the 1st temporal derivative of the HRF (x2) or
convolved with the 2nd temporal derivative of the HRF (x3)
(19, 20). In addition to the three EEG regressors x1-x3, the
model matrix X contained a DC component. Regressionmatrices
β were estimated over all GLMs with the ReML algorithm
(Restricted Maximum Likelihood) implemented in SPM12
software (Wellcome Trust Center for Neuroimaging, London,
UK) in the MATLAB programing environment (MathWorks,
Natick, USA).

Y = Xβ + ǫ (8)

Group-averaged EEG-fMRI results were estimated with a one-
way ANOVA test (implemented in SPM12) of three EEG-
derived single-subject spatial β-maps for each of three EEG
regressors. The β weights served as dependent variables in
separate ANOVA tests conducted for each spectral/spatiospectral
pattern, generating group-averaged spatial EEG-fMRI F-maps.
The final F-maps were thresholded for objective evaluations at
p < 0.001 uncorrected for multiple statistical tests (i.e., with a
critical absolute F-value of 5.7), and the criteria that clusters
contain 100 voxels or more. For visualizations, the F-maps
were thresholded at p < 0.0001 (i.e., F > 8.1) due to high
result robustness.

Group-averaged EEG-fMRI HRFs (hi) in each voxel i
were estimated from group-averaged regression coefficients β

(estimated within Equation 8) with Equation 9 where r is the
canonical HRF and numbers 1–3 are indexes of regressors x1-x3
(19, 56).

hi = βi,1r+ βi,2
dr

dt
+ βi,3

d2r

dt2
(9)

Assessment of EEG-fMRI Results
Group-averaged EEG-fMRI F-maps and HRFs were visually
inspected for a subjective similarity/dissimilarity evaluation over
the similar spectral/spatiospectral patterns. For the objective
assessment, volume, mean F-value, median F-value, andmaximal
F-value were automatically extracted from the suprathreshold
voxels (p< 0.001) of the final group-averaged EEG-fMRI F-maps
of every stable task-related spectral/spatiospectral pattern. The
spectral/spatiospectral model with the highest objective metrics
was considered as the most successful one in blind visualization
of a task-related neural network.

RESULTS

Task-Related EEG Spectral/Spatiospectral
Patterns
Significant negative linear relationship between EEG
fluctuations and frequent stimulus was observed in two

Frontiers in Neurology | www.frontiersin.org 4 April 2021 | Volume 12 | Article 644874

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Labounek et al. EEG-fMRI: Visualization of Task-Related Networks

TABLE 1 | Group t-values of linear relationship between stable EEG pattern fluctuations and stimuli vectors.

Spectral Spatiospectral Mean STD

Absolute Relative Absolute Relative

Frequent δ1 −0.09 0.46 −1.13 −0.58 −0.34 0.59

δ2 −5.24 −2.42 −0.81 −0.92 −2.35 1.79

δ3 −3.71 −1.71 −1.45 −1.45 −2.08 0.95

δ4 −3.44 −4.70 −2.09 −4.32 −3.64 1.00

θ1 −1.76 −0.87 −0.34 −2.03 −1.25 0.68

θ4 −2.54 −1.95 0.39 −1.01 −1.28 1.10

α1 1.65 3.54 1.72 2.59 2.38 0.77

α3 0.62 2.03 2.48 0.12 1.31 0.97

β1 −3.64 −3.25 −3.23 −3.28 −3.35 0.17

β2 −1.89 −0.64 −0.17 −3.74 −1.61 1.38

Target δ1 2.80 3.35 −0.40 −1.86 0.97 2.18

δ2 2.53 2.93 1.77 2.63 2.46 0.43

δ3 2.26 2.20 2.43 2.46 2.34 0.11

δ4 1.08 0.35 0.24 1.04 0.68 0.39

θ1 2.18 1.49 2.37 2.17 2.05 0.33

θ4 1.93 0.65 0.39 1.45 1.11 0.62

α1 2.05 0.51 2.62 1.73 1.73 0.77

α3 0.93 0.17 0.58 0.21 0.47 0.31

β1 −0.11 −2.30 −0.52 −1.44 −1.09 0.85

β2 −0.82 −2.06 −0.06 −1.40 −1.08 0.74

Distractor δ1 −0.19 0.30 0.56 0.21 0.22 0.27

δ2 −1.30 −0.40 0.31 1.30 −0.02 0.95

δ3 −1.05 −0.56 0.21 −0.35 −0.44 0.45

δ4 −3.11 −2.76 −2.24 −1.46 −2.39 0.62

θ1 −0.58 1.45 −0.25 0.01 0.16 0.77

θ4 −2.06 −2.52 −1.00 −0.43 −1.50 0.83

α1 −0.23 1.17 0.56 1.65 0.79 0.70

α3 −0.39 0.60 −0.34 0.40 0.07 0.44

β1 −0.79 0.19 −0.61 −0.97 −0.55 0.44

β2 −1.06 −1.00 0.12 −1.31 −0.81 0.55

Bold highlighted t-values demonstrated significant relationship with pFWE < 0.05. Green-color highlighted rows indicate the patterns with significant task-related relationships. These

patterns demonstrated pFWE < 0.05 or a mean over models of p < 0.05 (i.e., mean |t| > 2.0) with t-value standard deviation of STD|t| < 0.5.

spectral/spatiospectral patterns (i.e., δ4 with inter-model t-
value −3.64 ± 1.00, β1 with t-value −3.35 ± 0.17, Table 1,
Figure 1A, pFWE < 0.05). The negative linear relationship
can be interpreted as the EEG pattern power decrease during
the frequent stimulus onset. Other three patterns (i.e., δ2
with t-value 2.46 ± 0.43, δ3 with t-value 2.34 ± 0.11, θ1 with
t-value 2.05 ± 0.33) demonstrated a significant positive linear
relationship between the EEG power fluctuations and target
stimulus (Table 1, Figure 1B, p < 0.05 and STD|t| < 0.5).
The positive linear relationship can be interpreted as the EEG
pattern power increase during the target stimulus onset. The
δ4 pattern fluctuations with t-value −2.39 ± 0.62 may also
be sensitive to distractor stimulus with similar negative linear
relationship (Table 1, Figure 1A, p < 0.05) as observed for the
frequent stimulus. Lower robustness of relationships between
EEG patterns and target or distractor stimuli might be caused by
lower stimulus amounts. Five of 10 analyzed stable EEG patterns

demonstrated potentially significant relationship to stimuli
vectors of the visual oddball task (Table 1, Figure 1).

Frequent-Related EEG-fMRI Networks
As the δ4 pattern demonstrated the highest level of relationship
between pattern fluctuations and frequent stimulus, the EEG-
fMRI F-maps also visualized the highest F-values and largest
amounts of supra-threshold voxels over all four investigated
EEG patterns (Table 2, Figure 2). The absolute spectral model
(ASM) provided the largest and the most significant EEG-
fMRI associations in comparison to other models (Table 2). Still,
statistical measures are very high and robust in all investigated
models for the δ4 pattern (Table 2).

Positive δ4 pattern demonstrated significant (pFWE < 0.05)
bilateral EEG-fMRI associations in cuneus, precuneus, insula,
basal ganglia, and in sensory-motor network, somatosensory
network and dorsal parts of the fonto-parietal control network
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FIGURE 1 | Task-related EEG spectral or spatiospectral patterns. (A) Frequent

related; (B) target related. Pattern shortcuts and indexes (e.g., δ4) are the

same as used in (19) for consistency purposes. All spectral patterns are

averages over electrodes of both absolute or relative spatiospectral patterns.

Patterns’ amplitudes (i.e., y-axis for spectral patterns and color-coding for

spatiospectral patterns) are in arbitrary units. For spatiospectral patterns, the

dark blue color is an approximate minimum value in the y-axis of the

corresponding spectral pattern. The dark red color is an approximate

maximum value in the y-axis of the corresponding spectral pattern.

(FPCN) (57–60) (Figure 2). Putamen, pallidum, thalamus,
and brainstem were involved within subcortical gray matter
structures (Figure 2). The dorsal parts of the FPCN overlap
with the dorsal attention network (DAN) (57) and may be no
discernable one from the other in a lower spatial resolution
(Figure 2). Spatial distribution in Figure 2B represents the
same result, which was presented in (19) with absolute

spatiospectral model (ASSM) and variable HRF modeling.
Here, we proposed that the ASM with variable HRF modeling
or relative spatiospectral model (RSSM) with variable HRF
modeling increased the statistical power and the robustness
(Table 2, Figure 2). All models demonstrated a positive HRF
peak faster than a peak timing of widely used canonical
HRF (Figure 2) and noticeable HRF trough (Figure 2) in the
insula, sensory-motor network, somatosensory network, dorsal
part of the FPCN and basal ganglia. Except this expected
response (i.e., red HRFs in Figure 2), every model detected
brain areas with reduced HRF peak followed by larger HRF
trough amplitude (i.e., the blue HRFs in Figure 2). Trough
peaks in both detected HRFs were again faster than an expected
trough timing for the canonical HRF (Figure 2). The HRF
with a reduced peak and an amplified trough was observed in
areas of superior frontal cortex and parietal cortex (Figure 2A),
which might belong to the frontal parts of the FPCN (57–60)
or default mode network (DMN) (57). Inferiorly, we noticed
significant (pFWE < 0.05) bilateral cluster spots in frontal
white matter areas (Figure 2A) where forceps minor, anterior
thalamic radiation and inferior fronto-occipital fasciculus might
pass [evaluated by a visual inspection of EEG-fMRI F-maps
overlaid with the JHU white-matter atlas (61–63) in the
MNI space].

As the β1 pattern demonstrated similar negative linear
relationship between its power fluctuation and the frequent
stimulus (Table 1), the EEG-fMRI F-maps demonstrated similar
locations of association spots (Figure 3) where maximal |F|
values were observed in the δ4 EEG-fMRI F-maps (Figure 2),
and similar HRF properties (Figure 3). The β1 EEG-fMRI
F-maps demonstrated a lower statistical robustness for all
models (Figure 3, Table 2) when compared to the δ4 F-
map robustness (Figure 2, Table 2). Again, the ASM provided
the most robust statistics at the inter-model comparison
level (Table 2). The relative spectral model (RSM) did not
demonstrate any significant EEG-fMRI associations, which
is analogical to the previous observation of no relative
β associations with the fixed canonical HRF at the same
dataset (18). Again, the RSSM was more robust than the
ASSM (Table 2). Overall, the lower robustness, the β1 EEG-
fMRI associations might appear more spatially specific. As
interpreted from the ASM EEG-fMRI β1 F-map (Figure 3).
From the basal ganglia, the bilateral putamen demonstrated
EEG-fMRI associations with normal HRF peak. From the
sensory-motor network, bilateral EEG-fMRI associations with
normal HRF peak were observed in primary sensoric, premotor,
somatosensory cortices, supramarginal gyrus, left lateralized
Brodmann area 7 (BA7), and premotor BA6. The reduced
HRF peak properties were observed for lateralized BA9, BA10,
BA46, and right hand primary motor cortex. The RSSM
emphasized somatosensory BA6 associations compared to the
ASM results (Figure 3). In regards to the mentioned spatial
specificity, it is important to note that one can get similar
spatial distribution for the δ4 EEG-fMRI F-map if stricter
threshold than p < 0.0001 is set in the Figure 2 visualization
where local spatial statistics exceeded the β1 pattern results
(Table 2).
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TABLE 2 | Spatial statistics of task-related EEG-fMRI F-maps.

Spectral Spatiospectral

Absolute Relative Absolute Relative

Frequent related δ4 Volume [mm3] 937,845 431,865 571,266 656,910

Mean F-value 14.08 9.96 10.65 13.05

Median F-Value 12.48 9.04 9.57 11.4

Max F-value 53.83 27.35 32.19 45.27

β1 Volume [mm3] 282,555 - 40,797 106,704

Mean F-value 8.37 - 7.4 7.61

Median F-Value 7.76 - 7.19 7.23

Max F-value 22.39 - 12.17 15.31

Target related δ2 Volume [mm3] 524,205 26,271 58,185 26,865

Mean F-value 10.14 7.34 7.68 7.35

Median F-Value 9.14 7.00 7.26 6.96

Max F-value 28.86 13.76 16.12 14.97

δ3 Volume [mm3] 658,557 15,525 2,646 17,118

Mean F-value 10.64 7.54 7.01 7.45

Median F-Value 9.45 7.05 6.81 6.98

Max F-value 36.09 16.5 9.57 14.03

θ1 Volume [mm3] 852,930 140,994 236,844 334,746

Mean F-value 12.44 7.94 8.92 9.02

Median F-Value 11.08 7.41 8.25 8.19

Max F-value 47.32 17.1 21.24 29.78

The values were estimated from all supra-thresholded voxels with p < 0.001 (i.e., |F| > 5.7). Bold highlighted numbers are the highest obtained values over investigated models per

metric. Values |F| > 8.1 met the condition p < 0.0001, values |F| > 12.1 met the condition pFWE <0.05.

Target-Related EEG-fMRI Neworks
Although δ2, δ3, and θ1 patterns demonstrated all the positive
relationship (p < 0.05 and STD|t| < 0.5) between EEG pattern
fluctuations and target stimulus, the EEG-fMRI data fusion
visualized the largest and most robust F-maps for the θ1 pattern
over all investigated models (Table 2, Figure 4). The most robust
statistics was yielded by ASM, followed by RSSM, ASSM, and
RSM (Table 2). All models emphasized left lateralized EEG-fMRI
associations in the sensory-motor network (corresponding to
the push on the right hand held button box and the target
push button response) with smaller amounts of the basal
ganglia associations, which were somewhat preserved for the
ASM and partly for the RSSM (Figure 4). The ASM preserved
significant EEG-fMRI associations in the dorsal parts of the
FPCN overlapping with DAN (Figure 4). These EEG-fMRI
associations presented a non-reduced HRF peak and a noticeable
HRF trough again with timing faster than classic canonical HRF
(Figure 4). The ASM still visualized a significant (pFWE < 0.05)
reduced HRF peak and an amplified HRF trough in areas of
the frontal parts of the FPCN, DMN and superior frontal white
matter but in smaller amounts than observed for the frequent-
related δ4 pattern (Figures 2, 4). The RSM, ASSM, and RSSM
revealed a comparably smaller amount of significant clusters in
locations as ASM (Figure 4).

The RSM, ASSM and RSSM did not demonstrate almost
any significant EEG-fMRI associations for δ2 and δ3 patterns
(Figures 5, 6, Table 2). The ASM for δ2 and δ3 patterns
showed similar spatial and HRF observation as for the θ1

ASM (Figures 4A, 5A, 6A). The similarity in EEG-fMRI
results between δ2 and δ3 ASMs was expected as both
use almost the same spectral filtering properties over all
leads (Figure 1).

Distractor-Related EEG-fMRI Networks
The evidence of a negative relationship between EEG power
fluctuations and distractor stimulus was only noticed for the δ4
pattern. The δ4 EEG-fMRI F-maps might then represent both
frequent-related or distractor-related associations (Figure 2).

DISCUSSION

Novelty and Neuroimaging Impact
Our results on visual oddball task data represent the systematic
objective comparison of spectral (i.e., ASM, RSM) and
spatiospectral (i.e., ASSM, RSSM) EEG-fMRI data fusion
methods with the variable HRF permitting the variable delay
between the immediate EEG following the BOLD signal changes.
The automatically quantified effect of the variable HRF in the
EEG-fMRI data fusion was remarkable. Both ASM and RSM
results gained from the same dataset with fixed canonical HRF
were far from reaching pFWE < 0.05 in EEG-fMRI statistical
parametric maps (18, 43). In contrast, large numbers of
voxels in δ4 and θ1 EEG-fMRI F-maps for all models met the
statistical significance condition pFWE < 0.05. While accounting
for the obtained EEG-fMRI map robustness and due to the
involvement of insula, sensory-motor cortex, somatosensory
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FIGURE 2 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the δ4 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were threholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

cortex, cuneus, precuneus, basal ganglia, and FPCN (also known
as central executive network) in the oddball/P300 tasks (64–
73), we recommend using variable HRF and absolute spectral
(ASM) or relative spatiospectral model (RSSM) for blind and

fully automatic visualization of task-related networks from
simultaneous EEG-fMRI data.

The current approach is fully automated, blind, and robust.
It overcomes EEG-fMRI fusion via event related potential (ERP,
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FIGURE 3 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the β1 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were threholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

e.g., the P300) analysis of amplitudes or latencies (22, 74–76) and
is without a need of supplying an input information about stimuli
timings. Manpower expertise and efforts are required for the
visual identification in the ERP analysis. In the proposed analysis
approach, quantitative EEG-fMRI task-related networks are
generated automatically. The potential neuroimaging impact of
this methodology is in a quantitative measurement of local data-
driven determinants of cognitive deficit in patients suffering with
epilepsy or other conditions with a cognitive impairment. The
specific outcome determinants may be subject/group-specific F-
valuemagnitudes or variable HRF amplitudes and latencies. High
variance in local HRF latencies has been recently reported in
patients with refractory focal epilepsy (40). This observation
underlines the importance of variable HRF models for future
clinical EEG-fMRI applications.

We demonstrated local EEG-fMRI response functions with
the reduced HRF peak and the amplified HRF trough with the
most robust location in the center of white matter bundles. These
bundles may convey information related to execution and goal-
directed tasks (77–79). Although the white matter BOLD signal
was considered as a nuisance signal that was usually regressed
out from the dataset during the preprocessing (80), several
studies have reported the white matter fMRI-BOLD signal and
disregarded its previous categorization as a blind spot in the
functional imaging (81–85). Our robust white matter EEG-fMRI
associations with the reduced HRF peak and the amplified HRF
trough corroborate this recent blind spot hypothesis.

Task-related δ4 and θ1 EEG-fMRI associations might be
considered controversial but we are convinced that they
represent the bands of major event-related fingerprints in the
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FIGURE 4 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the θ1 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were thresholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

simultaneously recorded EEG spectra. The postulated event-
related fingerprint hypothesis is described in more detail
in the following sub-chapter and supported by previous
ERP findings.

Event-Related Fingerprints in EEG Spectra
Hypothesis
The oddball paradigm elicits ERPs in EEG recordings (22,
67, 74–76, 86). The averaged ERP can be decomposed
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FIGURE 5 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the δ2 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were threholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

at several components of different frequency bands with
major contributions of δ oscillations to P300 wave and θ

oscillations to P300, P1, and N1 waves (87). Generally, δ

and θ oscillations, which underline the P300 wave (88–93),
reconfigure and enhance functional connectivity architecture

from the baseline resting-state condition to the P300 task
condition (73).

Temporal and spectral domains are fully complementary
spaces. Therefore, each single event-related change of each
oddball stimulus recorded in the EEG temporal domain
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FIGURE 6 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the δ3 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were threholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

fingerprints into the spectral domain such as power change in
the ERSPat. Then, the task-related networks can be visualized
while utilizing power spectral or spatiospectral models in the fully
automated approach that is fully blind to the external stimulus
timings. Our results demonstrated that the δ4 and θ1 ERSPats
might be key filtering properties, i.e., g(ω) in Equation 1 or g(c,ω)
in Equation 2, which appear to be in correspondence with the
spectral properties of the P300 ERP (87–93). Our observation
expands beyond the original hypothesis that was simply
monitoring changes in the EEG mean root square frequency
characterizing a signal roughness increase after stimuli (16, 47).
These global EEG spectra changes are tiny and hard to detect in
the event-related paradigm design. The ERSPat approach may
be beneficial for the assessment of the event-related changes
in EEG signal.

We have shortened the term, “event-related (spatio)spectral
patterns” to an acronym, “ERSPat” and not “ERSP” to avoid
confusion with the ERSP acronym. The “ERSP” acronym is used
in the field for the event-related spectral perturbation (94), which
are estimated from EEG segments that are apriori time-locked to
the stimulus on-sets. Thus, ERSP has a slightly different meaning
and interpretation than proposed ERSPats.

Comparison With Concurrent Brain
Network and Early Visual Components
Our results corroborate the previous findings of δ and θ

oscillations representing the major operating rhythms in P300
(87–93). Detected β oscillations underlying P300 were likely
related to directed attention and cognitive activity (95). The
earliest components in ERP with visual sensory input are positive
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and negative peaks reflecting P1 and N1 potentials and are
likely generated in lateral extrastriate occipital cortex, temporo-
parietal junction, and fusiform gyrus, respectively (96–98). These
components may be linked to visual perceptual processing,
especially visuospatial attention. Within the latency window of
P1-N1 complex (90–120ms for P1; and 150–190ms for N1), the
suggested superposition of α and θ evoked oscillations (99) was
corroborated with the oscillatory activity detected in α and θ

bands in the frequency decomposition of P300 response (87).
In our findings, the activity in the α1 band approached the
borderline of significance for the frequent stimulus and, thus, was
not associated with fMRI signals. We believe that the θ activity
was likely dominated by the P300-related oscillatory response
and the discernibility of the rhythms linked to a minute P1-N1
complex is rather challenging.

The detection and discrimination between stimuli initiate a
frontal lobe activity underlying attention-demanding task. The
frontal activation interplays with an activation in temporal-
parietal areas that promote memory operations. At rest,
DMN (hippocampal-cingular-temporal-parietal network) is
characterized by high activity. During attention-demanding
task DMN activity is suppressed. FPCN is often found to
be reciprocally anti-correlated with DMN, which is one of
the examples of the functional antagonism (100–103). The
involvement (δ4 and θ1 oscillation related) of the insula, the
central node of the salience-detection system, represents an
expected “switch” between the DMN and the FPCN (57–60).
Observed δ4 oscillation related EEG-fMRI associations in the
DMN regions are speculative. Predominantly, α oscillation
related DMN deactivation has been present within the oddball
task (18, 19, 60, 73) or resting-state (13). The involvement of
the posterior cingulate cortex has been proposed as a potential
regulatory modulator of the DMN in the task-negative state
(104, 105).

Comparison With Concurrent Methods
Applicable for EEG-fMRI Fusion
Temporal ICA of EEG data can isolate time-locked oscillations,
artifacts (e.g., EKG, eye-blinking, etc.) (106) and epileptogenic
spikes (if present) (25, 107, 108). The task specific activity
represents only a small portion of signal variance, such as
high frequency gamma band activity or ERPs. In addition,
the present approach isolates EEG responses over large
windows (e.g., 1.66 s in the present study), which discards
the time-locked activity present with conventional ERP
analysis. The time-locked activity preservation, e.g., with group
temporal ICA, may also be a promising approach for task
data (48).

Yet, considering the hypothesis that event-related changes
(i.e., the small portion of signal variance) fingerprints into several
distinct spectral patterns (87), then the temporal ICA appears
less well-suited at decomposing distinct EEG oscillations (i.e.,
decompose EEG signal from EEG signal) compared to alternative
approaches including (but not limited to) second-order blind
identification (109–111), approximate joint diagonalization of
cospectra (112, 113), and spectral ICA (114, 115).

The presented GLM EEG-fMRI fusion approach with variable
HRF significantly increased robustness of obtained results for all

investigated models compared to the same dataset observations
proposed with ASM/RSM with the fixed HRF (18). The
dominating fixed HRF GLM approach (5–9, 11–18, 21–26, 28–
33, 43) may be revisited to gain an increased robustness of the
results enabling variable HRF timings or utilizing an EEG-fMRI
deconvolution approach (36–38). Similarly, this approach can be
adopted for epileptogenic focus localization (25, 107, 108) due
to the fact that the deconvolution approach demonstrated that
delay timings between ictal EEG-fMRI associations does not fit
to canonical HRF timings and often the local BOLD signal even
precedes the EEG spike (41, 42).

The voxel-wise GLM approach is not the only data processing
strategy to compare and fuse the EEG and fMRI data. The
spatial ICA can rotate fMRI data into a space of spatially
independent large scale brain networks (116, 117) with a
representative component-specific time-course, which can be
associated with simultaneously acquired EEG signal transformed
into a comparable signal form (i.e., undersampled to fMRI
timings, power fluctuations, spike timings/delays, etc.) (27, 30).
Utilizing sliding windows over both EEG and fMRI-BOLD time-
courses can be applied in the estimation of dynamic functional
connectivity associations (34). A graph matrix between EEG and
fMRI measures may be build via correlation measures or other
similarity criteria (33). EEG-fMRI mixing parameters can be
estimated through joint analysis approaches such as the joint-
ICA (32, 118–120).

Over various existing EEG-fMRI data fusion strategies, we
have demonstrated a fully automated GLM approach for robust
lateralized task-related network visualization from local fMRI-
BOLD signals and spectrally distinct task-related EEG patterns.
In our approach, the variable HRF significantly improved
the final robustness as the modeled EEG-fMRI peak delay
did not overlap with the canonical HRF peak delay for the
most task-related spectral patterns. Therefore, we propose this
method for future clinical research applications in patients
with neurocognitive deficits. These outcomes may also derive
objective disease specific markers through local F-statistics or
HRF changes that can be potentially used for the diagnostics,
disease severity and treatment effect evaluations.

Limitations and Future Work
From the set of tested models, the ASM and RSSM were
the most promising and robust for the blind visualization of
task-related networks derived from simultaneous EEG-fMRI
data. Several similar spectral models (16, 17, 47) considered
Equation 10 instead of using Equation 1 for the EEG-fMRI
fusion formulation, sometimes not-using the function g(ω).
Comparison to the Equation 10 spectral model was not
addressed here. All investigated EEG patterns were narrow band-
pass filters and the effect of the non-linear ω2 modulation
were considered minimal. The ASM and RSSM have also
not been directly compared to the concurrent recent data-
driven EEG spectra decomposition approaches such as parallel
factor analysis (PARAFAC) (20, 30, 121), coupled matrix-tensor
factorization (40, 122), coupled tensor-tensor decomposition
(123), or source-space ICA (124, 125). A full comparison to the
most recent EEG-spectra fusion strategies should be addressed
in the future research. Yet the variability in HRF yielded more
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significant effects with all four models than in our previous
work (18).

b ∝
( ∫

ω2g(ω)p(ω) dω

)

∗ h (10)

The robust task-related EEG-fMRI F-maps might be an effect of
the active push-button response to the target stimuli. The maps’
robustness may decrease using target count or passive responses
(126) but such investigation was beyond the investigation of
the current dataset and the study scope. The F-maps can
be interpreted as data-driven functional connectivity maps
(127, 128) where the EEG pattern’s fluctuations emphasize
the common relationships with local variable HRFs. The
effective connectivity (127, 128) has not been quantified and
evaluated here. Dynamic causal modeling (DCM), mostly
between pre-selected regions of interest (ROIs), belongs to
one of the most actively developed procedures quantifying
the effective connectivity in fMRI or EEG data (129–132).
Recently, the Bayesian fusion and multimodal EEG-fMRI
DCM substantially improved the best effective connectivity
model evidence (35). Future test-retest at ROIs of robust
visual oddball data can provide important evidence of the
DCM applicability.

Although the ASM provided the most robust spatial results,
there are two weaknesses in the current ASM approach: (i) All
ASM filtering properties were derived as an spectral average
of the ASSM and RSSM patterns. Therefore, there would not
be any optimized spectral filtering property without prior EEG
ASSM and RSSM data-driven estimation via the spatiospectral
ICA. Still, it appears that simple band-pass filters might be
a sufficient approximation for the most promising δ4 and θ1
patterns. (ii) Thresholded ASM spatial F-maps appeared very
similar over different EEG patterns. That might be an effect of
a reported broadband component in the absolute EEG spectra
resulting in lower spatial specificity of the ASM. On the other
hand, high spatial specificity might be obtained with stricter
statistical threshold, e.g., pFWE < 0.01 or even more stricter,
which, however, would not be applicable for other fusion models.

Several EEG patterns demonstrated similar spatial EEG-fMRI
F-maps while variable HRF was modeled in each voxel of each
EEG band. It was not optimized and tested whether a weighted
(wi∈ <-1,1>) mixture of N EEG patterns (ui) would increase
a linear dependence (i.e., |t|-values) between the final EEG
pattern and the stimulus vector (x), see Equation 11. Then, a
general linear mixture EEG-fMRI fusion model with one global
but still variable HRF would appear as Equation 12. Similar
model analogy has been tested on hand-grip task data and
compared to a single band EEG pattern with variable HRF (39).
The results demonstrated more significant and specific blind
task-related network visualizations for single δ and θ bands
with band-specific variable HRFs. It is basically the same result
presented here on the visual oddball dataset. Considering a linear
mixture of EEG patterns with pattern specific HRFs maximizing
relationships to the task, the Equation 12 would change to
Equation 13. The optimization of the right side of the Equation
13 regarding the maximized linear dependence to the stimulus
vector is challenging. Such EEG-fMRI fusion model alterations

(i.e., Equations 12, 13) require a further investigation and testing
on visual oddball data within the future research.

w = argmax t

( N
∑

i=1

wiui, x

)

(11)

b ∝
N

∑

i=1

wiui ∗ h (12)

b ∝
N

∑

i=1

wiui ∗ hi (13)

Although temporal and spectral domains are considered fully
complementary, the phase information of the spectral domain in
all implemented EEG-fMRI fusion models was omitted here. It is
a common procedure in the field to only utilize the magnitude
information (5, 7, 10, 16, 17, 26). We suggest that the phase
coupling effect should not be neglected in the future research.
The phase coupling can separate different sources of similar
magnitude/power profiles and it has already been successfully
implemented in several EEG spectra blind source separation
techniques (112–114, 133–136) including the used spatiospectral
ICA (37, 137).

Our proposed experiments and the comparison of the fully
automated and blind methodological approaches were tested in
healthy subjects. The clinical impact needs to be determined
in future studies of the electrical neural and neurovascular
associations measured by simultaneous EEG-fMRI. The P300
ERP has been extensively investigated in studies of cognition
in healthy individuals and in a wide range of neurological or
psychiatric disorders. The lower amplitude and longer latency are
measures indicative of slowing of general cognitive ability due to
the disease condition (100, 138). We propose that local F-map
or HRF changes may discern patients with a specific cognitive
dysfunction and improve spatial specificity of dysfunction focus
as a benefit of the fMRI resolution in future applications.
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for the data preprocessing work.

REFERENCES

1. Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL. Monitoring the

patient’s EEG during echo planarMRI. Electroencephalogr Clin Neurophysiol.

(1993) 87:417–20. doi: 10.1016/0013-4694(93)90156-P

2. Huang-Hellinger FR, Breiter HC, McCormack G, Cohen MS, Kwong KK,

Sutton JP, et al. Simultaneous functional magnetic resonance imaging

and electrophysiological recording. Hum Brain Mapp. (1995) 3:13–

23. doi: 10.1002/hbm.460030103

3. Allen PJ, Josephs O, Turner R. A method for removing imaging artifact

from continuous EEG recorded during functional MRI. Neuroimage. (2000)

12:230–9. doi: 10.1006/nimg.2000.0599

4. Goldman RI, Stern JM, Engel J Jr, Cohen MS. Acquiring

simultaneous EEG and functional MRI. Clin Neurophysiol. (2000)

111:1974–80. doi: 10.1016/S1388-2457(00)00456-9

5. Goldman RI, Stern JM, Engel J Jr, Cohen MS. Simultaneous

EEG and fMRI of the alpha rhythm. Neuroreport. (2002)

13:2487–92. doi: 10.1097/00001756-200212200-00022

6. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F,

et al. Correlates of alpha rhythm in functional magnetic resonance

imaging and near infrared spectroscopy. Neuroimage. (2003) 20:145–

58. doi: 10.1016/S1053-8119(03)00344-6

7. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch

C, et al. EEG-correlated fMRI of human alpha activity. Neuroimage. (2003)

19:1463–76. doi: 10.1016/S1053-8119(03)00286-6

8. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, et al.

Electroencephalographic signatures of attentional and cognitive default

modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci

USA. (2003) 100:11053–8. doi: 10.1073/pnas.1831638100

9. Gonçalves SI, de Munck JC, Pouwels PJW, Schoonhoven R, Kuijer

JPA, Maurits NM, et al. Correlating the alpha rhythm to BOLD using

simultaneous EEG/fMRI: inter-subject variability. Neuroimage. (2006)

30:203–13. doi: 10.1016/j.neuroimage.2005.09.062

10. de Munck JC, Gonçalves SI, Mammoliti R, Heethaar RM, Lopes da

Silva FH. Interactions between different EEG frequency bands and

their effect on alpha–fMRI correlations. Neuroimage. (2009) 47:69–

76. doi: 10.1016/j.neuroimage.2009.04.029

11. Scheeringa R, Bastiaansen MCM, Petersson KM, Oostenveld R, Norris

DG, Hagoort P. Frontal theta EEG activity correlates negatively with the

default mode network in resting state. Int J Psychophysiol. (2008) 67:242–

51. doi: 10.1016/j.ijpsycho.2007.05.017

12. Scheeringa R, Petersson KM, Kleinschmidt A, Jensen O, Bastiaansen MCM.

EEG α power modulation of fMRI resting-state connectivity. Brain Connect.

(2012) 2:254–64. doi: 10.1089/brain.2012.0088
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M, et al. Generalized EEG-FMRI spectral and spatiospectral heuristic

models. In: 2016 IEEE 13th International Symposium on Biomedical

Imaging (ISBI). Prague (2016). p. 767–70. doi: 10.1109/ISBI.2016.74

93379

44. Polich J. Theoretical overview of P3a and P3b. In:Detection of Change: Event-

Related Potential and fMRI Findings, Polich J, editor. Boston, MA: Springer

US (2003). p. 83–98. doi: 10.1007/978-1-4615-0294-4_5

45. Tueting P, Sutton S, Zubin J. Quantitative evoked potential

correlates of the probability of events. Psychophysiology. (1970)

7:385–94. doi: 10.1111/j.1469-8986.1970.tb01763.x

46. Kok A. Event-related-potential (ERP) reflections of mental

resources: a review and synthesis. Biol Psychol. (1997) 45:19–

56. doi: 10.1016/S0301-0511(96)05221-0

47. Kilner JM, Mattout J, Henson R, Friston KJ. Hemodynamic

correlates of EEG: a heuristic. Neuroimage. (2005) 28:280–

6. doi: 10.1016/j.neuroimage.2005.06.008
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