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Podoviruses that infect marine picocyanobacteria are abundant and could play a significant role on
regulating host populations due to their specific phage-host relationship. Genome sequencing of
cyanophages has unveiled that many marine cyanophages encode certain photosynthetic genes like psbA. It
appears that psbA is only present in certain groups of cyanopodovirus isolates. In order to better understand
the prevalence of psbA in cyanobacterial podoviruses, we searched the marine metagenomic database (GOS,
BATS, HOT and MarineVirome). Our study suggests that 89% of recruited cyanopodovirus scaffolds from
the GOS database contained the psbA gene, supporting the ecological relevance of the photosynthesis gene
for surface oceanic cyanophages. Diversification between Clade A and B are consistent with recent finding of
two major groups of cyanopodoviruses. All the data also shows that Clade B cyanopodoviruses dominate the
surface ocean water, while Clade A cyanopodoviruses become more important in the coastal and estuarine
environments.

V
iruses are abundant in the ocean and can influence population dynamics and genetic diversity of their
hosts1–3. Cyanophage are a specific group of viruses which infect cyanobacteria mainly including
Prochlorococcus and Synechococcus. Many cyanophages have been isolated, and all the known marine

cyanophages belong to three phage families: Myoviridae, Siphoviridae and Podoviridae4–10. Recent studies showed
that cyanopodoviruses might make up 50% of cyanophage community in the sea11–12, suggesting that cyanopo-
doviruses interact actively with cyanobacteria in the marine environment.

Currently, nearly 40 cyanophage genomes have been sequenced, and half of them are cyanomyoviruses.
Cyanomyoviruses have a relatively large genome size and acquire many accessory metabolic genes via horizontal
gene transfer (HGT), which constitute the large reservoir of genetic diversity pool13–19. Five genome sequences of
cyanosiphoviruses have been reported with genome size ranging from 30,332 to 105,532 bps20–21. Compared to
cyanomyoviruses and cyanosiphoviruses, cyanopodoviruses have a relatively conserved genome size ranging
from 42,257 to 47,872 bps11,22–25.

Genome sequencing of marine cyanophages has shown that many marine cyanophages encode photosynthesis
genes. All the isolated cyanomyoviruses and more than half of the isolated cyanopodoviruses were detected to
contain the key photosystem II reaction centre gene psbA in their genomes11,13,17–19,23,26–29, while no psbA gene was
found among the known cyanosiphoviruses20,30. Two recent studies showed that 24 of 39 marine cyanopodovirus
isolates contained psbA12 and 8 of 12 sequenced cyanopodovirus genomes encoded psbA13. In these two studies,
the frequency of psbA-containing podoviruses was estimated based on isolated cyanophages which could be
biased by the host used for isolation. Is it possible to quantify the presence of psbA in cyanopodoviruses in the
ocean using a culture-independent approach? The metagenomic database is a useful tool, however these datasets
in the public domain are also limited and may not represent true community composition.

Results
In this study, we estimated the relative abundance and distribution of psbA-containing podoviruses based on
the metagenomic data. Our approach is built on a conserved genomic structure of cyanopodoviruses.
Cyanopodovirus genome organization can be divided into three parts: structural genes, nucleotide metabolism
related genes and some hypothetical genes regions (Fig. 1)11,18,22–24. Both the composition and the arrangement of
structural genes are conserved. One gene cluster, the ‘‘portal-capsid-tail/fiber’’, existed in all cyanopodoviruses, as
well as in other T7 phages31. Interestingly, the psbA gene was commonly located at a fixed position within the
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conserved gene cluster ‘‘portal-psbA-capsid’’11. Based on this con-
served gene cluster, we searched (BLAST) the GOS scaffold database
using portal, capsid assembly, psbA and major capsid protein (MCP)
genes, and successfully retrieved 79 cyanopodoviral scaffolds from
the GOS database.

Among the 79 cyanopodovirus scaffolds, 70 contain psbA and 9
have no psbA. All the MCP sequences (.200 aa) were used to con-
struct the phylogenetic tree. The MCP based phylogeny separated
cyanopodoviruses into two major clades (Clade A and B) (Fig. 2),
which is consistent with the phylogenetic relationship based on the
DNA polymerase gene10,12,21,32. Nearly all cyanopodoviruses in Clade
B carry the psbA gene whereas none of those in Clade A do (Fig. 2). A
recent study also illustrated such psbA distribution pattern in cya-
nopodoviruses12.

In the Bermuda (BATS) database, 58 Clade B MCP homologs were
recruited, but no Clade A MCP was found (Fig. 3A). We recruited 17
Clade B homologs, but no Clade A homologs from the North Pacific
(HOT) database (Fig. 3A). In the GOS database, 729 Clade B MCP
homologs and 18 Clade A MCP homologs were found (Fig. 3A).
Interestingly, 17 of 18 of reads were recruited from the coastal water.
It is likely that most of Clade A like sequences are from the podo-
viruses infecting marine Synechococcus10,33,34. In the MarineVirome
database, 271 Clade B like MCP sequences and 4 Clade A like MCP
sequences were detected (Fig. 3A).

Discussion
Podoviruses in Clade A could be a transitional group between Clade
B and other T7-like non-cyanobacterial podoviruses (Fig. 2). Four
scaffolds in Clade B do not contain psbA, and the psbA gene in these
four scaffolds might be lost during the evolution. Interestingly, scaf-
fold JCVI_SCAF_109662694693 (in Clade B) contains a high light-
induced gene (hli), but no psbA.

Our analysis suggests that Clade A podoviruses only make up a
very small proportion of cyanopodoviruses in the surface ocean. In
the open ocean, Clade A podoviruses only account for 0.27% and

Figure 1 | The structure and organization of cyanopodoviruses and some scaffolds or contigs.

Figure 2 | The neighbor-joining tree based on the MCP sequences. The

sequences with red color mean scaffolds or cyanophage genomes without

psbA genes. Values of .50% are shown, and indicate percentage bootstrap

support based on 1000 replicates for distance, maximum parsimony (MP)

and minimum evolution (ME) analyses in the order of NJ/MP/ME. Scale

bar, 0.1 nucleotide substitution per site.
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1.12% of all cyanopodoviruses in the GOS and MarineVirome data-
bases, respectively. In the coastal surface water, Clade A podoviruses
can make up 8.02% and 14.29% of total cyanopodoviruses in the GOS
and MarineVirome databases, respectively (Fig. 3B). Clade A podo-
viruses were not detected in the two open ocean stations, BATS and
HOT. Clade A mainly consists of the psbA-lacking podoviruses
which infect marine Synechococcus10–12. Our study suggests that it
may be less important for cyanophages in coastal or estuarine envir-
onments to carry the psbA gene compared to cyanophages in the
open ocean. Sullivan and colleagues also suggested a shorter latent
period could explain the lack of psbA gene as result of shorter infec-
tion duration with no need the help of psbA23.

The metagenomic recruitment based on the unique portal-capsid
structure provides a culture-independent survey on the distribution
frequency of psbA-carrying cyanopodoviruses. However all of the
datasets that were analyzed were mainly derived from the surface
ocean. Our analysis suggests: 1) psbA-carrying cyanopodoviruses are
the dominant cyanopodoviruses in the surface ocean; 2) Synecho-
coccus podoviruses become relatively more abundant in the coastal
water; 3) psbA is more important for oceanic cyanopodoviruses than
for their coastal counterparts.

Methods
Metagenomics. Four metagenomic databases were used to search homologs in our
study: three from the bacterial fraction: the Global Ocean Survey database (GOS)35,
the Bermuda database (BATS)36, the Hawaii Ocean Time-Series (HOT)37,38, and one
viral fraction database: the MarineVirome39. All databases were obtained from the
CAMERA website (http://camera.calit2.net/index.shtm).

Based on the cynaopodovirus genomic conserved gene cluster ‘‘portal-psbA-cap-
sid’’, we searched (BLAST) the GOS scaffold database using portal, capsid assembly,
psbA and major capsid protein (MCP) genes using a reciprocal best-hit BLAST
strategy but no e-value cutoff limitation (Fig. 1)40. The structural genes (portal, MCP
or capsid assembly gene) allowed the identification of cyanopodoviruses via searching
against the NCBI non-redundant proteins database.

To analyze the occurrence frequency and geographic pattern of cyanopodoviruses
in the ocean, we recruited reads from BATS, GOS, HOT and MarineVirome datasets
using all MCP sequences from sequenced cyanopodoviral genomes as published in
Labrie’s paper11,13. Our approach is similar to the methods described by Zhao et al.40,41.
Briefly, all homologous reads were recruited from binning by e-value cutoff to avoid
potential bias, and then each putative hit was extracted and used as a query to search
against the NCBI non-redundant proteins database42. Metagenomic sequences
returned a best-hit which could be used to confirm the classification, and all identified
reads are listed in Table S1. The number of recruited reads was not normalized,
because the method for sampling is different among all the sites and doesn’t target the
viruses. However, there should be no bias for cyanopodoviruses with or without psbA
gene using any methods for sampling.

Phylogenetic analyses. All the MCP sequences (.200 aa) were used to construct the
phylogenetic tree. Sequences were aligned using Clustal X and phylogenetic trees were
constructed using the neighbour-joining, minimum-evolution and maximum-
parsimony algorithms of MEGA software 3.042. The phylogenetic trees were
supported by bootstrap for re-sampling test with 1000 replicates.
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