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Introduction

Interest in metabolomics has been rising over the past 15 years or more, driven by instrumen-

tal and computational advances, complementarity to other “omics” approaches, and usefulness

for a variety of applications, including drug development, biomarker discovery, and basic

research on pathogen tropism and metabolic potential. This growing interest has been paral-

leled by increasing applications of metabolomics studies to host–pathogen systems. Signals

silently transmitted between host and pathogen via small molecules can be intercepted by

researchers using metabolomic techniques for identification and quantification. In this Pearl,

we will discuss basic metabolomics principles and examples of their application to the study of

microbial pathogenesis.

Metabolomics is the analysis of a complex biological sample to detect and quantify small

(approximately 50–1,500 Da), chemically diverse molecular species known as metabolites,

including biological molecules (output of core metabolism, secondary metabolites) and exter-

nally derived molecules (food additives, drugs, etc.) [1]. They are the outputs and intermedi-

ates of enzymatic reactions, as well as their regulators [2]. Metabolites can also regulate gene

expression by, for example, direct binding of transcription factors or through upstream signal-

ing pathways [3]. These multifactorial effects are why the metabolome is often considered clos-

est to phenotype [4]. Common metabolomics methods include mass spectrometry (MS)–or

nuclear magnetic resonance (NMR) spectroscopy–based approaches. NMR data acquisition is

based on the resonance behavior of certain atoms (e.g., 1H) in a magnetic field, which is modu-

lated by the surrounding chemical structure [5]. MS separates intact (MS1) or fragmented

(MS2, MS/MS, tandem MS) charged particles based on their mass-over-charge ratio (m/z).

The fragmentation pattern is characteristic of a molecule’s structure [6]. Studies can focus on

a list of metabolites (targeted) or on all detectable metabolites under a given analysis setup

(untargeted) [5]. Data processing and identification of NMR or MS signals are usually per-

formed using a combination of computational techniques, manual curation, and comparison

to authentic standards [1]. However, many of the detected metabolites will have no known

matches, making metabolite identification a major challenge in metabolomics [6]. In addition,

further comparison with authentic standards is necessary to confirm peak identifications.

Metabolomics in the context of host–pathogen interactions seeks to determine how specific

metabolic environments favor pathogen establishment and how metabolite composition varies

under infection conditions. For example, metabolomics can be applied to identify biological

processes taking place in the host in response to the pathogen or in the pathogen as it adapts

and proliferates in host environments. These insights into the conversation between host and
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pathogen will guide basic research on pathogenesis and provide a foundation for translational

studies.

Investigating host responses using metabolomics

Due to commonalities in core metabolic processes across systems, many core metabolites,

such as nucleotides, amino acids or carbohydrates, are structurally identical in host and patho-

gen and cannot be differentiated using metabolomics techniques [7]. However, because host

biomass usually vastly exceeds microbial biomass even under infection conditions, the major-

ity of detected metabolites are expected to be host derived; this assumption has been confirmed

by comparing metabolite contents in individual axenic host and pathogen cultures [8] and

using spike-in experiments [7].

At the simplest level, metabolomics can be used to study the interaction between pathogen

and specific host cell types in an in vitro culture system. For example, MS-based metabolomics

of Mycobacterium tuberculosis–infected macrophages identified decreases in amino acids,

nucleotides, and carbohydrates, reflecting possible consumption by the bacteria (Fig 1A) [7].

Likewise, NMR-based metabolomics of infected cell culture supernatant showed rerouting of

host cell metabolism by the intracellular bacterial pathogen Shigella flexneri to enable rapid

bacterial expansion. These experiments indicated that Shigella infection is associated with

increased acetate excretion and decreased lactate and pyruvate excretion. Application of these

NMR analyses to infection with various Shigella metabolic mutants determined that Shigella
metabolism of host pyruvate is the source of the acetate [8].

Molecular cartography approaches expand these studies to include spatial distribution of

metabolites and pathogens. Studies of endogenous metabolite distribution in uninfected sam-

ples describe the initial conditions available to the pathogen immediately upon infection in dif-

ferent tissue locations, while investigations of dynamic changes over the course of infection

provide information on the changing restrictions on pathogen growth. This approach enabled

the identification of preferential parasite distribution to the heart atria and ventricle base in

experimental Chagas disease, in association with differential endogenous cardiac metabolite

distribution between heart regions (Fig 1B) [9]. Likewise, a comprehensive study of the cystic

fibrosis lung showed differential distribution of specific sugars between lung regions (Fig 1C)

[10]. These methods provide testable hypotheses to explain preferential pathogen tropism.

Analyzing microbial signals using metabolomics

Comparison of host–pathogen systems with axenic pathogen cultures or database resources is

frequently used to identify pathogen-derived molecules [9–11], with the caveat that many spe-

cialized pathogen metabolites are not produced in rich culture conditions [11]. Some metabo-

lites are unique to the pathogen and can be unequivocally assigned a microbial origin. For

example, 4,5–9,10-diseco-3-hydroxy-5,9,17-tri-oxoandrosta-1(10),2-diene-4-oic acid (DSHA)

is not known to be produced by humans. Its presence in M. tuberculosis–infected macrophages

is due to bacterial degradation of cholesterol [7].

Additional tools include MS imaging, as in a study of the mushroom pathogen J. agarici-
damnosum, which detected the virulence factor jagaricin in infected mushroom tissues [12]

(Fig 1D). In contrast, physical separation of host and pathogen prior to metabolomic analysis

can enable direct detection of pathogen metabolites. Differential centrifugation followed by

MS showed CO2 fixation and catabolism of a range of host carbon sources by intracellular M.

tuberculosis [13]. Likewise, in vivo heavy water labeling approaches combined with Leishmania
isolation from mice showed the relative contribution of salvage and de novo synthesis path-

ways in pathogen lipid metabolism [14]. The development of new approaches such as coupled
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Fluorescence-Activated Cell Sorting (FACS)–MS [15] and single-cell metabolomics [16] will

advance analysis of trace pathogen metabolites by eliminating host metabolite contamination

(Table 1).

Integrative approaches to unravel host and pathogen metabolism

To address the challenge of assigning metabolites to host or pathogen, metabolomics can be

combined with other “omics” approaches to differentiate host and pathogen signals and gener-

ate comprehensive models of host–pathogen interactions. This is especially important for

genome-scale metabolic modeling, as was done in the study of M. tuberculosis–macrophage

interactions [7]. Applying MS tools and temporal sampling to host–pathogen systems fed

isotope-labeled nutrients adds dynamic information by enabling differentiation between

increased production and decreased consumption of a given metabolite. Such a “fluxomic”

approach showed, for example, increased central carbon metabolic flux and increased efflux

from the tricarboxylic acid (TCA) cycle to fatty acid biosynthesis during human cytomegalovi-

rus (HCMV) infection [17]. Analysis of labeling patterns also provides information on meta-

bolic network structure, rerouting of pathways (as shown in Shigella infection [8]), and on the

relative contribution of pathogen de novo versus salvage pathways, as was performed for fatty

acid metabolism in L. mexicana infection [14].

Different “omics” approaches also provide complementary information. For example, frac-

tionation of serum followed by MS analysis identified host serum lysophosphatidylcholine

16:0 (lysoPC [16:0]) as a repressor of Plasmodium falciparum asexual to sexual stage differenti-

ation. In vitro transcriptomic analyses enabled identification of downstream responses to

Fig 1. Representative host–microbe metabolomics studies. (A) Rerouting of host metabolism observed in vitro in M. tuberculosis–infected

macrophages [7]. (B) Trypanosoma cruzi tropism correlated with host metabolite distribution [9]. (C) Multi-omics approach to study host–pathogen

interactions in a diseased human lung [10]. (D) Identification of pathogen-derived molecules using MALDI MS imaging of mushroom tissue within a

Janthinobacterium agaricidamnosum–infected region [12]. MALDI, Matrix Assisted Laser Desorption Ionization; MS, mass spectrometry.

https://doi.org/10.1371/journal.ppat.1006926.g001
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lysoPC depletion, including induction of compensatory metabolic pathways and of regulators

of parasite differentiation, and metabolomic analysis confirmed lysoPC depletion in vivo dur-

ing infection [18]. Metabolomic–transcriptomic analyses also helped clarify the pathogenic

role of Saccharomyces cerevisiae in colitis by revealing lower expression of tight junction–asso-

ciated genes and increased host purine degradation associated with elevated colon damage in

S. cerevisiae–monocolonized mice [19]. Combining metabolomic and microbiome studies

provides further insight into microbiome dynamics and their role in infectious disease patho-

genesis. Microbiome, proteomic, and metabolomic studies of fecal samples from Salmonella
enterica serovar Typhimurium–infected mice showed concurrent proliferation of S. enterica,

mouse immune response induction, depletion of gut commensals, and increase in the sugars

they normally metabolize [20]. Garg et al. layered a 16S amplicon sequencing component into

their metabolomic model of a diseased lung. Overlaying the metabolite concentrations and

microbial species information placed the regional metabolic signaling responses in the context

of the varying microbial populations [10].

Outlook

Metabolomic analyses enable researchers to detect the molecular signals exchanged between

hosts and microbes. The interpretation of these silent conversations provides fundamental

insight into host–pathogen interactions, which can lead to translational applications. For

example, identification of divergent essential pathogen metabolic pathways yields new targets

for antimicrobial drug development [21]. New therapies can also be developed to target host

pathways critical for pathogen establishment [17]. Likewise, metabolomics is now a key player

Table 1. Complementary strengths of discussed metabolomics approaches.

Sample preparation approach Scale Strengths for host–pathogen

interaction research

Challenges Examples in

host–pathogen

research

Profiling of extracts without separation

of host and pathogen

Cultured cells,

tissue samples

Can be combined with heavy isotope

labeling and/or fluxomics for

metabolic network and dynamic

information

Identification of pathogen metabolites

if differing from host pathways

No spatial information

Limited ability to differentiate between host

and pathogen metabolism, especially for

common metabolic pathways

[7, 8]

Physical separation of host and

pathogen prior to metabolomic

analysis (differential centrifugation,

FACS, etc.)

Isolated cell

populations

Identification and quantification of

pathogen-derived metabolites

Can be combined with heavy isotope

labeling and/or fluxomics for

metabolic network and dynamic

information

Possibility of artefacts from processing

Limit of detection

No spatial information

[13, 14]

MS imaging mm2 to cm2 Fine-scale spatial information

Ability to identify pathogen-derived

metabolites by focusing on heavily

infected areas

Metabolite identification, unless implemented

on instruments with high mass resolution

and/or MS/MS capability

Usually no dynamic information

[12]

Ex vivo chemical cartography cm2 and above Large range of surface areas

Ability to connect pathogen tissue

tropism with metabolite profile

Pathogen is usually not separated from the

host tissue prior to analysis, which makes

identification of pathogen metabolites more

challenging

Usually no dynamic information

[9, 10]

Abbreviations: FACS, Fluorescence-Activated Cell Sorting; MS, mass spectrometry.

https://doi.org/10.1371/journal.ppat.1006926.t001
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in biomarker discovery. These tools can be used to facilitate diagnosis of diseases that only

present nonspecific clinical symptoms by, for example, assessing changes in bile acids and ste-

roids in febrile illness [22]. In cases in which only a subpopulation of infected individuals prog-

ress to severe disease, metabolite signals can be used for patient prognosis [9, 23]. Metabolites

are also increasingly being investigated as predictors of treatment success [24] or vaccine effi-

cacy [25]. As metabolomic techniques become more accessible, we expect that they will be

used to study a broader range of pathogenic systems as well as polymicrobial infections. New

methods to separate host and pathogen metabolites, increased focus on in vivo systems, and

collection of dynamic metabolomic information will lead to improved understanding of path-

ogenesis, with metabolomics bridging the divide between genotype and phenotype.
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