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The study of metal nanoparticles plays a central role in the emerging novel technologies employing optics
beyond the diffraction limit. Combining strong surface plasmon resonances, high intrinsic nonlinearities
and deeply subwavelength scales, arrays of metal nanoparticles offer a unique playground to develop novel
concepts for light manipulation at the nanoscale. Here we suggest a novel principle to control localized
optical energy in chains of nonlinear subwavelength metal nanoparticles based on the fundamental
nonlinear phenomenon of modulation instability. In particular, we demonstrate that modulation instability
can lead to the formation of long-lived standing and moving nonlinear localized modes of several distinct
types such as bright and dark solitons, oscillons, and domain walls. We analyze the properties of these
nonlinear localized modes and reveal different scenarios of their dynamics including transformation of one
type of mode to another. We believe this work paves a way towards the development of nonlinear
nanophotonics circuitry.

M
odulation instability (MI) is a nonlinearity-induced phenomenon that can be observed in many different
branches of physics1. Due to MI, small noise-driven amplitude and phase perturbations rapidly boost
under the influence of nonlinearity and diffraction (or dispersion). Consequently, broad optical beams

(or quasicontinuous wave pulses) decay into optical filaments (or pulse trains)2–5. MI also shows up in the pattern
formation from noise for partially spatially incoherent light beams propagating through noninstantaneous non-
linear media6. Finally, MI development in granular and liquid media is often associated with generation of
nonlinear localized states in the form of oscillons (or oscillating solitons) and domain walls7–9. Hopefully,
consideration of such intriguing phenomena in plasmonic systems such as metallic nanowires or nanoparticle
arrays may open novel rotes for light control at the deeply subwavelength structures.

Owing to the ability to squeeze light into a nanometer size regime, surface plasmons supported by nobel
metal nanostructures are exploited in a huge number of applications ranging from photonic nanocircuitry to
biological sensors10,11. However, another remarkable property of nobel metals - extremely high intrinsic
nonlinearity - remained obscure for a long time because of their natural optical opaqueness. Following in
the footsteps of ground-breaking works on a cubic susceptibility of metal colloids12–14, recent advances in the
development of high-quality nanostructured systems manifest how to engineer the field penetration inside the
nanostructure to fully use its nonlinear response15. In this context, one may mention optical limiting and self-
phase modulation in arrays of structured nanoparticles16, second and third harmonic generation in nanos-
tructured metal films and nanoantennas17–21, subwavelength solitons in metaldielectric multilayers22–24 and
arrays of metal nanowires25, plasmonic kinks and oscillons in nanoparticle arrays26,27, ultrafast all-optical
switching in metallic photonic crystals28 as well as metal-semiconductor and metal-dielectric nanoanten-
nas29–31, generation of THz radiation from silver nanodimers32,33, and a nanoradar with periodically rotating
scattering pattern34.

Here we present a comprehensive study of MI in subwavelength nonlinear systems for a chain of optically
driven metallic nanoparticles with a Kerr-like nonlinear response. We demonstrate the existence of novel types of
nonlinear effects in such systems, including generation of domain walls (or switching waves) as well as long-lived
standing and moving nonlinear localized modes in the form of bright and dark oscillons and solitons. We reveal
that a wide variety of scenarios of MI development allows for the mode transformation from one type to another,
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changing the propagation direction and a velocity of drifting oscil-
lons, solitons, and domain walls as well as the formation of stable
domain walls connecting not only different stationary states but also
the states with different types of nonlinear dynamics.

Results
Model and governing equations. We consider a chain of identical
spherical nanoparticles placed close to each other and embedded into
a SiO2 host medium with a permittivity eh 5 2.15 (see Fig. 1). We
assume that the particle radius and the center-to-center spacing are
a 5 10 nm and d 5 30 nm, respectively. Ratio a/d satisfies the
condition a/d # 1/3, so that we can employ the point dipole
approximation35. Assuming the nanoparticles made of silver with a
nonlinear Kerr-like response, we take the dielectric constant in the

form eNL
Ag ~eL

Agzx 3ð Þ E inð Þ
n

�� ��2, where the linear part is given by the
Drude formula, eL

Ag~e?{v2
p

.
v v{inð Þ½ �, with e‘ 5 4.96, �hvp5

9.54 eV, and �hn5 0.055 eV36, and E inð Þ
n is the local field inside the nth

particle. In general, the value of the cubic susceptibility for metallic
nanoparticles dependents on a number of factors, including the type
of metal, particle size, external pulse duration and frequency, and
others37. However, the analytical quantum model derived in Refs.38,39

and confirmed with numerical simulations40 and experimental
data12,14 showed that silver nanoparticles with radius 10 nm and
driven at the frequency close to the frequency of the surface
plasmon resonance possess a remarkably high and purely real

cubic susceptibility x 3ð Þ^3|10{9 esu. Note fused silica possesses
negligibly weak cubic nonlinearity (, 10215 esu41) as well as a good
enough optical transparency42 to maintain the strong laser powers
needed for the observation of MI.

We study a nanoparticle chain driven by an arbitrary optical field
with the frequency close to the frequency of the surface plasmon

resonance of an individual particle, and analyze the dynamical response
of the particle polarizations, pn, through the model proposed in our
previous article27, which yields the following system of coupled equa-
tions for the slowly varying amplitudes of the particle dipole moments,

{i
dP\

n

dt
z {iczVz Pnj j2
� �

P\
n z

X
m=n

G\
n,mP\

m~E\
n ,

{i
dPE

n

dt
z {iczVz Pnj j2
� �

PE
nz

X
m=n

GE
n,mPE

m~EE
n,

ð1Þ

where

G\
n,m~

g

2
k0dð Þ2{ ik0d

n{mj j{
1

n{mj j2
� �

e{ik0d n{mj j

n{mj j ,

GE
n,m~g

ik0d
n{mj jz

1

n{mj j2
� �

e{ik0d n{mj j

n{mj j ,

P\,E
n and E\,E

n are dimensionless slowly varying amplitudes of the
particle dipole moments and external electric field, respectively, the
indices ‘H’ and ‘I’ stand for the transverse and longitudinal compo-
nents with respect to the chain axis, g defines strength of dipole-dipole

interaction, Pnj j2~ P\
n

�� ��2z PE
n

�� ��2 is a nonlinear term appeared after

expressing E inð Þ
n via pn, c describes thermal and radiation losses of

particles, k0~v0
�

c
ffiffiffiffi
eh
p

is the wavenumber of light in a host matrix,
V 5 (v 2 v0)/v0, and t 5 v0t (see Methods). We notice that this
model involves all particle interactions through the dipole fields, and it
can be applied to both finite and infinite chains.

To begin with, we excite the infinite chain by an electric field with
one of the two polarizations: (i) En~ E\

0 exp {iQdnð Þ,0
� �

and (ii)
En~ 0,EE

0 exp {iQdnð Þ
	 


, where Q is the wavenumber along the

Figure 1 | Schematic of a chain of metallic nanoparticles illuminated by a laser beam and profiles of nonlinear localized states. (a) Arrows indicate

particle polarizations for a bright soliton/oscillon. Panels (b), (c) and (d) depict profiles of the polarizations for a typical soliton/oscillon configuration of

bright and dark forms as well as domain wall, respectively.
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chain axis. We suppose that Q may vary in a wide range, 0 # Qd # p.
In practice 0 , Q , k0 can be realized through tilted light incidence
on the chain, while Q . k0 can be provided by means of a scheme
based on, e.g., total internal reflection, as it was suggested recently for
investigation of localized plasmon modes in metallic nanoparticle
chains43. The simplest case of homogenous excitation, i.e. Q 5 0,
has been considered earlier27, and we observed periodic pattern
formation and generation of oscillons. Below we will show that
adjustment of Q opens a wide variety of novel scenarios of MI
development.

Spatially modulated external field allows us to treat particle dipole
moments as P\,E

n ~P\,E
0 exp {iQdnð Þ. In this case, the system sta-

tionary states can be written as follows

{iczVz
X?
j~1

A\,E
j z P\,E

0

��� ���2
 !

P\,E
0 ~E\,E

0 , ð2Þ

where

A\
j ~g

k0dð Þ2

j
{

ik0d
j2

{
1
j3

� �
cos Qdjð Þexp {ik0djð Þ,

and

AE
j ~2g

ik0d
j2

z
1
j3

� �
cos Qdjð Þexp {ik0djð Þ:

A transition from G\,E
n,m to A\,E

j has been made via the replacement jn
2 mj 5 j and taking into account symmetry structure of the series.
This equation has multiple solutions for Vv{Re

P?
j~1 A\,E

j {ffiffiffi
3
p

c{Im
P?

j~1 A\,E
j

��� ��� leading to a bistable regime.

Linear stability analysis and numerical simulations of modulation
instability. Next, we analyze linear stability of the stationary states
(2) with respect to weak spatiotemporal perturbations, and derive the
expression for the instability growth rate (see Methods),

l\,E~~c\,Ez P\,E
0

��� ���4{ 2 P\,E
0

��� ���2zVzRe
X?
j~1

B\,E
j

 !2( )1=2

,

where ~c\,E~Im
P?

j~1 B\,E
j {c, B\,E

j ~A\,E
j cos Kdjð Þ. Thus, the

initial nonlinear modulated states (2) become unstable provided
lH,jj . 0. The stability depends on the external field parameters

E\,E
0 , V, and Q as well as on the modulation wavenumber of

perturbation, K.
Consider the case of the transversal excitation in detail. Figure 2(a)

shows regions of MI in the plane (V, E\
0

�� ��2) obtained from the
condition lH 5 0 at any K and Qd 5 0.7 that corresponds to grazing
incidence of light at the angle 2.50 relative to the chain axis.
Importantly, external field modulation results in the remarkable fact
that the MI development can be reached with respect to both fast
(with K , k0) and slow (with K . k0) system eigenmodes in contrast
to the case of homogeneous excitation, for which MI generation is
achievable with respect to slow eigenmodes only27. The first possibil-
ity opens a promising perspective for dynamical engineering of the
chain scattering pattern similar to nanoradar34; whereas the second
provides the straightforward rote for manipulation of strongly loca-
lized nonlinear states. In this work we focus on the latter approach.

Contour maps of lH in the planes (Kd, E\
0

�� ��2) and (Qd, Kd) are
presented in Figs. 2(b) and 2(c), respectively. As follows from these
figures, one can generate MI within either slow or fast eigenmodes by
proper adjustment of E\

0

�� ��2 and Q, enabling dynamical transforma-
tion of free propagating radiation into a nonlinear localized form and
vice versa, a localized external excitation into free propagating radi-
ation. Theses possibilities correspond to the zones with K . k0, Q ,

k0 and K , k0, Q . k0 in Fig. 2(c), respectively.

In order to examine the spatiotemporal evolution of the chain
beyond the instability point, we perform numerical simulations of
Eq. (1) for a finite chain (with 100 nanoparticles) at zero initial
conditions, when the external field increases slowly approaching to
the saturation level E\

0 , which is reached at t < 100. We selected
E\

0

�� ��2~10{5, V 5 20.03 and Q 5 0.7 to undergo MI out of the
bistability zone and with respect to slow eigenmodes only (see
Figs. 2(a), (b), and (c)). Edge effects acted as small perturbations
needed for MI onset.

The result is presented in Fig. 3, where we observe that instability
provokes formation of a train of bright oscillons. Oscillons appear at

Figure 2 | Bifurcation diagram and contour maps of the instability
growth rate at the transversal excitation. (a) Bifurcation diagram on the

parameter plane of V 5 (v 2 v0)/v0 and E\
0

�� ��2 and Qd 5 0.7, with the

regions of bistability (blue) and modulation instability (green and red).

Red and green zones correspond to MI development relative to slow (with

K . k0) and fast (with K , k0) eigenmodes of the chain, respectively. The

purple star denotes intensity E\
0

�� ��2~10{5 (which is also marked by the

horizontal dashed line in (b)) and frequency V 5 20.03 used for drawing

contour maps of lH on the planes (b) (Kd, E\
0

�� ��2) and (c) (Kd, Qd) as well

as in numerical simulations of Eq. (1) shown in Fig. 3. Inset in (b)

demonstrates dependence of the polarization P\
0

�� ��2 on E\
0

�� ��2 for V 5

20.03. Red and green dots indicate red and green zones of modulation

instability from (a), respectively. Inset in (c) shows the enlarged contour

map of lH in the vicinity of Qd 5 0.7.
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the right side of the chain and move with the speed , 0.013c in the
opposite direction with respect to the direction of light propagation,
as shown in Fig. 1. Having reached the left side of the chain, they
transform into free propagating radiation, and a small part of energy
is reflected back in the chain, eventually decaying. We notice this type
of oscillons is generated in a two-pick form, and the first oscillon
turned into an oscillon and a soliton, which later transformed back
into an oscillon. Remarkably, all bright oscillons are localized on 7
particles, and their width is about 210 nm.

Next, we conduct the similar analysis for the case of the longit-
udinal excitation. Figures 4(a) to (c) show the corresponding bifurca-
tion diagram and contour maps. In contrast to the transversal case,
the MI growth of both localized (with Q . k0) and free propagating
(with Q , k0) excitations can be reached within slow eigenmodes
only. Since the instability growth rate takes the maximum values for
modes with Kd , p, one may expect that the subsequent evolution of
the unstable system will lead to formation of a high-order mode.

Indeed, numerical simulations confirm appearance of small-
amplitude high-order modulations, but accompanied by an array
of standing dark solitons, as shown in Figs. 5 (a) and (b).

Surprisingly, despite long-range interactions, all these solitons are
localized only on 1 particle. Nevertheless, nonlocality of particle
interaction is manifested in a soliton-to-soliton distance which varies
between 8 and 12 particles in the middle of the chain and decreases to
2–6 nanoparticles close to the edges.

In addition to dark solitons, we observed generation of standing
dark oscillons, as shown in Figs. 6(a) and (b). They also are localized
on 1 particle, but with a flat background. Although MI growth leads
to formation of dark oscillons along all the chain, only 3 of them
eventually remain stable; while others decay. Therefore, one may
conclude that in general standing dark oscillons are less stable than
standing dark solitons.

Figures 6 (c) and (d) represent a train of dark oscillons. Similar to
drifting bright oscillons, drifting dark oscillons are generated at the
right edge of the chain and move with the starting velocity 0.014c,

Figure 3 | Train of bright oscillons. Dynamics of the particle polarizations

P\
n

�� ��2 obtained by numerical simulations of Eq. (1) at V 5 20.03,

E\
0

�� ��2~10{5, and Qd 5 0.7, when the light beam propagating at the angle

2.50 with respect to the chain axis provokes generation of a train of bright

oscillons. Panel (a) shows a snapshot of P\
n

�� ��2 at t 5 5000. Panels (b) and

(c) represent 2D and 3D views of the spatiotemporal dynamics of P\
n

�� ��2,

respectively. See also Supplementary Material for the associated time

animations of particle polarizations.

Figure 4 | Bifurcation diagram and contour maps of the instability
growth rate at the longitudinal excitation. (a) Bifurcation diagram at Qd

5 0.7. The purple star denotes intensity EE
0

��� ���2~5|10{4 (which is also

marked by the horizontal dashed line in (b)) and frequency V 5 20.06

used for drawing contour maps of l | | on the planes (b) (Kd, EE
0

��� ���2) and

(c) (Kd, Qd) as well as in numerical simulations of Eq. (1) shown in Figs. 5

(a) and (b). Inset demonstrates dependence of the polarization PE
0

��� ���2 on

EE
0

��� ���2 for V 5 20.06. Red dots indicate the area of MI.
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slowly decelerating. Then they collapse or stay (not shown) on the
way, not reaching the other side. Interestingly, this kind of oscillons
combines a narrow width about 3 particles (apart from the first
oscillon whose width varies from 11 to 3 particles) with quite a long
tale consisting 11 particles.

The important property of oscillons is the ability to change the
movement direction. That case is presented in Figs. 6 (e) and (f),
where the walking oscillon in a high-contrast background is slow
drifting along the chain, switching the movement direction from
time to time. Remarkably, the absolute value of the velocity remains
constant and equals to 0.0037c. While this simulation shows only the
oscillon which walks around the middle of the chain, other scenarios
of MI development with close parameters allow arrest of the walking
oscillon by the edge and subsequent transformation into the surface
localized state (not shown).

Domain walls. Finally, we analyze domain walls (or switching
waves). In general there are two mechanisms leading to domain
wall formation: bistability and modulation instability. Bistability-
induced domain walls also often referred as kinks connect two
different stable states of particle polarizations. MI makes twofold

Figure 5 | Dark solitons observed in the longitudinally excited chain at V

5 20.06, EE
0

��� ���2~5|10{4, Qd 5 0.7. Panel (a) shows a snapshot of the

particle polarizations PE
n

�� ��2 at t 5 5000; while panel (b) represents a 2D

view of the spatiotemporal dynamics of PE
n

�� ��2. See also Supplementary

Material for the associated time animation.

Figure 6 | Examples of nonlinear localized states. Panels (a,b) indicate generation of dark oscillons in the longitudinally excited chain at V 5 20.05,

EE
0

��� ���2~4:5|10{5, Qd 5 2. Panels (c,d) show a train of dark oscillons in the transversally excited chain at V 5 20.06, E\
0

�� ��2~1:2|10{4, Qd 5 0.7.

Panels (e,f) represent the case of the oscillon with a changeable direction of movement but the constant absolute value of the speed , 0.0037c in the

transversally excited chain atV5 20.0475, E\
0

�� ��2~7|10{5, Qd 5 p, respectively. Panels (g,h) demonstrate formation of the domain wall between parts

of the chain with regular and chaotic-like dynamics. The horizontal dashed line in (h) marks a time moment for the frozen frame shown in (g). See also

Supplementary Material for the associated time animations.

www.nature.com/scientificreports
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impact with respect to domain walls. When MI occupies at least one
of the bistability branches, domain walls generation typically cannot
be realized. For instance, this case corresponds to the bifurcation
diagrams shown in Figs. 2 (a) and 4 (a). On the other hand, MI is
able to generate domain walls beyond the bistability regime on its
own. Figures 6 (g) and (h) demonstrate an example of such a domain
wall which appeared between the states with high-order
modulations, accompanied by small amplitude beatings, and a
chaotic-like behavior. Having appeared at the left edge, such a
switching wave drifts with a variable velocity until stay close to the
other side. Interestingly, domain wall stopping results in changing
chaotic-like dynamics with regular beatings.

In our previous work27 we showed that in the case of homogenous
transversal excitation MI occupies only a small region of intensities
close to the upper threshold of the bistability area, making possible
kink generation. For that case we also observed kinks with zero
velocity and one-way movement26. Here we extend our analysis fur-
ther and reveal switching the kink velocity from negative to positive
values. The velocity sign is defined positive if the motion of the
switching wave leads to the expansion of the region occupied by
the upper branch of bistability; otherwise, the velocity is negative.

To observe kink dynamics, we perform numerical simulations of
Eq. (1) for a finite array (with 200 nanoparticles) at initial conditions
corresponding to different branches of the homogeneous stationary
solution (2) over different parts of the array. Light intensity is sup-
posed to be a step-like function of time, as shown in Fig. 7 (a).
Constant E\

0 results in the constant kink velocity, v. That is why a
step-like time dependency of E\

0 allows us to control v.
The results are presented in Fig. 7 (b) where the kink velocity is

switched from negative to positive values, passing through zero. A
rigorous analysis manifests that there is no smooth transition
between kinks with negative, positive, and zero velocities, as shown
in Fig. 7 (c). Moreover, these states possess different structures: kinks
with positive and zero velocities demonstrate zero width; while the
width of kinks with negative velocity extends for 12 particles. We also
notice that negative-velocity kinks exist for the same intensities as

stationary (zero-velocity) kinks do. Therefore, to provoke domain
wall moving in the negative direction one should force the dipole
next to the domain wall into the lower branch of the bistability band
until the domain wall starts moving. An opposite transition can be
realized through only variation in the intensity, as shown in Fig. 7 (c).

Discussion
The above examples demonstrate how modulation instability and
bistability can be used to manipulate light in arrays of nonlinear plas-
monic nanoparticles coupled through all dipole fields. In particular,
we revealed the generation of long-lived standing and moving non-
linear localized modes in the form of plasmonic oscillons and soli-
tons of both bright and dark types as well as plasmonic domain walls.

Notably, formation of solitons/oscillons can be predominantly
governed by either short-range or combination of short-range and
long-range interactions. This is best illustrated in localization ran-
ging from 1 to 11 nanoparticles that answers the dimensional scales
from 0.05l to 0.8l, because V = 1 corresponds to the radiation
wavelength l , 400 nm.

Long-range interaction also features in kink dynamics. Addressing
to a similar model applied to investigation of kinks in arrays of split-
ring resonators coupled only through near field44,45, we find that
long-range interaction splits branches with positive and zero velo-

cities for v E\
0

�� ��2	 

and extends the range of intensities for stationary

kinks to the lower threshold of the bistability area. In addition, a
near-field model does not distinguish the structure of the kinks with
positive and negative velocities; while our model taking into account
coupling via all dipole fields indicates a dramatic change in kink
width when the velocity sign is changed (see above).

It may be of interest to compare MI-induced plasmon solitons/
oscillons in nanoparticle chains with plasmon solitons supported by
metal-dielectric multilayered structures22 and arrays of metallic
nanowires25. All these nonlinear localized states demonstrate subwa-
velength localization. However, solitons in 1D multilayers and 2D
nanowire lattices extend for 0.3l and 0.6l, respectively; whereas the
width of solitons/oscillons in nanoparticle chains may reach 0.05l.

Figure 7 | Control over the kink velocity. Panel (a) demonstrates stimuli vs. time resulting in spatiotemporal dynamics of a kink (switching wave), shown

in (b) (V 5 20.1, Q 5 0). Panel (c) indicates the normalized kink velocity vs. the intensity of the applied field. A blue curve does not reach the upper

threshold of the bistability area because kinks do not exist here owing to MI. Insets show kink structures with positive and negative velocities. See also

Supplementary Material for the associated time animation.
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Besides, MI may create dark solitons/oscillons which were never
studied before for plasmonic systems. Thus, MI in arrays of plasmo-
nic nanoparticles opens a perspective way for generation of extre-
mely squeezed nonlinear localized states unreachable with other
nonlinear plasmonic structures.

It is also insightful to estimate the maximal pulse duration, because

the saturation intensity of the external field E\,E
0

��� ���2*10{4{10{5,

corresponded to the intensity of , 1 – 10 MW/cm2, can lead to
thermal damage. Using the value of the ablation threshold of
3.96 J/cm2 obtained for silver particles in a SiO2 host matrix in the
picosecond regime of illumination46 and taking into account the
amplification of the electric field inside the Ag nanoparticle due to
surface plasmon resonance, we evaluate the maximal pulse duration
as 5 ns for the intensity 0.75 MW/cm2 ( E\

0

�� ��2~10{5), required for
generation of a train of bright oscillons. Since a typical interval
between formation of oscillons is about 150 fs (Dt^700), one may
observe generation of , 33000 oscillons before a chain will be
destroyed. Figures 5 to 7 show similar characteristic times for other
nonlinear localized states and domain walls. Therefore, all predicted
phenomena can be readily observed in experiment.

Our findings provide a starting platform for further experimental
studies of the nonlinearity-induced instabilities and associated phe-
nomena in plasmonic nanostructures which could have important
implications for active nanophotonic devices operating beyond the
diffraction limit.

Methods
In our theoretical analysis, we use following dimensionless quantities

P\,E
n ~

ffiffiffiffiffiffiffi
x 3ð Þ

p
p\,E

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 e?z2ehð Þ

p
eha3

,

E\,E
n ~

{3eh

ffiffiffiffiffiffiffi
x 3ð Þ

p
E exð Þ\,E

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 e?z2ehð Þ3

q ,

g~
3eh

e?z2eh

a
d

	 
3
, c~

n

2v0
z k0að Þ3 eh

e?z2eh
:

To derive the instability growth rate, we utilized the standard technique47,
and take the small perturbations in the form of chain eigenmodes:

dP\,E
n ~A\,E exp {iK dnzl\,Et

� �
zA�\,E exp iK dnzl�\,Et

	 

, where ‘*’ means

complex conjugation, K is the modulation wavenumber, AH,jj are amplitudes of
perturbation. Having substituted P\,E

n ~P\,E
0 exp {iQdnð ÞzdP\,E

n into Eq. (1), we
come to the expression for the instability growth rate.

Numerical simulations of Eq. (1) were performed by means of a commercial
package Matlab v. 7 with a fourth-order Runge-Kutta scheme, and relative and
absolute error tolerances were fixed as 1024 and 1026, respectively.
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