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ABSTRACT
Pulmonary hypertension (PH) constitutes a critical challenge in cardiopulmonary medicine with a pathogenesis that is mul-

tifaceted and intricate. Ion channels, crucial determinants of cellular electrochemical gradient modulation, have emerged as

significant participants in the pathophysiological progression of PH. These channels, abundant on the membranes of pulmonary

artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs), pivotally navigate the nuanced interplay

of cell proliferation, migration, and endothelial function, each vital to the pulmonary vascular remodeling (PVR) hallmark of

PH. Our review delves into the mechanistic insights of potassium, calcium, magnesium, zinc, and chloride ion channels in

relation to their involvement in PH. It not only emphasizes the notable advances and discoveries that cast these ion channels as

underlying factors in the etiology and exacerbation of PH but also highlights their potential as innovative therapeutic targets.

1 | Pulmonary Hypertension

Pulmonary hypertension (PH) is a severe cardiopulmonary disorder
primarily caused by persistent constriction of the pulmonary vas-
culature, concentric thickening of the pulmonary vessel walls, and
sclerosis of the pulmonary artery (PA) walls [1], resulting in
increased pulmonary arterial resistance. This, in turn, leads to
increased right ventricular afterload and, ultimately, right heart
failure and even death. The main features of PH include constric-
tion and remodeling of the pulmonary vasculature. The diagnosis of
PH is confirmed by a mean PA pressure≥ 20mmHg measured by
right heart catheterization at sea level at rest, based on hemo-
dynamic indices [2]. The World Health Organization classifies
PH into five groups [3]: pulmonary arterial hypertension (PAH),
which is mainly caused by mutations in various genes and other

causes; PH associated with left heart disease, a very common form
of PH; PH due to lung disease and/or hypoxia, such as chronic
obstructive pulmonary disease; PH associated with PA obstruction;
and PH of undetermined and/or multifactorial origin. In patients
with severe PH, endothelial lesions and fibrosis of the pulmonary
vasculature due to smooth muscle cell (SMC) migration [4],
endothelial‐to‐mesenchymal transition (EndMT), and endothelial
cell proliferation lead to partial or complete occlusion of the pul-
monary vasculature; however, the exact pathogenesis remains not
fully understood. Recent studies related to ion channels have
demonstrated that calcium, potassium, magnesium, and zinc
channels play a role in many vasoactive substances, inflammatory
mediators, and transcription factors that regulate intra‐ and extra-
cellular ion concentrations, thereby regulating vasoconstriction,
cellular value‐addition, migration, and apoptosis. Since the body is
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unable to synthesize essential micronutrients such as zinc, potas-
sium, and magnesium, these nutrients must be consumed daily in
the diet to maintain cellular homeostasis. In mammals, ion chan-
nels in the cell membrane primarily regulate this homeostasis.
Calcium‐activated chloride channels (CACCs) play a crucial role in
maintaining the balance of potassium, magnesium, and chloride
ions across the membrane of vascular smooth muscle cells (VSMCs)
and in regulating vascular smooth muscle (VSM) tone. Magnesium
channels inhibit the proliferation and migration of pulmonary
artery smooth muscle cells (PASMCs) and promote vasodilation by
mediating magnesium diffusion. Hypoxia upregulates the expres-
sion of the zinc transporter solute carrier (SLC) family 39 member
12 (ZIP12), leading to intracellular zinc accumulation and PASMCs
proliferation, which is a significant contributor to hypoxic PH‐
induced pulmonary vascular remodeling (PVR). Although pulmo-
nary artery endothelial cells (PAECs) are considered nonexcitable
cells, they express a diverse array of cation and anion channels in
the plasma membrane. In addition to modulating membrane
potential, PAECs may directly regulate vasoactive substances (such
as endothelium‐derived relaxing and contracting factors) via cal-
cium and magnesium ions in these channels. This review sum-
marizes the structure, function, and expression of several ion
channels, providing a solid theoretical foundation for better eluci-
dating the relationship between ion channels and PH and identi-
fying potential therapeutic targets for improved PH treatment.

2 | Potassium Channels

2.1 | Voltage‐Gated Potassium Channels

Voltage‐gated potassium (Kv) channels are homotetrameric or
heterotetrameric potassium channels composed of alpha subunits,
each containing six transmembrane domains. Each subunit's six
transmembrane domains comprise a voltage‐sensitive domain and a
pore domain. Kv channels are major regulators of VSMCs

excitability and resting membrane potential. They are involved in
the regulation of PASMCs proliferation and apoptosis, critical for
the regulation of pulmonary vascular tone, and maintain resting
membrane potential during activation. During VSMCs
depolarization induced by further activation, Kv channels are reg-
ulated by the inhibition of voltage‐gated calcium channels (VGCCs)
in the plasma and sarcoplasmic membranes. Among the Kv
channels expressed by mammalian VSMCs, Kv1.5, a key channel
regulating vascular tone and atrial excitability, is 0regionally ex-
pressed in low‐resistance PAs, attracting significant attention [5]. As
shown in Figure 1, in PH, decreased Kv1.5 current leads to a
shallower resting membrane potential, resulting in pulmonary
vasoconstriction, PASMCs proliferation and migration, and reduced
caspase expression, which confers resistance to apoptosis [6].
Additionally, mutations in the bone morphogenetic protein receptor
2 (BMPR2) gene, which cause PH, have a substantial impact on Kv
channels. Fantozzi et al. found that in human PASMCs with
BMPR2 mutations, Kv1.5 expression and current density were
reduced, whereas recombinant BMPR2 reversed this effect, sug-
gesting that BMPR2 mutations can lead to decreased Kv channel
expression or function [7]. A recent study found that the activity
and function of Kv1.5 channels are closely related to sigma‐1
receptor (S1R) expression. S1Rs induce bimodal regulation of Kv1.5
channel expression/activity, and as S1R levels increase, S1Rs regu-
late Kv1.5 channel expression and activity in an S1R‐dependent
manner [8], attenuating pulmonary vasoconstriction and prolifera-
tion. These studies suggest that S1R may be a potential new phar-
macologic target for PH associated with Kv1.5 injury.

2.2 | Adenosine Triphosphate‐Sensitive
Potassium Channels

The adenosine triphosphate (ATP)‐sensitive potassium channel is
an octameric complex composed of sulfonylurea receptor 1/2
(SUR1/2), encoded by the ATP‐binding cassette subfamily C

FIGURE 1 | The current of Kv1.5 in PH causes the resting membrane potential to become shallow and the pulmonary vasoconstriction.
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member 8/9 (ABCC8/9) genes, and inwardly rectifying potassium
channel 6 (Kir6), encoded by the potassium voltage‐gated channel
subfamily J member 8/11 (KCNJ8/11) genes. ABCC8/SUR1 and
SUR2 can be coassembled in ATP‐sensitive potassium channels
in vitro, and both genes are expressed in various smooth muscle
tissues. It is hypothesized that SUR1 may be functionally expressed
alongside SUR2 in diverse cell types in the human lung and that
upregulation of ABCC8/SUR1 expression in PH may be a protec-
tive response. As shown in Figure 2, the activity of potassium
channels can influence the balance between PASMCs proliferation
and apoptosis. Increased activity promotes PASMCs apoptosis,
allowing potassium channels to affect PH by regulating PASMCs
contraction and cell proliferation [9]. In a study combining bio-
chemical, ex vivo, and in vivo approaches, SUR1/Kir6.2 and SUR2/
Kir6.1 were found to be expressed in human PASMCs and human
PAECs [10]. While activation of SUR1 with SUR1 activators
(diazoxide, VU0071063, and NN414) was effective in relaxing PA
tone, SUR2 activators not only induced PA relaxation but also
inhibited the proliferation and migration of human PASMCs [11].
In addition, in vivo activation of SUR1/Kir6.2 and SUR2/Kir6.1
effectively restores and improves monocrotaline (MCT)‐PH and
chronic hypoxia‐PH. Although diazoxide has been reported to have
deleterious side effects in humans, SUR1/Kir6.2 and SUR2/Kir6.1
can still be regarded as novel pharmacological targets for PH. The
CRISPR/Cas9 system is a widely used genome editing technology
that uses specific sgRNA‐guided endonuclease Cas9 to accurately
generate mutations at sites of interest [12]. It has been increasingly
used to discover cardiovascular diseases and other diseases.
Genome‐wide CRISPR screening of mammalian cells has also been
widely used to identify new disease genes and functional modules
[13]. McClenaghan et al. demonstrated in two novel CRISPR/Cas9‐
engineered mouse models that mutations in specific sites of KCNJ8
and ABCC9 in ATP‐sensitive potassium channels lead to a signif-
icant increase in potassium channel activity in VSMCs, resulting in
pulmonary vasodilation and decreased pulmonary blood pressure

[14]. In excitable VSMCs, ATP‐sensitive potassium channel acti-
vation reduces calcium influx through VGCCs, whereas in non-
excitable endothelial cells, potassium channel activation leads to
hyperpolarization. ATP‐sensitive potassium channels can influence
endothelial physiology by increasing the drive for calcium through
receptors and storage channels, thereby increasing intracellular
calcium content. Furthermore, the use of vasodilatory potassium
channel openers triggers compensatory feedback mechanisms [15]
that affect their potent blood pressure‐lowering effect. This feed-
back includes increased sympathetic nervous system activity and
enhanced signaling to the renin–angiotensin–aldosterone axis,
which promotes PH development.

2.3 | Two‐Pore Domain Potassium Channels

Potassium channel subfamily K member 3 (KCNK3), encoded
by the KCNK3 gene, is also known as TWIK‐associated acid‐
sensitive‐K+ channel (TASK‐1). It consists of two subunits, each
of which has two pore‐structural domains and four trans-
membrane fragments. KCNK3 contributes to the regulation of
resting membrane potential in cells, including PASMCs and
cardiomyocytes [16]. In 2006, Olschewski et al. used KCNK3
inhibitors in human PASMCs [17], demonstrating that the
KCNK3 channel is expressed in PASMCs and is oxygen‐
sensitive. In 2013, Ma et al. identified heterozygous missense
mutations in the KCNK3 gene in patients with PH through
whole‐exome sequencing, with no identifiable mutations in
other genes associated with PH, suggesting that KCNK3 plays a
crucial role in PH [18]. Loss‐of‐function mutations in the
KCNK3 gene cause KCNK3 dysfunction [19], leading to dis-
ruption of pulmonary endothelial integrity, resulting in peri-
vascular edema, pulmonary arterial epicardial remodeling, and
enhanced inflammatory signaling. This, in turn, leads to
increased proliferation of PASMCs and promotes pulmonary

FIGURE 2 | ATP‐type potassium channel causes pulmonary vasodilation and pulmonary blood pressure by affecting endothelial physiology.
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vascular and parenchymal remodeling [20]. These findings
suggest that KCNK3 deficiency is a key mechanism in the
pathogenesis of PH. In 2016, Antigny et al. demonstrated
reduced KCNK3 function in PH using KCNK3 loss‐of‐function
rats and observing tissue specimens from 11 patients with
PH [21]. As shown in Figure 3, decreased KCNK3 function
resulted in increased proliferation and inflammation of
PASMCs, PAECs, and ectodermal fibroblasts, leading to chan-
ges in hemodynamic indices and distal neomuscularization in
rats. This suggests that downregulation or loss of KCNK3
channel function can result in a decrease in KCNK3 current,
leading to increased proliferation and inflammation of pulmo-
nary vascular cells and the development of PH. This may be
related to micro‐RNA and nuclear receptor‐dependent mecha-
nisms [22]. Upregulated miR‐138‐5p in MCT‐treated rats
repressed KCNK3 expression, and its inhibition restored
KCNK3 mRNA expression levels in the lungs of this PH model
[23]. In addition, vitamin D deficiency is widespread in
PH patients [24, 25], and vitamin D deficiency decreases
KCNK3 expression and activity, depolarizes PASMCs, and leads
to dysfunction of PAECs [26]. In contrast, supplementation
with appropriate levels of vitamin D ameliorates PA endothelial
dysfunction and KCNK3 channel activity and restores some
pathophysiologic features of PH. In addition, the reduced ex-
pression of KCNK3 in PH appears to be influenced by dasatinib.
A recent study [27] revealed that in dasatinib‐associated PH, a
KCNK3 gene mutation was identified, which led to the loss of
KCNK3 function, resulting in PA contraction and endothelial
dysfunction. These findings indicate that dasatinib can down-
regulate the function and expression of KCNK3, thereby con-
tributing to endothelial dysfunction in PH. These studies have
confirmed that the lack of KCNK3 expression and function is an
important mechanism in PH and that activation of KCNK3
channels may be a novel pharmacological target for PH. In
addition, EndMT induced by transforming growth factor β1, a
member of the transforming growth factor superfamily, has also

been shown to be an important cause of endothelial cell pro-
liferation and metastasis [13].

3 | Calcium Ion Channels

In PH PASMCs, the alteration of calcium homeostasis is a key
feature of PH. During the development of PH, the increase in
intracellular calcium concentration is a crucial factor in PASMCs
contraction, proliferation, and migration [28], promoting chronic
hypoxic PH remodeling. Calcium channels can be classified into
VGCCs, Piezo‐type mechanosensitive ion channel component 1
(Piezo1), store‐operated Ca2+ entry (SOCE), and calcium‐sensitive
receptors (CaSRs) based on the factors that regulate channel
opening. VGCCs are the primary route for calcium ion influx into
PASMCs [29]. The VGCC family is further divided into L, T, N,
P/Q, and R subtypes according to the distinct characteristics of
calcium ion current gating. Among these, L‐type voltage‐gated
calcium channels (L‐VGCCs) and T‐type voltage‐gated calcium
channels (T‐VGCCs) are the most significant. Although both
L‐VGCCs and T‐VGCCs are activated by depolarizing potentials,
L‐VGCCs are mainly activated by a larger degree of depolarizing
potential, whereas T‐VGCCs are activated and rapidly deactivated
near the resting membrane potential [30]. In addition to this, there
is a mechanically activated ion channel Piezo1, in the lung. In the
presence of two inhibitors of sarcoplasmic calcium release, ryano-
dine (100 μM ryanodine receptor inhibitor) and thapsigargin (2 μM
sarcoplasmic/endoplasmic reticulum calcium ATPase pump
inhibitor), the increase in calcium concentration induced by Yoda1,
which is the Piezo1, agonist did not decrease. Furthermore, the
L‐type calcium channel antagonist (1 μM nifedipine), T‐type cal-
cium channel blocker (CCB) (1 μM NC 55‐0396), and purinergic
receptor P2 antagonist (20 μM suramin) did not inhibit calcium
influx, confirming calcium flow through Piezo1 channels. Piezo1
channels trigger the influx of Ca2+, which then activates the release
of nitric oxide (NO), causing VSM relaxation. Piezo1 in PAECs

FIGURE 3 | Downregulation or loss of KCNK3 channel can lead to decrease in KCNK3 current, increased proliferation and inflammation of

pulmonary vascular cells, which leads to the formation of PH.
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controls pulmonary circulation tension in health and disease and
has a potential relationship with the development of PH [31].
SOCE is ubiquitously expressed in mammalian cells and con-
tributes to pathophysiological processes such as neovascularization,
vasoconstriction, and remodeling by regulating intracellular Ca2+

concentration. CaSR, a member of the G protein‐coupled receptor
C family, is highly expressed in various organs and tissues. It can
be activated by Ca2+, Mg2+, and amino acids, thus participating in
the physiological and pathological processes of cardiovascular dis-
eases [32].

3.1 | T‐VGCCs

T‐VGCCs are mainly expressed in neurons, cardiomyocytes, myo-
cytes, osteocytes, and the thalamus and are composed of α1
(Cav3.1, CaV3.2, and CaV3.3) subunits. Compared to other types of
calcium ion channels, T‐type channels are activated at a lower
voltage threshold (<−30mV) and are inactivated at a lower volt-
age range. With the development of research on the molecular
mechanisms and targets of T‐VGCC activity, transgenic animal
experiments have demonstrated that T‐VGCCs are important drug
targets for the treatment of many cardiovascular diseases, including
cardiac hypertrophy. They may also be alternative therapeutic
targets for PH, as they are involved in cell proliferation and vas-
cular tone changes in PAs, and their activity is influenced by
multiple hormones [33]. Studies have shown that T‐VGCC protein
expression increases in PH [34, 35]. Selective inhibition of Cav3.1
expression inhibited PASMCs proliferation in vitro [36, 37]. In
addition to PASMCs, modulation of the Ca2+ signaling pathway in
PAECs [38] is also important for the control of pulmonary vascular
tone. In PAECs, acetylcholine triggers Ca2+ inward flow through
Cav3.1 channels [39], which subsequently activates NO synthase
and induces NO release, leading to vasorelaxation. This suggests a
potentially beneficial effect of T‐VGCC on pulmonary vascular
reactivity at endothelial sites. In vivo administration of TTA‐A2 (a
T‐VGCC blocker) reduced the hyperresponsiveness of pulmonary
vessels to potassium chloride and serotonin in rats with hypoxia‐
induced PH [33]. This effect may be due to a sustained reduction in
calcium influx through T‐VGCCs, which limits vasoconstriction
and elevated pressure. The decrease in intrapulmonary artery (IPA)
calcium influx may also decrease the effect of calcium on PVR,
which usually occurs during hypoxia‐induced PH. Therefore,
T‐VGCCs may be related to the development of hypoxic PH, and
specific blockers of T‐VGCCs may be valuable therapies for
hypoxia‐induced PH.

3.2 | L‐VGCCs

L‐VGCCs, also called dihydropyridine (DHP) channels, are acti-
vated by strong depolarization and are mainly expressed in muscle,
bone, ventricular myocytes, and dendrites of cortical neurons. They
are composed of α1 (Cav1.1, Cav1.2, Cav1.3, and Cav1.4), α2, δ, β,
and γ subunits. Abnormal L‐VGCC expression may be involved in
the development of hypoxia‐induced PH. In newborn piglets,
polymerase chain reaction and patch‐clamp experiments have
shown that hypoxic PH is associated with aberrant upregulation of
L‐VGCCs in small PAs in vivo, resulting in abnormal intracellular
calcium concentrations that may induce the development of
PH [40]. Earlier research using primarily rodent PH models

[41–43] demonstrated that hypoxia acutely inactivates Kv channels
in the PAs, subsequently inhibiting their expression in the plasma
membrane, thereby leading to depolarization of PASMCs. This
mediates L‐VGCC opening and calcium influx, raising intracellular
calcium concentration, which then causes VSMCs contraction and
promotes PVR, ultimately leading to the occurrence of hypoxic PH.
In conclusion, existing studies have linked the upregulation of
L‐VGCC expression in pulmonary arterioles to the development of
hypoxic PH and have shown that during chronic hypoxia, drugs
designed to inhibit the expression of L‐VGCCs in pulmonary ves-
sels may reduce abnormal calcium‐dependent tension and the
development of hypoxic PH. Clinically, CCBs that inhibit L‐VGCCs
may improve symptoms in some children with hypoxic PH [44].
However, CCBs are only suitable for patients who have a positive
response to an acute pulmonary vasodilation test. They are con-
traindicated for patients who have not undergone this test, those
who do not respond to it, and patients with right heart failure [45],
as the use of CCBs in these cases may not only be ineffective but
could potentially worsen the condition.

3.3 | Piezo1

Piezo1 is a stretch‐activated calcium‐permeable channel and a
mechanical stress sensor in PAECs [46]. As shown in Figure 4,
PAECs respond to mechanical stimuli by releasing NO, a signaling
molecule that regulates vascular tone. Piezo1 channels exist in
PAECs, and Piezo1 modulates endothelium‐dependent tension.
Compared to Piezo1+/+ mice, the endothelium‐dependent relaxa-
tion of PAs was significantly decreased in Piezo1−/− mice. Piezo1
agonists and mechanical stimulation can increase calcium con-
centration in mouse or human PAECs, both of which increase NO
production and affect the occurrence and development of PH [47].
Increases in NO and calcium concentrations were significantly
reduced in the PAECs of Piezo1−/− mice or in the presence of
Piezo1 inhibitors. Piezo1 still mediates pulmonary arterial relaxa-
tion in chronically hypoxic PH mice, and loss of this channel does
not impair disease development. Thus, Piezo1 promotes in-
trapulmonary vasodilation by controlling endothelial tension and
NO production, and this effect is still present in PH [31]. Previous
studies have shown that upregulation of Piezo1 protein expression
is closely associated with the shift from a contractile to a prolifer-
ative phenotype and PVR in PASMCs [48]. Upregulated Piezo1 in
PASMCs of patients with idiopathic PH mediates an increase in
Ca2+ concentration by simultaneously triggering intracellular cal-
cium release and extracellular calcium inflow, leading to the
function and consequence of PASMCs, promoting contraction and
proliferation of PASMCs [49, 50]. Subsequently, in a study by Chen
et al. [51] exploring the function of Piezo1 in a rat model of shear
stress‐associated PH, it was found and concluded that upregulation
of Piezo1 protein expression in PASMCs was associated with yes‐
related protein/TEA structural domain transcription factor 4. It was
also found that the upregulation of Piezo1 protein expression might
be related to RelA/p65 transcriptional regulation and lung
inflammation.

3.4 | SOCE

SOCE starts from the emptying of intracellular calcium stores,
which is one of the most common calcium flow pathways in
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nonstimulated cells [52] and may play a key role in regulating
PASMCs function [10, 53]. Stromal interaction molecule 1
(Stim1) and calcium release‐activated calcium regulatory pro-
tein 1 (Orai1) [53], as well as the transient receptor potential
typical channels (Trpc family), comprise SOCE channels, are
important calcium channel family members. The Trpc family is
a Ca2+‐permeable channel consisting of seven members
(Trpc1–7) that plays an important role in SOCE in different cell
types, including PASMCs and PAECs, and is involved in the
proliferation and migration of PASMCs and PAECs [54].
Among them, it has been demonstrated that the expression

levels of Trpc1, Trpc3, and Trpc6 [55] are significantly elevated
in hypoxia‐induced PH, which may be associated with the
interaction of Stim1 and Trpc channels, Orai‐mediated Ca2+

inward flow, and increased SOCE [56] as shown in Figure 5. In
contrast, triple knockdown of Trpc1/Trpc3/Trpc6 or adminis-
tration of Trpc3 inhibitors decreased the proliferation of SOCE
and human PASMCs, reduced hypoxia‐induced pulmonary
vasoconstriction [57], and attenuated the development of PH.
The mechanism behind this may be related to reduced ex-
pression of the cystic fibrosis transmembrane regulator (CFTR)
[20], a transporter that is functionally and physically coupled to

FIGURE 4 | Piezo1 promotes pulmonary vasodilation by controlling endothelial tension and NO production.

FIGURE 5 | The role of SOC channel in PAH.
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Trpc6 [58]. In the hypoxic mouse pulmonary vascular system,
deletion of CFTR enhances Trpc6 expression and function,
leading to vasoconstriction [59]. Another statement is that the
markedly enhanced expression and activity of Orai1 in human
and animal models of PH leads to upregulation of SOCE and
promotes proliferation, migration, apoptosis resistance, and
pulmonary vasoconstriction of PASMCs, which may be attrib-
uted, in part, to activation of the calmodulin‐neurophosphatase/
NFAT pathway and/or the activity of the calmodulin kinase II
pathway or the NF‐κB pathway [60], which affects ventricular
remodeling. In a study in which an Orai1 inhibitor was given to
inhibit the pharmacological activity of Orai1 in vivo, it was
found that [61] both right ventricular fibrosis and hypertrophy
in PH were ameliorated. This suggests that inhibition of Orai1
pharmacological activity may also be a relevant strategy to
reduce PVR in PAH and influence the development of PAH.

3.5 | CaSR

CaSR is a member of the C family of G protein‐coupled
receptor cell membrane receptor superfamily. It is expressed
in many tissues and organs and is also expressed in VSMCs
of subcutaneous arteries, aorta, and PAs [62]. Increased
calcium signaling in PASMCs is an important therapeutic
target in PH. It has been demonstrated that both mRNA and
protein levels of CaSR are significantly increased in hypoxia‐
induced PH [63, 64], which promotes Ca2+ inward flow to
induce VSMCs proliferation and vasoconstriction and influ-
ences the development of PH. Calcilytics, an allosteric
inhibitor of CaSR, reduce the sensitivity of CaSR to extra-
cellular Ca2+ and shift the concentration–response curve of
CaSR‐expressing cells to the right after binding [65]. Studies
have shown that the administration of calcilytics in an idi-
opathic PAH (IPAH) mouse model can prevent the devel-
opment of PH and right ventricular hypertrophy.
Additionally, there is a significant reduction in the thick-
ening of pulmonary arterioles and right ventricular systolic
pressure [64].

CCBs act as vasodilators by blocking calcium channels on
the cell membrane, thereby reducing the inward flow of
calcium in VSMCs. They work well in patients with acute
vasodilator response sensitivity [66]. However, DHP CCBs
potentiate CaSR‐mediated increases in Ca2+ in IPAH, which
further potentiates right ventricular systolic pressure, lead-
ing to increased right ventricular hypertrophy [67] and ex-
acerbating symptoms in patients with IPAH. Chloroquine, a
potent vasodilator, has also been shown to directly or
indirectly inhibit calcium channels, decrease the increase of
Trpc1, Trpc6, and CaSR proteins [62, 68], and inhibit Ca2+

inward flow, as well as prevent PVR, reduce medial wall
thickness, and inhibit the development of PH [69]. These
findings suggest that CaSR plays a crucial role in the
pathogenesis of PH and may serve as a potential therapeutic
target. Calcilytics, which are CaSR antagonists, can be employed
as a novel pharmacological approach to ameliorate the patho-
physiological alterations caused by CaSR or its intracellular cou-
pling protein activation mutations. Furthermore, calcilytics may
also have therapeutic potential in the treatment of nonbone
metabolism‐related diseases, such as PH.

4 | Magnesium Ion Channels

Magnesium ions are the abundant cations in cells and play a
role in many physiological aspects, including intermediate
metabolism, proliferation and repair, potassium and calcium
ion transport, and cell proliferation and signal transduction
[70]. ATP is involved in the reaction in the form of Mg2+‐ATP,
so changes in intracellular magnesium directly affect mito-
chondrial function and energy metabolism [71]. There is plenty
of evidence that magnesium deficiency can lead to oxidative
stress and inflammatory reaction, which can accelerate PH.
Magnesium homeostasis is coregulated by related transporters
such as transient receptor potential melastatin (Trpm) protein,
magnesium transporter (MagT) protein, cyclin and cystathio-
nine β‐synthase (CBS) domain divalent metal cation transport
mediator (CNNM) protein, and SLC protein, but it is still
unclear whether many magnesium ion transporters interact
with each other to promote the occurrence and development
of PH [72].

4.1 | Trpm7

In adult male rats with chronic hypoxia or MCT‐induced PH,
magnesium supplementation could alleviate the degree of right
heart hypertrophy and pulmonary vascular wall thickening and
regulate the mobilization, binding, and translocation of calcium
ions in VSMCs [73], as well as reverse the changes in magne-
sium ion transporter expression. High concentrations of mag-
nesium ions can also significantly inhibit the proliferation and
migration of PASMCs and increase apoptosis, whereas low
concentrations of magnesium ions have the opposite effect. As
shown in Figure 6, in PASMCs, siRNAs targeting SLC41A1/2,
CNNM2, and Trpm7 attenuated PASMCs proliferation and
migration and promoted apoptosis. High magnesium ion incu-
bation also inhibited hypoxia‐induced upregulation and nuclear
translocation of NFATC3 in PASMCs [74]. Magnesium ions, as
natural calcium antagonists and cofactors of many enzymatic
reactions, play a crucial role in regulating a variety of cellular
functions, including many vascular functions [75]. It is con-
cluded that PH affects the steady state of magnesium ions in
PASMCs and the angiotensin II‐triggered magnesium ion efflux
[74]. However, high magnesium concentrations can decrease
the proliferation and migration of PASMCs and promote their
apoptosis [76–78]. In PASMCs, magnesium modulates calcium
signal transduction through the Trpm7 channel [79].

4.2 | MagT1

In a rat model of MCT‐induced PH, the effect of magnesium
ions on the endothelium‐dependent relaxation of PAs during
PH was observed. As shown in Figure 7, it was found that high
magnesium ions may inhibit the calcium ion influx mediated by
three different types of calcium channel activators through
competitive action with calcium ions or attenuate PAs con-
traction in PH rats by affecting agonist‐contraction coupling
and altering vascular responsiveness to vascular agonists
[80, 81]. Thus, high magnesium concentrations can act directly
on VSMCs and endothelial cells to induce vasodilation or pro-
mote endothelium‐dependent vasodilation by modulating
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vascular endothelial function. High magnesium concentrations
are more sensitive to the endothelium‐dependent vasodilation
of PAs [82]. Meanwhile, in animal models of PH, magnesium
ions have also been shown to reduce pulmonary arterial pres-
sure and improve cardiac output [83]. Magnesium ions can
attenuate endothelin‐1‐induced vasoreactivity and enhance PAs
relaxation in mice. The increase in magnesium ion intake may
attenuate the endothelin‐1‐induced contractile response and
promote the release of NO from endothelial cells to improve
vasodilation, potentially through the MagT1. Long‐term ex-
posure to hypoxic environments can cause endothelial dys-
function that inhibits magnesium‐dependent vasodilation
regulation [84]. Taken together, it follows that magnesium ions
not only alter vascular responses to vasodilators and vasoactive
agonists but also affect endothelin‐1‐induced endothelial dis-
ruption and intact mouse PAs contraction. This may be related
to the fact that magnesium ion removal reduces the sensitivity
of PAs to NO‐mediated vasodilation, possibly through the
downregulation of MagT1 [84].

5 | Zinc Ion Channels

Zinc is an essential micronutrient and a crucial cofactor for
numerous enzymes, as well as a key component of zinc
finger structures. It serves as a second messenger that acti-
vates various signaling pathways, including phosphoinosi-
tide 3‐kinase (PI3K)/protein kinase B (AKT) and
extracellular signal‐regulated kinase (ERK) [85]. The ele-
vated expression of the zinc transporter ZIP12 in lung tissue,
along with the activation of the PI3K/AKT and ERK path-
ways and the recently identified sphingosine‐1‐phosphate
targets, may play significant roles in the initiation and pro-
gression of PH [86].

5.1 | SLC Family 39 Member 12

ZIP12 is a transmembrane protein mainly located in the cell
membrane that transports zinc ions from the extracellular space
or organelles to the cytoplasm. As shown in Figure 8, in hypoxic
PH, the hypoxia‐inducible factor‐1α (HIF‐1α) pathway upre-
gulates the expression of ZIP12, induces an increase in intra-
cellular free zinc ions, and promotes PASMCs proliferation [87].
MCT can directly cause endothelial injury and promote vascu-
lar remodeling [88]. ZIP12 expression was increased in PASMCs
of MCT‐induced PH rats, and the proliferation and migration of
PASMCs were also significantly increased. All these effects were
significantly reversed after silencing ZIP12. In contrast, over-
expression of ZIP12 produced the opposite effect in PASMCs of
control rats. As a lipid kinase, PI3K exists in the cytoplasm and
is an important signaling molecule closely related to cell life
activities. PI3K normally regulates its downstream effects by
phosphorylating target proteins, including cell proliferation and
migration. AKT is a pivotal component of the PI3K/AKT sig-
naling pathway, where its activation plays a critical role in cell
proliferation, antiapoptosis, and migration processes [89]. This
pathway is activated by inflammatory factors, which stimulate
the proliferation and hypertrophy of PASMCs, enhance cell
migration, and downregulate the expression of α‐smooth mus-
cle actin and smooth muscle actin‐22α, ultimately promoting
PVR [90]. Selective inhibition of AKT phosphorylation by
y294002, a PI3K/AKT pathway‐specific inhibitor, abrogated the
effect of ZIP12 overexpression on promoting cell proliferation
and migration and partially inhibited ZIP12 overexpression‐
induced ERK1/2 phosphorylation. However, inhibition of ERK
activity by U0126, an ERK pathway‐specific inhibitor, partially
reversed this effect and did not affect the ZIP12 overexpression‐
induced increase in AKT phosphorylation. In conclusion, ZIP12
is involved in PVR of PH and promotes PASMCs proliferation

FIGURE 6 | Magnesium supplement reduces PH by regulating magnesium transporter.
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and migration. The mechanism of these effects is mediated by
enhancing the AKT/ERK signaling pathway [86].

6 | Chloride Ion Channels

In addition to persistent vasoconstriction, extensive remodeling
of intrapulmonary arterioles, and right heart hypertrophy,

which are hallmark features of PH, mitochondrial fission and
metabolic switching from oxidative phosphorylation to glycol-
ysis are also key features of vascular pathology in PH, associated
with intense endothelial cell proliferation and apoptosis. In
studies of mitochondrial dysfunction and energy metabolism in
PAECs by two intracellular chloride channel proteins, recom-
binant chloride intracellular channel (CLIC)1 and CLIC4 pro-
teins, it was found that both proteins are highly expressed in

FIGURE 7 | Effect of magnesium ion on pulmonary vasoconstriction and endothelium‐dependent relaxation induced by MCT in PH rats.

FIGURE 8 | Effect of zinc transporter ZIP12 on proliferation and migration of PASMCs.
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PH and cancer. The pathological overexpression of CLICs
induced mitochondrial fragmentation, inhibited the formation
of mitochondrial lysis, and induced the metabolic transition to
glycolysis in human PAECs.

6.1 | Recombinant CLIC4 Protein

CLIC4 is a novel intracellular ion channel protein closely
related to vascular biology and tumors. It can regulate cell
proliferation, apoptosis, and angiogenesis and participate in
many pathological signaling pathways. Compared to healthy
lung tissue, CLIC4 is highly expressed in the pulmonary vas-
cular endothelium of PH patients, especially in the occlusive
and plexiform lesions caused by endothelial cell proliferation,
apoptosis, and angiogenesis disorder. Increased expression of
CLIC4 is an early manifestation and mediator of PH endothelial
dysfunction [91]. CLIC4 can regulate multiple stages of angio-
genesis by forming endothelial lumens and plays a role up-
stream of HIF‐1α and vascular endothelial growth factor
signaling, thereby driving the development of oxidative stress.
Therefore, abnormal expression of CLIC4 may be associated
with the vascular pathology of PH [92] (Figure 9). Structural
discoveries of CLIC4 inhibitors are currently being actively
explored, and nuclear magnetic resonance analysis has con-
firmed the binding and conformational disruption of ampho-
tericin B and sirolimus. These compounds also reverse stress‐
induced translocation of CLIC4 to the membrane and inhibit
migration of PAECs, making them novel targets for PH therapy.

6.2 | Chloride Channel 3

Chloride channel 3 (ClC‐3) is a gene encoding a volume‐
activating channel candidate protein, and membrane ion
channels are critical for cell proliferation, a concept first shown

to apply to potassium channels and subsequently proposed for
other cation and chloride channels [93, 94]. ClC‐3 also seems to
be involved in the formation and development of PH and
plays a key role in the hyperproliferation of PASMCs. Previous
studies have demonstrated that chloride current (ICl) inhibits
the proliferation of PASMCs [95, 96], and ClC‐3 mRNA
was found to be most abundant after measuring ICl channel
genes. This suggests that ClC‐3 may be a new target for the
prevention of PH.

6.3 | Transmembrane Protein 16A

CACCs play an important role in many physiological processes.
As shown in Figure 10, when voltage‐dependent calcium
channels are activated, calcium ions flood into the cells and
chloride ions rush out, causing blood vessels to constrict.
Transmembrane protein 16 (TMEM16) is considered a CACC
because of its high similarity in sequence and predictable
transmembrane topology, but to date, only TMEM16A and
TMEM16B have been definitively identified as CACCs, and
TMEM16A has 10 subtypes. Moreover, it has 62% structural
similarity with TMEM16B [97]. Ion channels in the PASMCs
membrane play an important role in maintaining the tension of
pulmonary vessels, with CACCs playing a crucial role in
maintaining the chloride homeostasis inside and outside the
membrane of VSMCs and regulating vascular tension [98]. In a
study of an animal model using an aortic‐caval shunt, pulmo-
nary TMEM16A and PCNA expression were increased, and
PASMCs proliferated in the shunt group after surgery. This may
be related to the regulation of PASMCs proliferation by
TMEM16A in high pulmonary blood flow‐induced PH [99]. In
addition, it has now been shown that TMEM16A also plays a
crucial role in IPAH. In PASMCs from IPAH patients or ani-
mals, the expression and function of TMEM16A were signifi-
cantly increased, which in turn led to the hyperproliferation of

FIGURE 9 | Relationship between CLIC4 expression and vascular pathology of PH.
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PASMCs [100], which may be related to the phosphorylation of
c‐fos. This was confirmed by the use of TMEM16A blockers as
well as vasodilation after silencing TMEM16A and inhibition of
proliferation of PASMCs. Similarly, the presence of active
TMEM16A was found in the mitochondria [101] and plasma
membrane of PAECs. A recent study on a mouse model re-
ported that enhanced activity of TMEM16A promotes Nox2/
p22phox expression and reactive oxygen species production
[102], leading to PA endothelial dysfunction [103].

6.4 | Cystic Fibrosis Transmembrane
Conductance Regulator

The CFTR is an ATP‐gated Cl− channel belonging to the ABC
transporter protein superfamily, which is not only a secreted
chloride channel but also extensively regulates the activity of other
ion channels. An earlier study found that CFTR is expressed not
only in cardiomyocytes and endothelial cells but also in tracheal
SMCs [104, 105] and aortic SMCs in rats and mice. However, CFTR
expression levels were significantly reduced in PASMCs and
PAECs in PH patients and animal models [100], and in hypoxia‐
induced PH, upregulated HIF‐1α suppressed CFTR expression
[106], and prolonged suppression of CFTR led to the formation of
RVSPs and distal neovessels and promoted PVR [20]. This suggests
that part of the downregulation of CFTR may be due to over-
expression of HIF‐1α. In addition, there is clear evidence in several
recent studies [107] that PA endothelial CFTR can affect vaso-
dilation and that CFTR impairment leads to a series of overlapping
endothelial dysfunctions [108], proliferation of PAECs and
PASMCs, including increased endothelial cell activation due to
leukocyte extravasation, oxidative stress, decreased cell viability,
growth, delayed wound repair, and cessation of autophagy [109],
and is accompanied by an EndMT, which may be a secondary
event caused by endothelial dysfunction due to CFTR injury.
However, CFTR modulators were able to reduce the expression of

mesenchymal markers, EC activation, and their subsequent leu-
kocyte adhesion [109, 110]. In a study involving rat IPA [111], it
was found that CFTR in PASMCs can be activated by cyclic
adenosine monophosphate (cAMP), leading to endothelium‐
independent pulmonary vasodilation. Overall, these results suggest
that CFTR contributes to PA tension and plays a crucial role in the
regulation of pulmonary vascular tension, making it a potentially
powerful target for future research.

7 | Acid‐Sensitive Ion Channels

The acid‐sensing ion channel (ASIC), a novel and noteworthy
ion channel in the development of PH, is a nonselective cation
channel controlled by extracellular protons and is widely
present in a variety of neuronal and nonneuronal tissues [110].
It has been shown that ASIC1 [112] channels may promote
hypoxia‐induced depolarization of pulmonary arterial tone, in
addition to their role in promoting voltage‐independent Ca2+
inward flow, which is involved in altering Ca2+ homeostasis
and vasoconstriction in PASMCs. However, the regulation of
ASICs in PAs is very complex, our knowledge of it is limited,
and future efforts are still needed to explore it.

8 | Pannexins—A New Mechanical Stimulus‐
Sensitive Channel Protein

Pannexins are a family of glycoproteins, consisting of PANX1,
PANX2, and PANX3, that are highly permeable to ATP and other
signaling molecules [113]. All three pannexins are expressed in
pluripotent stem cells, but PANX1 is the most abundant [114].
PANX1 channels are activated when there is a high extracellular
concentration of K+ or a high intracellular concentration of Ca2+

[115, 116], and the activation of PANX1 leads to the formation of
channels in the cell membrane that release ATP, guanosine

FIGURE 10 | Activation of TMEM16A promotes pulmonary vascular resistance in PH.
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triphosphate, K+, Ca2+, and so forth [117]. In a study by Grimmer
et al. [118], Panx1 was identified as a novel pulmonary vaso-
constriction regulator. Panx1 plays a role in modulating pulmonary
vasoconstriction by acting as a direct or indirect modulator of the
PASMCs Ca2+ response to hypoxia. In addition, Panx1 may
indirectly regulate PASMCs Ca2+ homeostasis and signaling
through other mechanisms and pathways, such as Panx1–P2X7
coupling through an ATP‐independent mechanism. Panx1 may
also indirectly regulate PASMCs Ca2+ homeostasis and signaling
through other mechanisms and pathways, such as Panx1–P2X7
coupling through ATP‐dependent mechanisms [118]. Therefore,
studies on Panx1 clearly deserve further exploration.

9 | Conclusion

The proliferation and migration of PASMCs play a key role in
the pathogenesis of PH [119] and are also targets of several
current therapies, including prostacyclin analogs [120], en-
dothelin receptor antagonists [121], and phosphodiesterase
inhibitors [122, 123]. With further research and application of
various techniques, it has been found that the ion channels on
the cell membranes of PASMCs and PAECs are closely related
to the occurrence and development of PH [124, 125]. Under-
standing how these channels affect the proliferation and
migration of PASMCs and the dysregulation of PAECs has
important implications for the clinical treatment of PH, par-
ticularly in the development of therapeutic strategies targeting
ion channels.

This article reviews the structure, function, expression, patho-
genesis, and potential therapeutic targets of several ion chan-
nels in the membranes of PASMCs and PAECs. However, they
have not been fully studied, and this area has broad research
prospects and is challenging in the field of life sciences. Ion
channels not only play a role in the transport of ions but may
also be involved in complex signal transduction processes.
Research on the regulation mechanisms of ion channel steady
state, activation and inhibition, and transmembrane transport
can provide a solid scientific basis for the treatment of
PH caused by ion channel dysfunction.
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