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Bone-related malignancies, such as osteosarcoma, Ewing’s sarcoma, multiple
myeloma, and cancer bone metastases have similar histological context, but they
are distinct in origin and biological behavior. We hypothesize that a distinct immune
infiltrative microenvironment exists in these four most common malignant bone-
associated tumors and can be used for tumor diagnosis and patient prognosis. After
sample cleaning, data integration, and batch effect removal, we used 22 publicly
available datasets to draw out the tumor immune microenvironment using the ssGSEA
algorithm. The diagnostic model was developed using the random forest. Further
statistical analysis of the immune microenvironment and clinical data of patients with
osteosarcoma and Ewing’s sarcoma was carried out. The results suggested significant
differences in the microenvironment of bone-related tumors, and the diagnostic
accuracy of the model was higher than 97%. Also, high infiltration of multiple immune
cells in Ewing’s sarcoma was suggestive of poor patient prognosis. Meanwhile,
increased infiltration of macrophages and B cells suggested a better prognosis for
patients with osteosarcoma, and effector memory CD8 T cells and type 2 T helper
cells correlated with patients’ chemotherapy responsiveness and tumor metastasis. Our
study revealed that the random forest diagnostic model based on immune infiltration can
accurately perform the differential diagnosis of bone-related malignancies. The immune
microenvironment of osteosarcoma and Ewing’s sarcoma has an important impact on
patient prognosis. Suppressing the highly inflammatory environment of Ewing’s sarcoma
and promoting macrophage and B cell infiltration may have good potential to be a novel
adjuvant treatment option for osteosarcoma and Ewing’s sarcoma.

Keywords: osteosarcoma, Ewing’s sarcoma, multiple myeloma, bone metastases, immune microenvironment,
ssGSEA, random forest
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INTRODUCTION

The tumor immune microenvironment shapes tumorigenesis
and development (Wu and Dai, 2017) and the diagnosis,
treatment, and prognosis of tumor patients (Chen and
Mellman, 2013; Clara et al., 2020). Tumor immune infiltration
characteristics can be used to classify tumors into immune
subtypes and potentially influence the choice of treatment
options for patients (Angell et al., 2020). Bone tissue plays a
major row in immune microenvironmental homeostasis, the
bone microenvironment is an ideal fertile soil for both primary
and secondary tumors to seed. Many malignant tumors occur in
the bone, including osteosarcoma (OS), Ewing’s sarcoma (EW),
and multiple myeloma (MM), with an incident rate of 4.0–5.4
per million, 1.5 per million (Ottaviani and Jaffe, 2009; Grünewald
et al., 2018), and 43 per million (Kyle et al., 2004). Meanwhile,
cancer metastasis remains the major cause of cancer-related
mortality, and multiple cancers predispose to bone metastasis;
approximately 70% of breast and prostate cancers are associated
with bone metastases (Macedo et al., 2017; Fornetti et al., 2018;
Hernandez et al., 2018).

In current clinical practice, pathology,
immunohistochemistry, and radiography are essential to
establish diagnosis and differential diagnosis for bone-related
malignant diseases, yet difficulties often accompany the
diagnostic process. By far, studies have indicated that there is a
high rate of misdiagnosis and missed diagnosis of OS based on
imaging and medical history, especially in elderly patients, with
an incident rate of 23–43% (Chen and Mellman, 2013; Wu and
Dai, 2017; Clara et al., 2020). In EW, Wurtz et al. reported that the
average delay in diagnosis of EW was about 10 months (Wurtz
et al., 1999), and Widhe et al. found a misdiagnosis rate of 80.77%
in EW (Wurtz et al., 1999; Widhe et al., 2007). It is also often
difficult to diagnose bone metastatic carcinoma with an unknown
primary focus, and confirmation of diagnosis usually requires a
combination of PET-CT and other tests (Guzik and Barañska,
2013). The immune infiltration characteristics of different tumors
may provide an important tool for the differential diagnosis
of tumors. Existing studies suggest that MM is a malignant
tumor with a predominance of B cells (Kastrinakis et al., 2000).
In contrast, cancer bone metastasis is usually associated with
extensive immunosuppression (Liu and Cao, 2016), EW presents
extensive inflammatory features (Durbin et al., 1998; Jordanov
et al., 2009; Huang et al., 2013), yet the main components of
OS are osteoblasts and osteoclasts, which originate mainly
from the myeloid cell system, and macrophages make up the
highest percentage of its immune microenvironment (Zhang
et al., 2020). Besides, the immune microenvironment of bone-
associated malignancies also influences the biological behavior of
the tumor and the patient’s prognosis. B cells, MDSC, and other
cells in the MM microenvironment can facilitate its migration
and proliferation by secreting a variety of cytokines (Kastrinakis
et al., 2000; Kumar et al., 2017); targeted intervention of
tumor microenvironment B cells has significant efficacy in
MM treatment (Shah et al., 2020). For OS, clinical studies have
shown that patients with increased infiltration of CD163-positive
macrophages have a better prognosis and that stimulation of

monocyte and macrophage infiltration in OS by mifamurtide
can prolong the disease-free survival of patients (Buddingh et al.,
2011; Gomez-Brouchet et al., 2017). In addition, the immune
microenvironment may also contribute to the cancer bone
metastasis process (Janiszewska et al., 2019). In breast cancer,
bone metastases can be significantly suppressed by restoring the
inherent IFN signaling pathway in tumor cells and activating
both the innate and acquired immune responses (Bidwell et al.,
2012). Therefore, the use of the immune microenvironment
in bone-associated tumors for diagnosis and prognosis has
significant clinical potential.

There are various methods to study the bone immune
microenvironment, such as single-cell sequencing, CYTOF,
and computer-assisted algorithms such as CIBERSORT and
single-sample gene set enrichment analysis (ssGSEA). Among
them, ssGSEA’s unique non-parametric algorithm enables us
to perform immuno-infiltration microenvironmental analysis
across batches of independent samples and makes full use of
the existing microarray and sequencing results. A large number
of bone-related tumor microarrays and sequencing datasets
have been published, including MM, OS, EW, and prostate
cancer bone metastases (BM), making the development of
immune infiltration-based differential diagnostic models very
cost-effective and with great potential for application. In addition,
the rapid development of machine learning algorithms has
provided a unique opportunity for molecular-based cancer
differential diagnosis. However, no studies to date have examined
whether immune microenvironment profiles can be used for
the differential diagnosis of bone-related tumors and used for
prognostic analysis across datasets.

We hypothesize that immune microenvironment profiles can
be used in the differential diagnosis of bone-associated tumors
and have a significant prognosis for patients with bone-associated
malignancies. Therefore, this study intends to use the ssGSEA
algorithm for the immune microenvironment profiling of four
tumors, combined with random forest machine learning methods
to develop a bone-related tumor differential diagnosis model.
On this basis, we will explore the influence of the immune
microenvironment on the prognosis of tumor patients. It will
provide new insight and theoretical basis for the diagnosis and
treatment of related tumors.

RESULTS

Immune Infiltration Profiling
After downloading the corresponding datasets and standardizing
the data, we removed the cross-platform batch effects via the
ComBat method in R. Thereafter, the immune enrichment scores
(ES score) of 28 immune cells in each of the 1,459 samples were
obtained using the ssGSEA algorithm. Unsupervised clustering
was performed using Euclidean distances (Figure 1A); the result
showed the 28 types of immune cells that are prevalent in all four
types of tumors, and similar enrichment profiles can be observed
within and across tumor types.

B cells are known to predominate in MM and can be
used as a reliable positive control for cross-tumor comparisons.
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FIGURE 1 | Immune infiltration signature across four diseases. (A) Heatmap of ES score across all samples. (B) Boxplot of ES score grouped by tumor type; asterisk
(*) denotes statistical significance examined by ANOVA test ****p < 0.0001. (C) Correlation matrix of ES score among the 28 cell types within each disease; red
represents positive correlation, and blue represents negative correlation. MM, multiple myeloma; EW, Ewing’s sarcoma; BM, prostate cancer bone metastases; OS,
osteosarcoma.

To clarify the differences in the infiltration of each immune
cell in different tumors, we used ANOVA for comparison
(Figure 1B). As predicted, the ES score of B cells was significantly
elevated in MM, but not in OS, EW, or BM. CD56dim
NK cells, macrophages, and Treg cells are mostly enriched
in OS. BM has relatively low infiltration of various T cells,
B cells, and plasmacytoid dendritic cells, which is consistent
with the prevailing knowledge of the suppressive immune
microenvironment in bone metastatic cancer.

Correlation analysis revealed the presence of distinct immune
cell correlation signatures for four different diseases (Figure 1C).
In OS and EW, there is a general positive correlation between
various immune cells. In MM, the immune cells showed weak
or no correlation. Meanwhile, the BM correlation matrix reveals
a more complex immune cell interaction network. Moreover,
the pair plot was drawn based on ES score in each sample,
and the result showed that MM can be clearly distinguished
from others based on activated B cell and/or immature B cell
enrichment score. Additionally, clear BM, OS, and EW clusters
can be observed (Figure 2 and Supplementary Figure 1).
These results suggest that the four diseases have significant
differences in immune microenvironmental infiltration and are
potentially susceptible to differential diagnosis by their immune
microenvironmental profiles.

Development of the Diagnostic Model
To develop a multicategorical differential diagnostic model, we
used a random forest algorithm to construct the model from
a training set of 998 samples. To initially check the feasibility
of constructing a classification model, MDS plots were drawn.
The result showed that most of the samples can be distinguished

base on the immune infiltration profile (Figure 3A). During
model tuning, at ntree = 150 and mtry = 5, the diagnostic
model had a stable performance with an out-of-bag (OOB) error
rate of 2.3% (Figures 3B,C). Continuing to increase the ntree
parameter had no significant effect on the diagnostic performance
of the model. Meanwhile, increasing the mtry parameter will
significantly reduce its accuracy. To further clarify the factors
that play a key role in the model, the variable importance
histogram was drawn (Figure 3D). Among all 28 immune cell
enrichment scores, monocyte, CD56dim NK cell, and activated B
cell contributed the most to model accuracy, whereas activated B
cell, immature B cell, and CD56dim NK cell contributed the most
to sample variance.

Validation of the Diagnostic Model
Internal validation and external validation were carried out,
respectively. Firstly, a total of 387 samples in the test dataset
were used for internal validation. The overall accuracy of the
model was 97.42% (95% CI, 95.3–98.75%, p < 2.2∗10−9),
the sensitivity was 0.828, 0.954, 1, and 0.992 on BM, EW,
MM, and OS, respectively, and the specificity was 1, 0.997,
0.996, and 0.970 on BM, EW, MM, and OS, respectively.
ROC curve showed that the RF model had a significantly
better performance compared with single ES score diagnostic
models developed with each of the five selected variables
(Figures 4A–D). Furthermore, an addition of 74 samples
was used for independent external validation (Figures 4E–
H). The overall accuracy was 98.65% (95% CI, 92.7–99.97%,
p < 2.2∗10−16), with a sensitivity of 1, 1, 0.941, and 1 and
a specificity of 1, 0.984, 1, and 1 on BM, EW, MM, and
OS, respectively. Table 1 shows the F1 score, precision, and
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FIGURE 2 | Pair plot of ES score of each cell type across four diseases. The floor area diagram represents ES score distribution across four diseases; the dot plot
represents the two-dimensional spatial distribution of each sample. Disease types are annotated by colors. MM, multiple myeloma; EW, Ewing’s sarcoma; BM,
prostate cancer bone metastases; OS, osteosarcoma.

recall values across all diseases in the training, testing, and
validation datasets.

Prognostic Value of Immune Infiltration
Score in OS and EW
Among all 22 datasets, four OS datasets and two EW datasets
contain clinical overall survival data. Cox regression analysis was
carried out per each dataset. The prognosis value of immune
infiltration scores differs across the four OS datasets, as well
as between the two EW datasets (Figure 5A). KM analysis
was conducted per each dataset using the median ES score
as the cutoff value. The result showed that among four OS
datasets, macrophage have a similar correlation with patients’
survival (Figures 5B1–B4), as well as activated B cells, yet only
activated B cells in dataset GSE39055 has statistical significance
(Figures 5C1–C4). A similar result was observed among the two
EW datasets (Figures 5D1,D2).

We further combined all datasets per disease and carried out
KM analysis using the median ES score of the full sample of
the four diseases as the cutoff value, which is more objective
and without human intervention. The result indicated that the
ES score of both macrophages and activated B cells is positively
correlated with OS patient’s survival, with a p-value of 0.009 and
0.032, respectively (Figures 5E,F). Also, among the 28 cell types,
17 of them were negatively correlated with EW patients’ survival
(Figure 5G and Supplementary Figure 2).

The OS dataset was accompanied by more detailed clinical
data. To further clarify the relationship between the immune
infiltration score and the clinical characteristics of the patients,
we performed t-tests for different subgroup conditions. The
results showed that there was a difference in CD4T cell infiltration
between male and female patients, but no significant difference
in the infiltration of other immune cells. In addition, using the
age of 18 years as a cutoff, patients were divided into younger
and older patients. t-test results showed that younger patients
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FIGURE 3 | Random forest diagnostic model. (A) MDS plot shows the three-dimensional distances between different disease. (B) Line plot shows the out-of-bag
error (OOB error) of the model with “mtry” parameter setting at 2, 5, and 10. (C) Line plot shows the stability of the model with different “tree” parameter settings.
(D) Histogram of the importance of each ES score in the model.

generally had lower immune infiltration in 26 of the 28 cell
types. Furthermore, when grouped according to tumor metastasis
status, the comparison revealed significantly lower ES score of

activated B cell, immature B cell, activated DC, effector memory
CD8 T cell, MDSC, natural killer T cell, neutrophil, and type 2 T
helper cell. Whereas the ES score of the plasmacytoid dendritic
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cell was significantly elevated. Finally, patients were divided into
Huvos grades I/II and III/IV by using tumor necrosis rate of 90%
as the cutoff; the results showed more infiltration of CD8 T cell,
mast cell, and type 2 T helper cell in patients with high Huvos
grade (Figure 6).

DISCUSSION

Molecular profiling and computer-assisted algorithms are of
great significance for fundamental and clinical cancer research
(Zhang et al., 2018) and have been widely used for cancer driver
gene analysis (Cava et al., 2018), cancer subtyping, and prognosis
(Cascione et al., 2013; Junker et al., 2013; Fennell et al., 2019).
The immune infiltration microenvironment differs significantly
between different malignant tumors, and even in the identical
tumor, different immune subtypes exist (Kim et al., 2019).
Therefore, the immune infiltration of tumors can potentially
be an effective marker for differential diagnosis and prognosis
of patients. This study focuses on bone-related malignancies,
including OS, EW, MM, and BM; the four diseases have similar
tissue conditions, but the origin and progression of these tumors
are drastically diverse. Precise differential diagnosis models may
be developed based on their immune infiltration profiles. In this
study, we obtained 28 immune infiltration scores for each sample
across 22 datasets, with batch effect correction and ssGSEA
immune infiltration profiling algorithm. The disease diagnosis
model was then constructed using Random forest, and evaluated
in both internal test datasets and external validation datasets. The
association between immune infiltration and patients’ clinical
characteristics was evaluated by t-test, ANOVA test, and survival
analysis. Our results suggested a significantly different immune
microenvironment among the four malignancies. In addition,
this project developed a diagnostic model with an overall
accuracy higher than 97%. On this basis, this study correlated
the immune microenvironment with patients’ clinical data and
prognosis and found that the highly inflammatory environment
in EW was strongly associated with poor prognosis. The effector
memory CD8 T cells and type 2 T helper cells in OS were
associated with tumor chemotherapy responsiveness and tumor
metastasis, while macrophages and activated B cells were closely
associated with patient prognosis.

In this study, the overall accuracy of the model based on
sample immune infiltration scores was higher than 97%. Studies
have shown that ssGSEA is one of the most reliable methods
for unsupervised single-sample gene enrichment analysis (Barbie
et al., 2009), and the distribution of gene expression ranks
inside and outside the gene set. The analysis does not require
the entire matrix as input data, and the results are robust
(Foroutan et al., 2018). In future applications, the microarray
and sequencing data from a single patient can be used for
diagnosis. It is an excellent complimentary test and computer-
aided diagnostic method.

The immune microenvironment varies significantly among
tumors, such as among the four bone-related malignancies
included in this study, MM is a malignancy characterized by
B cell bone marrow infiltration (Angell et al., 2020), and the
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FIGURE 4 | Internal and external validation of the diagnostic model. (A–D) ROC plot of the Random forest model compared with a single variable diagnostic model
per disease in the test dataset. (E–H) ROC plot of the random forest model compared with a single variable diagnostic model per disease in the validation dataset.
ROC, receiver operating characteristic; MM, multiple myeloma; EW, Ewing’s sarcoma; BM, prostate cancer bone metastases; OS, osteosarcoma; RF, the random
forest diagnostic model.

proportion and status of B cells in bone marrow aspirate samples
can be used to make an accurate diagnosis of the disease.
Bone metastatic carcinoma has an extensive immunosuppressive
microenvironment, and EW often presents with osteomyelitis-
like changes (Kyle et al., 2004; Ottaviani and Jaffe, 2009;
Grünewald et al., 2018), accompanied by high expression of
inflammatory factors such as IL-6 (Macedo et al., 2017). Finally,
OS originates from the bone marrow mesenchyme, and the
tumor potentially originates from the monocyte-macrophage
lineage (Han et al., 2019), whose immune microenvironment is
dominated by monocyte-macrophages and T cells. The results
of the present study also revealed that there was a significant
enrichment of B cells in MM, and the accurate diagnosis of MM
could be made by B cell ratio, with a specificity and sensitivity
of 1, which is consistent with the existing literature. Also, in the
bone metastatic lesions of prostate cancer, a significant reduction
in the infiltration of multiple immune cells, especially T cells, B
cells, and DC cells, was observed, consistent with the reported
suppressive immune microenvironment of bone metastatic
cancer (Fornetti et al., 2018). For OS, its macrophages were most
significantly enriched among the four tumors, accompanied by a
higher infiltration of T helper cells, mast cells, etc. Notably, unlike
the predominant B cells in MM and the significant enrichment of
macrophages and CD56dim natural killer cells in OS, the present
study did not identify a dominant cell subpopulation in the
EW microenvironment, which indicated that a single diagnostic
indicator of the immune microenvironment could not be used in
the diagnosis of EW.

Tumor immune infiltration is also closely related to
patient treatment and prognosis, and the evidence in the
literature indicates that increased immune infiltration of M2-
like macrophages, CD8 T, NK, mast cells, B cells, and type 2
T helper cells in the EW microenvironment are significantly
associated with poor prognosis in EW patients (Kastrinakis
et al., 2000; Guzik and Barañska, 2013; Hernandez et al., 2018).
Survival analysis of the individual and combined datasets in this
study also suggested this result, with increased scores in 17 of
28 immune infiltration scores all suggesting a poor prognosis.
Inflammation may play a key role in the progression of EW and is
potentially a factor that promotes cancer progression. In addition,
the literature indicates a close relationship between OS and
myeloid cells, and in vitro studies have shown that macrophages
present a procancerous role in the progression and evolution of
OS, while some clinical studies have shown that activation of
monocyte and macrophage infiltration in OS can significantly
inhibit OS progression (Liu and Cao, 2016). Adjuvant treatment
with macrophage activators such as mifamurtide can improve
the survival of patients with highly malignant OS (Jordanov
et al., 2009; Huang et al., 2013), while OS patients with high
expression of macrophage-related markers such as CD163 had
longer overall survival (Durbin et al., 1998). The results of the
present study suggest that survival analysis using the median
macrophage immune infiltration of each dataset as the cutoff
was statistically insignificant and the prognostic trends were
divergent. However, by using the median macrophage immune
infiltration from four tumors as the cutoff for survival analysis,
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FIGURE 5 | Impact of each immune infiltration score on patients with the four diseases. (A) Univariate COX analysis across four OS datasets and two EW datasets;
result shown in heatmap, yellow represents p < 0.05, violet represents p ≥ 0.05. (B1–B4) Association of macrophage ES score to OS-specific overall survival in
each of the four datasets. (C1–C4) Association of activated B cell ES score to OS-specific overall survival in each of the four datasets. (D1,D2) Association of
CD56dim natural killer cell ES score to EW-specific overall survival in each of the two datasets; median ES score of each cell type per dataset was applied as the
cutoff value. (E) Association of macrophage ES score to OS-specific overall survival across all samples of the four OS datasets. (F) Association of activated B cell ES
score to OS-specific overall survival across all samples of the four OS datasets. (G) Association of CD56dim natural killer cell ES score to EW-specific overall survival
across all samples of the two EW datasets; median ES score of each cell type across all samples in 22 datasets was applied as the cutoff value. OS, osteosarcoma;
EW, Ewing’s sarcoma.

it was found that patients with low macrophage infiltration
had a significantly shorter survival. This result also supports
the thesis that macrophages play a protective role in OS.
Notably, B cells also suggested significant prognostic value in
this study and showed statistically significant differences in
both the GSE30699 and combined datasets, suggesting that B
cells may have a key role in the prognosis and treatment of
OS. B cells are the main component of humoral immunity,
and previous research on B cells in OS has been extremely
rare. However, in recent years, there has been a spate of
breakthroughs in B cell research in oncology. Studies have shown
that B cell markers and pathological tertiary lymphoid structure
have significant prognostic value (Cabrita et al., 2020) and are
important predictors of immunotherapy efficacy (Helmink et al.,
2020). Petitprez et al. (2020) identified multiple unique tumor

immune subtypes in soft tissue sarcoma and confirmed that
B cell infiltration and tertiary lymphoid structures have the
strongest correlation with the prognosis of soft tissue sarcoma
patients. The present study reveals the prognostic role of B cells
in OS at the molecular immune microenvironment level, also
suggesting that further studies targeting B cells in OS have a good
scientific value. Furthermore, existing studies have shown that
age correlates with the level of immune infiltration in patients
with OS, and the results of the correlation analysis performed
on the integrated dataset in this study are also consistent with
this assertion, with younger patients being associated with less
immune infiltration (Wu et al., 2020). Moreover, in the present
study, effector memory CD8 T cells and type 2 T helper cells were
found to be associated with the efficacy of tumor chemotherapy
and the development of tumor metastasis. Type 2 T helper cells
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FIGURE 6 | Association of ES score with OS patients’ gender (A), age (B), metastasis status (C), and Huvos grade (D). Asterisk (*) denotes statistical significance
examined by Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; “ns” represents p > 0.05.

in OS are still rarely studied; they have long been considered
to play a key role in B cell growth, differentiation, and isotype
switching and may exert OS suppressive effects in concert with
B cells. As for CD8 cells, a study by our colleagues Li et al.
(2018) has shown that OS cells can interfere with CD8 T cell
infiltration by inhibiting CXCL12 expression and that increasing
CXCL12 expression significantly enhances CD8 T cell infiltration
and further enhances the eradication of early lung metastases.
Although the role of chemotherapy on CD8 T cells is still
controversial in academia (Wang et al., 2019; Deng et al., 2020),
current studies generally support the anti-tumor effect presented
by CD8 T cells. The mechanism by which CD8 T cells, as well
as type 2 T helper cells, affect the efficacy and prognosis of
chemotherapy in OS still requires further experimental studies.

In conclusion, this paper employed a large dataset
of the four tumors for the description of the immune
microenvironment of bone-associated tumors and the
construction of differential diagnostic models. For the first
time, the immune microenvironment differences between the
four tumors are analyzed in terms of molecular and molecular-
based immune infiltration. The potential of machine learning
for disease differential diagnosis was explored. The model
showed high accuracy, specificity, and sensitivity. It is a reliable
differential diagnosis model with good performance in both
the internal test dataset and the external validation dataset and
can be used as an auxiliary differential diagnostic tool based
on pathological biopsy to further improve the accuracy of
diagnosis. The results of the analysis of the integrated dataset are
also consistent with many existing published articles and show
good scientific validity, meanwhile suggesting that suppressing
the highly inflammatory environment of EW and promoting
macrophage and B cell infiltration in OS have good potential

to be exploited as a therapeutic strategy. The limitation of the
present study is that the current diagnostic model cannot be
used as a direct substitute for examinations such as clinical
pathology; further studies need to be conducted prospectively
by collecting samples of the four tumors to further validate
the accuracy of the model and advance the application in
clinical practice. Also, since the study used publicly available
datasets, their clinical data registry was incomplete and therefore
unable to compare the changes of immune infiltration in the
four tumors of different stages, the association between the
immune infiltrative microenvironment of tumors, and the
pathological and imaging manifestations of tumor samples also
still needs further investigation. Meanwhile, further analysis
of tumor-infiltrating cells and immune-related genes and
proteins in patients’ biopsy samples by gene expression analysis,
flow cytometry, and in situ immunohistochemistry is of great
importance for the diagnosis and prognosis of the four diseases
and the development of novel targeted therapies.

MATERIALS AND METHODS

Gene Expression Data Preprocessing
A total of 22 datasets were included in the study, including OS,
EW, BM, and MM samples, as shown in Supplementary Table 1.
Microarray gene expression data and clinical information of these
datasets were downloaded from the Gene Expression Omnibus
(GEO) database1 and the Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) database2. All samples

1http://www.ncbi.nlm.nih.gov/geo/
2https://ocg.cancer.gov/programs/target/
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were carefully recurated to avoid errata when using public
datasets (Nicolle et al., 2019). The cell line samples, purified
tumor cell samples, duplicated samples, samples of normal tissue,
and metastasis sample of sites other than bone were excluded
from the datasets, only primary bone tumor and cancer bone
metastasis samples were kept for further analysis.

Entrez IDs were used to represent genes across different
platforms. If multiple probe sets correspond to the same Entrez
ID, the one with the highest mean signal was selected as the
expression level of the corresponding gene (Miller et al., 2011).
The batch effect between different platforms as well as between
different datasets in the same platform were adjusted by the
ComBat method (Johnson et al., 2007). All expression data were
normalized using log2(expression + 1) per each dataset before
batch effect removal.

Immune Infiltration Profiling
The immune signature gene set for 28 immune cell types was
obtained from Bindea et al. (2013). The immune infiltration
profiling was conducted by the ssGSEA method in R package
GSVA (Hänzelmann et al., 2013). Briefly, the gene expression
values for a given sample were rank normalized, and an
enrichment score was produced using the empirical cumulative
distribution functions of the genes in the signature and the
remaining genes. This procedure is similar to GSEA, but the
list is ranked by absolute expression in each sample. In its final
step, within dataset normalization will be carried out routinely
to make the results more interpretable. However, since the
ssGSEA score normalization within the dataset will introduce
unnecessary bias, and study have shown ssGSEA score without
normalization is more robust to estimate pathway enrichment
(Foroutan et al., 2018), in the present study, ssGSEA scores of 28
immune cell types without normalization (ES score) were used
for further analysis.

Construction of the Diagnostic Model
The random forest method is applied to develop the diagnostic
model. Random forest is an ensemble learning method for
classification and regression tasks. It operates by selecting
random samples from a given dataset, then constructing
numerous decision trees during training and voting on each
prediction, and finally outputting the class of each tree. It is a
widely used classifier for multiple classification tasks and can
better cope with sample imbalance and model overfitting.

The datasets were divided into a discovery cohort for model
training and testing and an independent external validation
cohort for model validation. A total of 1,385 and 74 samples
were included in the discovery cohort and validation cohort,
respectively. The discovery cohort which contains 421 OS
samples, 538 MM samples, 317 EW samples, and 109 BM
samples were further divided into a training dataset (n = 998)
and a testing dataset (n = 387) in a 7:3 ratio, by stratified
sampling. The model was constructed on the training data using
randomForest package in R, with parameters of ntree varying
from 10 to 500, and mtry from 0 to 15, meanwhile using
parameter tuning function to find out the best combination. The
model was then tested for performance on the test dataset and

the external validation dataset. ROC curves were visualized using
the pROC package.

Statistical and Survival Analysis
Continuous variables were analyzed using Student’s t-tests or
ANOVA test using the “stats” package. Four OS datasets
(TARGET OS, GSE21257, GSE16091, GSE29055) and two EW
dataset (GSE17618, GSE63157) contain the clinical overall
survival data, and the prognostic analyses were performed
using Kaplan-Meier survival analysis and Cox univariate
analyses using the “survival” package. All analyses were carried
out using R v.3.6.4. p < 0.05 considered being statistically
significant. The result was visualized using the “pheatmap” and
“survminer” package.

CONCLUSION

The random forest diagnostic model based on immune
infiltration can accurately perform the differential diagnosis of
bone-related malignancies. The immune microenvironment of
osteosarcoma and Ewing’s sarcoma has an important impact
on patient prognosis. Suppressing the highly inflammatory
environment of Ewing’s sarcoma and promoting macrophage and
B cell infiltration in osteosarcoma has good potential to be a novel
adjuvant treatment option.
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