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The relationship between
radiomics and pathomics in
Glioblastoma patients:
Preliminary results from a cross-
scale association study

Valentina Brancato1, Carlo Cavaliere1*, Nunzia Garbino1,
Francesco Isgrò2, Marco Salvatore1 and Marco Aiello1

1IRCCS Synlab SDN, Naples, Italy, 2Department of Electrical Engineering and Information
Technologies, University of Napoli Federico II, Napoli, Italy
Glioblastoma multiforme (GBM) typically exhibits substantial intratumoral

heterogeneity at both microscopic and radiological resolution scales. Diffusion

Weighted Imaging (DWI) and dynamic contrast-enhanced (DCE) magnetic

resonance imaging (MRI) are two functional MRI techniques that are commonly

employed in clinic for the assessment of GBM tumor characteristics. This work

presents initial results aiming at determining if radiomics features extracted from

preoperative ADC maps and post-contrast T1 (T1C) images are associated with

pathomic features arising from H&E digitized pathology images. 48 patients from

the public available CPTAC-GBM database, for which both radiology and

pathology images were available, were involved in the study. 91 radiomics

features were extracted from ADC maps and post-contrast T1 images using

PyRadiomics. 65 pathomic features were extracted from cell detection

measurements from H&E images. Moreover, 91 features were extracted from

cell density maps of H&E images at four different resolutions. Radiopathomic

associations were evaluated by means of Spearman’s correlation (r) and factor

analysis. p values were adjusted for multiple correlations by using a false discovery

rate adjustment. Significant cross-scale associations were identified between

pathomics and ADC, both considering features (n = 186, 0.45 < r < 0.74 in

absolute value) and factors (n = 5, 0.48 < r < 0.54 in absolute value). Significant but

fewer r values were found concerning the association between pathomics and

radiomics features (n = 53, 0.5 < r < 0.65 in absolute value) and factors (n = 2, r =

0.63 and r = 0.53 in absolute value). The results of this study suggest that cross-

scale associations may exist between digital pathology and ADC and T1C imaging.

This can be useful not only to improve the knowledge concerning GBM

intratumoral heterogeneity, but also to strengthen the role of radiomics

approach and its validation in clinical practice as “virtual biopsy”, introducing new

insights for omics integration toward a personalized medicine approach.

KEYWORDS

glioblastoma, radiomics, pathomics, correlation, digital pathology, WSI (whole slide
image), MRI, radiopathomics
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1 Introduction

Glioblastoma multiforme (GBM) is the most damaging

tumor of the brain, characterized by an almost unavoidable

propensity to relapse after rigorous treatment and carrying a

fatal prognosis (1). Despite advancement in surgical and medical

therapies, the overall prognosis of GBM patients remains poor,

with a median survival of 10-14 months (2). One of the main

reasons for the aggressive behavior and the poor outcomes of

GBM is its intrinsic intra-tumor heterogeneity at both

microscopic and radiological resolution scales, arising from the

presence of clonal and subclonal differentiated tumor cell

populations, glioma stem cells, and components of the tumor

microenvironment, which affect multiple hallmark cellular

functions in cancer. Recent studies have indicated that

intratumor heterogeneity is partly responsible for the dismal

outcome of GBM patients and this represents a significant

challenge to the development of novel targeted therapies for

GBM and evidence-based clinical decision-making (3, 4). In this

context, numerous quantitative approaches at different imaging

scales have been taken to comprehensively characterize this

disease (3, 5, 6).

On a radiological point of view, it is well-known that

conventional magnetic resonance imaging (MRI) provides

basic anatomic and morphological information for diagnosing

brain tumors and lacks the capability to illustrate tumor

heterogeneity and identifies the hot spot for biopsy and

surgical resection (7). Diffusion Weighted Imaging (DWI) and

dynamic contrast-enhanced (DCE) MRI are two functional MRI

techniques that are commonly employed in clinic for the

assessment of GBM tumor characteristics (8).

T1-weighted imaging acquired following injection with a

gadolinium contrast agent is used to identify regions where the

active tumor has disrupted the blood-brain barrier, and contrast

enhancement is used to define the extent of the primary tumor

region (9). Hyperintense regions on fluid attenuated inversion

recovery (FLAIR) images are thought to indicate a combination

of tumor-related edema and infiltrative non-enhancing tumor.

DWI can quantitatively and noninvasively reflect the random

Brownian motion of water molecules within GBM tissues

through quantitative apparent diffusion coefficient (ADC)

maps. These maps identify areas of restricted diffusion that

may indicate either hypercellular tumor or coagulative necrosis

(10). Although several studies suggested that ADC values can

play a valuable role in GBM diagnosis, staging, assessment of

response to treatment, and prognosis (11), the biophysical

mechanisms underlying changes in ADC are not always fully

understood (12, 13).

Radiomics is a new frontier of medicine based on extracting

numerical descriptors from radiologic images that are

imperceptible by the human eye and are potentially able to

describe the intratumoral heterogeneity (14). Moreover,

concerning intratumoral heterogeneity, radiomics is often
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referred as a sort of «virtual biopsy», since it allows to enrich

the traditional diagnostic radiologic workflow with more

information not detectable by human eye and associated with

processes not included in radiologic workflow (15). Current

radiomics studies in the glioma field have shown promising

results in demonstrating correlations between MRI features and

GBM differential diagnosis (16), molecular characteristics (17,

18), and prognoses (11, 19, 20).

However, correlating these MRI features with underlying

histopathology remains challenging (21, 22).

An interesting approach to relate radiomic results to tumor

pathologic findings relies on quantitative analysis of digitized

histopathology images (23). On a microscopic scale, the

emerging and rapidly expanding field of pathomics aims to

apply high-throughput image feature extraction techniques to

interrogate the microscopic patterns in pathologic data,

especially from hematoxylin-eosin–stained sections. Because of

the close similarity of the approaches, the features from in vivo

images may be compared with the features extracted from

histopathological images, often benefiting from a clearer

biological definition of the image patterns and hence a better

understanding of the features (23, 24).

The founder hypothesis supporting the use of radiomics and

pathomics in medical care is that data derived from images have

a correlation with the underlying biological processes. More

precisely, data derived from images would give additional

information in relation to the underlying biological processes

compared to the visual interpretation of the image as a picture,

which is the traditional way of interpreting images (25).

Therefore, as MRI features and digital pathology offer

complementary sources of information about the tumor in

vivo and in vitro, a natural question is whether radiomics and

pathomics features might be connected.

The promises arising from the integration between data at

different imaging scales would surely be the improvement of

diagnostics and molecular knowledge about GBM, for

diagnostic, prognostic and therapeutic purposes, and this

would have direct implications in clinical decision-making

process (26). Radiomics and pathomics could fill the need to

assess tumor heterogeneity, which strongly characterize GBM.

Moreover, the radiopathomic integration could be beneficial for

validating the radiomic approach in clinical practice as “virtual

biopsy” (15, 27).

Previously, it has been shown that both radiomic and

pathomic image-based signatures can independently predict

outcomes of interest in GBM (5, 6, 21). Moreover, some

studies on GBM and other cancer types support the

hypothesis that combining radiomic and pathomic features

will even further improve prognostication and enhance the

understanding of the disease by means of predictive models

(28–31). However, before making predictions it is important to

understand if there are actually correlations between radiomic

and pathomic characteristics.
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To date, few studies have explored the associations between

MRI images of GBM patients (which interrogate tumor at

macroscopic scale) and histopathologic images (which depict

tumor at microscopic scale).

Preliminary results reported an inverse correlation between

ADC-based features and basic pathomic features such as tumor

cellularity in GBM (32, 33). Moreover, there have been recent

efforts to identify cross-scale associations between radiology and

pathology scales by investigating on more complicated

radiomics and pathomic features in different cancer types (of

which brain tumors) (22, 23, 34). However, these findings were

inconsistent mainly due to the small number of patients involved

in the studies, and image-based tumor heterogeneity and

radiomics features have not yet been exactly correlated with

findings in histopathology.

In light of the above, this works presents initial results

aiming at determining if radiomics features extracted from

preoperative ADC maps and post-contrast T1 (T1C) images

are associated with histological features (pathomic features)

arising from H&E digitized pathology images of patients with

GBM. In particular, we aimed at identifying pathomic features

from digitized histopathology that potentially reflect tissue

composition basis of radiomic descriptors from MRI, towards

improving the understanding of GBM heterogeneity.
2 Methods

2.1 Patients

The study was conducted in accordance with the Declaration

of Helsinki, and the study protocol was approved by the Ethics

Committee of the Istituto Nazionale Tumori “Fondazione G.

Pascale (protocol number 1/20). The subjects used for the study

belong to the public database CPTAC-GBM (Clinical Proteomic

Tumor Analysis Consortium-Glioblastoma Multiforme),

accessed on October 2021 (35). Radiology images, clinical

data, digital histopathology slides, and associated quantified

features (cellularity, necrosis, tumor nuclei, age, tumor weight)

of samples included were downloaded from The Cancer Imaging

Archive (TCIA) database (36). The inclusion criteria were the

following: availability of pretreatment T1C images and ADC

maps, availability of corresponding digital pathology whole-

slides images (WSI), WSI slides with at least 70% of tumor

nuclei and at most 20% necrosis. Moreover, patients were

excluded in case of i) insufficient quality of MRI to perform

imaging analysis and/or obtain measurements, ii) insufficient

quality of WSI that did not meet the requirements for diagnosis

(e.g., tissue folds, torn tissue) and iii) images with a positive value

of Clinical Trial Time Point ID (corresponding to the number of

days from the date the patient was initially diagnosed

pathologically with the disease to the date of the scan). Finally,
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a total of 48 subjects were included in the study. Refer to Table 1

for clinical characteristics and outcomes of included patients.
2.2 MRI acquisition and processing

MR examinations with contrast injection were performed on

1.5 and 3 Tesla (T) equipment (34 patients=1.5T; 12 = 3T and

2=the magnetic field was not reported). The acquisition protocol

included: axial FLAIR sequence (TE (echo time)=71-155 ms; TR

(repetition time)=7752-12000 ms; slice thickness=4-5 mm;

acquisition matrix=128x256-512x192); axial DWI MR

sequence with ADC (apparent diffusion coefficient) map

(TE=27-149 ms; TR=1000-9601 ms; slice thickness=2-5 mm;

acquisition matrix=120x180-512x192); axial post-contrast 3D/

2D T1-weighted MR sequence (10=had contrast 2D acquisition;

19=with 2D sequence and 20=both 2D/3D acquisition) (TE=17-

130 ms; TR=35-2140 ms; slice thickness=0.8-5 mm; acquisition

matrix=252x250-384x256).

The MRI scans were converted from DICOM format to NIfTI

format using dcm2niix software (37). ADC maps were coregistered

to T1C images by means of two-steps registration procedure both

performed by using Elastix registration software (38). Considering

the multimodal registration strategy proposed by Leibfarth et al.

(39), a first step a rigid registration was performed to obtain a rough

alignment of the fixed and moving images. A two-level

multiresolution approach was applied using a Gaussian

smoothing without downsampling. A localized version of mutual

information was considered as similarity measure and consisted in

evaluating mutual information on multiple subregions. Specifically,

the localization is obtained by constraining the sampling procedure

to a cubic subregion of the image, randomly chosen in every

iteration step from the fixed image domain (39, 40). The standard

gradient descent was applied for metric optimization (41). The

resulting transformation matrix was used to initialize the following

deformable registration step. In particular, a two-level

multiresolution approach using 3D Gaussian smoothing without

downsampling was used together with a bending energy penalty

term calculated to regularize the transformation. Finally, the

similarity metric consisted in a combination of localized mutual

information and bending energy penalty and the adaptive stochastic

gradient descent optimizer was adopted for its minimization (41).

B-spline was used as interpolation method for the registration

procedure. Volumes of interest (VOIs) were then manually

delineated slice-by-slice by using ITK-SNAP (version 3.6.0, http://

www.itksnap.org) on the T1C. VOIs consisted of T1C enhancing

regions. Areas of intrinsic T1 hyperintensity representing

hemorrhagic material were not included in T1C contour

delineations. Necrotic/cystic regions and large vessels were

excluded from all VOIs. The same 3D ROIs were applied to the

registered ADC maps, and mean ADC values were extracted for

each enhancing tumor VOI.
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2.3 WSI acquisition and processing

H&E-stained formalin-fixed paraffin-embedded (FFPE)

tissues from surgical resection of primary tumor were used for

pathological diagnosis. The slides were digitalized to SVS format

at 20x magnification (resolution = 0.494 mm/px) (42). All the

WSI images were manually checked for artifacts, and the images

free of all types of artifacts were chosen. WSIs of H&E staining

slides without any preprocessing were imported in QuPath

digital pathology software (43), and regions covering the

largest possible tissue area with viable tissue with vivid

histopathologic characteristics and free of artifacts were

delineated by an expert microscopist.
2.4 Radiomic features extraction

Prior to radiomic features extraction, normalization was

applied on T1C images intensities. Specifically, intensities were

normalized by centering them at their respective mean value
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with the standard deviation of all gray values in the original

image (44–46).

91 radiomics features were extracted from segmented VOIs on

the enhanced region from T1C and ADC map by using the

opensource Python package PyRadiomics (https://pyradiomics.

readthedocs.io/en/Latest/). The extracted radiomics features were

categorized into two groups: Firstorder features including 18

intensity statistics; 73 multi-dimensional texture features including

23 gray level co-occurrence matrix (GLCM), 16 gray level size zone

matrix (GLSZM), 16 gray level run lengthmatrix (GLRLM), 14 gray

level dependence matrix (GLDM) and 5 neighboring gray tone

difference matrix (NGTDM) features. The extracted radiomics

features grouped by similarity in four categories are listed in the

SupplementaryTable S1.The computingalgorithms canbe foundat

www.radiomics.io and the image biomarker standardization

initiative (IBSI) presented a document to standardize the

nomenclature and definition of radiomic features (47).
2.5 Pathomic features extraction

2.5.1 Detection measurements
WSIs of H&E staining slides were imported in QuPath digital

pathology software to carrying out cell and nuclear segmentation. By

applying the cell detection function from the analysis module, the

nuclear segmentation was performed to recognize objects through

watershed cell detection based on segmentation parameters (48, 49),

including morphology features of cell, nuclear, and cytoplasm. The

setup parameter was set as hematoxylin OD for detection image,

with pixel size of 0.5 mm. For nucleus parameters, the background

radius and sigma were set as 8 and 1.5 mm, respectively. For intensity

parameters, the threshold was set as 0.1 and the max background

intensity was set as 2. Other parameters were set as their respective

default values. The quality of the automated cell detection was

checked by an expert microscopist.

Detection measurements were calculated for all cells using

QuPath’s add intensity features option (preferred pixel size: 0.5

mm, region: ROI, tile diameter: 25 mm, compute all features

including Haralick features with 32 bins) and spatial analysis.

Measurements included shape characteristics, Optical Density

Sum (ODSum) Haralick texture features (50), and Delaunay

triangulation measurements (51).

65 features were measured for each detection on the candidate

slide (Supplementary Table S2) and exported into a tab delimited

file using a QuPath script developed explicitly for this purpose.

Detection measurements were aggregated across the case-

level tiles by the mean of the values. For patients with more than

one slide, the value of each feature was averaged across WSIs.

Moreover, annotation measurements were also computed

(WSI selected area, nuclei count, extracellular area, sum of

cytoplasm, and extracellular area).

Nuclear segmentation and feature extraction process was

performed by means of Groovy scripts implemented on QuPath
TABLE 1 Clinical and pathologic characteristics of the included
patients.

Clinical and pathologic characteristics Value

Age [mean ± SD] 62.3 ± 11.3

Sex [n (%)]

Male 34 (70.8)

Female 14 (29.1)

BMI [mean ± SD] 62.3 ± 11.3

Risk factors [n (%)]

Alcohol

≤ 2 drinks per day (men)/≤ 1 (women) 15 (31.2)

> 2 drinks per day (men)/> 1 (women) 2 (4.2)

Consumed in the past 2 (4.2)

Lifelong non-drinker 16 (33.3)

NR 13 (27)

Tobacco

Smoker ≤ 15 years 2 (4.2)

Smoker > 15 years 6 (12.5)

Current smoker 8 (16.7)

Lifelong non-smoker 24 (50)

NR 8 (16.7)

Progression/Recurrence [n (%)]

Y 19 (39.6)

N 16 (33.3)

NR 13 (27)

OS [n (%)]

≤ 12 mo 22 (45.8)

> 12 mo 16 (33.3)

NR 10 (20.8)
BMI, Body Mass Index; Y, Yes; N, No; NR, not reported; OS, Overall Survival; mo,
months.
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script editor. Exported measurements were imported into R

version 3.4.2 for statistical analysis.

2.5.2 Cell density maps features
Cell density maps associated with ROIs placed on WSI were

calculated at different resolutions (50mm, 100mm, 150mm,

200mm). Specifically, the cellular density was estimated in each

tile of dimension associated with the resolution by using the

segmented nuclei and assigning a gray level to each of these tiles

based on the number of nuclei estimated in each tile. For each

resolution, this resulted in a spatial map of the cellular density of

the digitized histopathology. 91 features were extracted from cell

density maps of digital pathology images using PyRadiomics

[https://pyradiomics.readthedocs.io/en/latest/] (Supplementary

Table S2). For patients with more than one slide, the value of

each feature was averaged across WSIs.

2.6 Radiopathomic analysis

An integrative study design was defined and reported as

radiopathomic workflow in Figure 1 to evaluate potential

association between radiomic features and pathomic features

for the included patients. After preliminary analyses, a deeper

radiopathomic analysis including correlation analysis and factor

analysis was performed. The details of each analysis are reported

in the next three paragraphs. Supplementary Analyses were also

performed to investigate radiopathomic associations including

higher-order features obtained applying wavelet and local binary

pattern (LBP) filters to the images (See Supplementary Materials

- Section 4).
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2.6.1 Preliminary analysis
Preliminary analysis aiming at investigating the relationship

between ADCmean and basic histopathologic features related to

cellular density and commonly associated with ADC meaning

(nuclei count, area of the extracellular space and the sum of

extracellular space, and cytoplasm) were performed (32, 52).

These features were normalized for the region considered in

the WSI.

2.6.2 Correlation analysis
Then, a deeper radiopathomic correlation analysis was

conducted to explore more detailed associations between

extracted pathomic and radiomic features detailed in the previous

two paragraphs. Radiopathomic associations were performed

considering two separate tasks for ADC and T1C images.

A preliminary features selection was performed separately

for radiomic features from ADC, radiomic features from T1C

and pathomic features. Specifically, a correlation filter based on

the absolute values of pairwise Spearman’s correlation (r)
coefficient was used to reduce feature redundancy. Threshold

for r was set to 0.9. Briefly, if two features had r > 0.9, the

function looks at the mean absolute correlation of each variable

and the variable with the largest mean absolute correlation is

removed. Spearman correlation analysis was also employed to

determine the correlation of radiomics features with pathomic

features. Specifically, we calculated r between ADC radiomic

feature set selected after the correlation filter and the selected

pathomic features surviving after the correlation filter step. The

same analysis was performed considering T1C radiomic

features. p values were adjusted for multiple correlations by
FIGURE 1

Workflow of the radiopathomic analysis implemented in the study. On the first row the radiomic analysis steps. On the second row the
pathomic analysis steps.
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using a false discovery rate (FDR) adjustment. An FDR-adjusted

p-value (q-value) below 0.05 was considered statistically

significant. Considering r in absolute value, the strength of

correlation was described as very weak if r = 0.00-0.19, weak

if r = 0.20-0.39, moderate if r = 0.40-0.59, strong if r = 0.60-

0.79, and very strong if r = 0.80-1.00 (53).

Correlation analyses were complemented with Bayes Factors

estimation. The Bayes Factor quantifies the evidence for or against

the null hypothesis as the ratio of the likelihoods for the

experimental and the null hypothesis (54). It can be expressed as

the logarithmof the ratio (55, 56),where negative numbers indicate

that the null hypothesis is likely to be true, positive that it is false. By

convention, absolute log Bayes factors greater than 0.5 are

considered substantial evidence for or against, and absolute log-

factors greater than 1 strong evidence (57, 58).

The statistical analysis was performed using R version 4.0.2.

2.6.3 Factor analysis
Factor analysis was performed to project the radiomic and

pathomic features onto a lower-dimensional latent-feature space

that retaining most of the information contained in the whole

feature set (59). For each feature group (ADC, T1C and pathomic),

the remaining correlation matrix after correlation filter was

subjected to ridge-regularization and 5-fold cross-validation of

the log-likelihood was used to determine the optimal value of the

penalty-parameter. Feature normalization was performed using z-

normalization to avoid the predominance of features with the

largest scale in the analysis (60). The regularized feature-

correlation matrix was used as input for projection by a

maximum likelihood factor analysis procedure (factor analytic

data compression step) (59). In particular, a latent lower

dimensional orthogonal meta-feature space representing the

projection of the shared information in a feature set was

obtained. The number of factors, corresponding to the dimension

of the latent space, was determined by Guttman bounds (61). The

factor-solution was rotated to a simple orthogonal structure. After

projection of the original variable-space onto the lower-

dimensional factor-space, factor scores were obtained by

regressing the latent features on the observed data by means of

the obtained factor solution (59). Factor analysis was performed

using the R FMradio (Factor Modelling for Radiomics Data)

package (R version 4.0.2). The correlation between resulting

factor scores associated with radiomics and pathomic factors

were investigated and complemented with Bayes Factors

estimation. An FDR-adjusted p-value (q-value) below 0.05 was

considered statistically significant.

3 Results

3.1 Preliminary analysis

Pre l iminary ana lys i s o f ADC va lue and bas ic

histopathological features revealed weak but significant
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correlations between ADC and nuclei count (r = -0.317, p =

0.0286) and extracellular space (r = 0.3029, p = 0.0368). A

positive but not significant correlation was found between ADC

and the sum of extracellular space and cytoplasm (r = 0.2560,

p = 0.0792).
3.2 Correlation analysis

Concerning radiomic features, the correlation filter step

reduced the feature set from 91 to 46 for ADC and from 91 to

53 for T1C. On the other hand, pathomic features were reduced

from 429 to 232. Radiopathomic analysis between selected

ADC radiomic features and pathomic features revealed 186

significant correlations (based on adjusted p-values after FDR

correction), of which 31 negative correlations (-0.6909 <r<-
0.4578, 22.9454 <BF< 2.587×105) and 155 positive correlations

(0.4556 <r< 0.7395, 21.6563 < BF <6.461×105). Among

features constituting the ADC-radiopathomic couples

showing significant cross-scale associations, ADC radiomic

features included 10 firstorder features and 23 texture

features, while pathomic features included Mean Cytoplasm

Eosin OD Min, 5 nuclear Haralick features and 22 cell-density

map features (of which 6 from 50mm resolution, 6 from 100mm
resolut ion , 6 from 150mm resolut ion and 4 from

200mm resolution).

Concerning ADC pipeline, most of the strong relationships

(35/50) involved textural features from cell density maps, of

which 10 correspond to associations with ADC firstorder

features and the remaining 25 were with textural ADC

features. The remaining strongest associations (15/50) involved

intranuclear Haralick texture features (Haralick Angular Second

Moment F0 and Information measure of correlation 2 F12) with

ADC firstorder features (10 associations) and textural features

(5 associations).

Radiopathomic analysis between selected T1C radiomic

features and pathomic features revealed 53 significant

correlations (based on adjusted p-values after FDR correction),

of which 24 negative correlations (-0.6524<r< -0.5078, 22.9454

< BF < 2.587×105) and 29 positive correlations (0.5064<r<
0.6472, 91.2984< BF <2.3688×104). Among features

constituting the T1C-radiopathomic couples showing

significant cross-scale associations, T1C radiomic features

included 4 firstorder features and 11 texture features, while

pathomic features included 2 nuclear Haralick features and 9

cell-density map features (of which 1 from 50mm resolution, 2

from 100mm resolution, 3 from 150mm resolution and 3 from

200mm resolution).

Concerning T1C pipeline, similar finding were observed,

with most of the strongest associations found between cell

density map textural features and T1C firstorder (9/15) or

textural features (3/15), and the remaining three associations

involving the same two intranuclear Haralick texture features
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observed in the ADC results and two T1C textural features (glcm

Joint Energy and ngtdm Coarseness). Similar findings,

concerning both ADC and T1C radiopathomic tasks, were

observed for significant moderate correlations (See

Supplementary Table S3).

Figures 2 and 3 show the resulting correlation heatmaps,

displaying Spearman’s r between radiomic features (from ADC

and T1C, respectively) and pathomic features.

Strongest radiopathomic associations (|r| ≥ 0.6) sorted by r
strength are presented in Tables 2 and 3. Refer to Supplementary

Table S3 for the complete set of significant correlated

radiopathomic features pairs.
3.3 Factor analysis

The factor analytic data compression of the regularized

correlation matrix resulted in 24, 32, and 27 latent factors,

respectively for ADC, T1C and pathomic. These retained 76%,

89% and 81% of the covariation between the original 46 (for

ADC), 53 (for T1C) and 232 (for pathomic) features. Loadings

measuring the association between features and factors for ADC,

DCE and pathomic feature analysis were reported in

Supplementary Tables S5–S7, respectively.

Having established a compact representation of ADC, T1C

and pathomic features in terms of factors, correlation analysis

between factors scores revealed significant correlations based on
Frontiers in Oncology 07
adjusted p-values after FDR correction (Supplementary Tables

S8 and S9). To facilitate the reading of factor analysis results, the

term “Factor” was abbreviated to “F”. Concerning ADC pipeline,

5 significant correlations were found, of which 3 negative

correlations (r = -0.54, BF = 2.99×102 between ADC F5 and

pathomic F11; r = -0.53, BF = 2.55×102 between ADC F4

and pathomic F11; r = -0.52, BF = 1.65×102 between ADC F1

and pathomic F5) and 2 positive correlations (r = 0.51,

BF = 1.24×102 between ADC F1 and pathomic F17; r = 0.48,

BF = 36.3 between ADC F2 and pathomic F14). Among factors

constituting the ADC-radiopathomic couples showing

significant cross-scale associations, ADC F1 consisted mainly

of firstorder features (mean absolute deviation, maximum,

minimum, 10th and 90th percentile, median and interquartile

range) and textural glcm features (difference average and cluster

shade, tendency and prominence); ADC F2 consisted mainly of

glcm dependence variance and large dependence low gray level

emphasis, Informational Measure of Correlation from glcm and

three glszm features (zone variance, large area low gray level

emphasis, gray level non-uniformity normalized); ADC F4

consisted mainly of textural features associated with entropy

(gldm dependence entropy, glcm difference entropy and glszm

zone entropy); ADC F5 consisted mainly of ngtdm complexity

and firstorder total energy. Considering pathomic factors, F11

was mainly related to texture strength from ngtdm of cell density

maps at different resolutions (100mm, 150mm, 200mm); F14

consisted mainly of morphological nuclear features (circularity
FIGURE 2

Radiopathomic analysis between ADC radiomic features and pathomic features. Correlation matrix filtered from nonsignificant correlations
(rows and columns with non significant values were deleted, while nonsignificant values surviving were set to zero). CD, Cellular Density; ADC,
Apparent Diffusion Coefficient; LALGLE, Large Area Low Gray Level Emphasis; IMOC, Information Measure Of Correlation; ASM, Angular Second
Moment; LDLGLE, Large Dependence Low Gray Level Emphasis; LDHGLE, Large Dependence High Gray Level Emphasis; SDLGLE, Small
Dependence Low Gray Level Emphasis; LALGLE, Large Area Low Gray Level Emphasis; GLNUN, Gray level non uniformity normalized; glcm, gray
level co-occurrence matrix; gldm, Gray Level Dependence Matrix; glszm, Gray Level Size Zone Matrix; ngtdm, Neighbouring Gray Tone
Difference Matrix; glrlm, Gray Level Run Length Matrix.
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and eccentricity); F17 is mainly related to dependence variance

and non-uniformity normalized from gldm of 150mm cell

density maps. Concerning T1C pipeline, 2 significant and

negative correlations were found, in particular between T1C

F2 and pathomic F11 (r = -0.63, BF = 9.14×103) and between

T1C F5 and pathomic F8 (r = -0.53, BF = 2.52×102). Among

factors constituting the T1C-radiopathomic couples showing

significant cross-scale associations, T1C F2 is mainly related to

short run emphasis, small dependence and small area low gray

level from glrlm, gldm and glszm, respectively, and maximum

probability and joint energy from glcm; T1C F5 is mainly

composed of firstorder features (10th percentile, root mean

squared, minimum). Considering pathomic factors, F11 was

described above since it also appeared in ADC-radiopathomic

associations, while F8 consisted mainly of busyness from ngtdm

of cell density maps at different resolutions (50mm, 100mm) and

informational measure of correlation from glcm of cell density

maps at 150mm and 200mm resolutions.
4 Discussion

The possibility to integrate data from different imaging

scales in a common framework opens the improvement of

diagnostics and molecular knowledge about GBM and its

heterogeneity and provides an advantageous context to

validate radiomic approach as a clinical “virtual biopsy” tool
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(15, 23). Multiparametric MRI and digital pathology images

from biopsy samples are currently acquired as standard clinical

practice for GBM and provide information that are essential to

making correct diagnoses, appropriate patient management and

treatment decisions. However, the isolation of radiology and

pathology workflows, and consequently of the analysis of

quantitative data arising from radiology (radiomics) and

digital pathology (pathomics) makes it hard to harness the

potential arising from the integration of quantitative data at

different imaging scales (25, 62).

In this preliminary study, we evaluated cross-scale

associations between radiomic and pathomic descriptors in

patients with GBM, quantitatively correlating imaging features

extracted by functional MRI images with histological features

extracted from H&E digitized slices from surgical resections. In

this study, we focused on commonly acquired functional MR

sequences, including T1C and ADC from DWI, as they are both

part of the routine examination for patients with GBM and are

functional modalities, meaning they can provide functional

information about GBM and are able to detect tumor volume

and physiological changes beyond the lesions shown on

conventional morphological MRI (8).

Firstly, we investigated the relationship between ADC

mean value and basic histopathologic features related to

cellular density, namely nuclei count, area of the extracellular

space and the sum of the area of the latter with that of the

cytoplasm, that commonly associated with ADC meaning (32,

52). Indeed, in the field of glial tumors, quantitative assessment
FIGURE 3

Radiopathomic analysis between T1C radiomic features and pathomic features. Correlation matrix filtered from nonsignificant correlations (rows
and columns with non-significant values were deleted, while surviving nonsignificant values were set to zero). DNU, Dependence non
uniformity; GLNU, gray-level non-uniformity; IMOC, Information Measure Of Correlation; ASM, Angular Second Moment; SRLGLE, Short Run
Low Gray Level Emphasis; SDLGLE, Small Dependence Low Gray Level Emphasis; T1C, post-contrast T1; SALGLE, Small Area Low Gray Level
Emphasis; LALGLE, Large Area Low Gray Level Emphasis; glcm, gray level co-occurrence matrix; gldm, Gray Level Dependence Matrix; glszm,
Gray Level Size Zone Matrix; ngtdm, Neighbouring Gray Tone Difference Matrix; glrlm, Gray Level Run Length Matrix.
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TABLE 2 Summary of the highest-correlated (r>0.6) radiomic-pathomic features, with radiomic features extracted from ADC.

Radiomic feature name Pathomic featµre name r FDR q-value BF

ADC ngtdm Contrast CD200µm ngtdm Strength 0.739 1.48×10-5 6.46×106

ADC firstorder Minimum CD200µm ngtdm Strength 0.729 1.48×10-5 3.15×106

ADC firstorder 10Percentile CD200µm ngtdm Strength 0.725 1.48×10-5 2.36×106

ADC firstorder Median CD200µm ngtdm Strength 0.698 4.12×10-5 4.06×105

ADC ngtdm Contrast MEAN Haralick ASM F0 0.697 4.12×10-5 3.74×105

ADC firstorder Minimum MEAN Haralick ASM F0 0.694 4.12×10-5 3.16×105

ADC gldm LDLGLE CD100µm glrlm RunVariance 0.693 4.12×10-5 3.00×105

ADC glszm LALGLE CD100µm glrlm RunVariance 0.693 4.12×10-5 2.93×105

ADC firstorder Mean CD200µm ngtdm Strength 0.692 4.12×10-5 2.75×105

ADC ngtdm Contrast MEAN Haralick IMOC2 F12 -0.691 4.12×10-5 2.59×105

ADC ngtdm Busyness CD100µm glrlm RunVariance 0.69 4.12×10-5 2.42×105

ADC glszm ZoneVariance CD100µm glrlm RunVariance 0.687 4.12×10-5 2.07×105

ADC glcm DifferenceVariance MEAN Haralick ASM F0 0.687 4.12×10-5 2.05×105

ADC firstorder 10Percentile MEAN Haralick ASM F0 0.687 4.12×10-5 2.01×105

ADC glcm DifferenceVariance CD200µm ngtdm Strength 0.679 6.01×10-5 1.31×105

ADC firstorder Median MEAN Haralick ASM F0 0.676 6.67×10-5 1.09×105

ADC glcm Imc2 CD100µm glrlm RunVariance -0.675 6.67×10-5 1.05×105

ADC firstorder Mean MEAN Haralick ASM F0 0.672 7.40×10-5 9.00×104

ADC firstorder 90Percentile CD200µm ngtdm Strength 0.66 1.44×10-4 4.52×104

ADC firstorder 90Percentile MEAN Haralick ASM F0 0.656 1.67×10-4 3.71×104

ADC gldmDependenceVariance CD100µm glrlm RunVariance 0.655 1.67×10-4 3.55×104

ADC firstorder Minimum MEAN Haralick IMOC2 F12 -0.654 1.67×10-4 3.27×104

ADC glszm LALGLE CD150µm glszm LALGLE 0.653 1.67×10-4 3.17×104

ADC gldm LDLGLE CD150µm glszm LALGLE 0.653 1.67×10-4 3.14×104

ADC ngtdm Busyness CD150µm glszm LALGLE 0.648 2.05×10-4 2.48×104

ADC glszm ZoneVariance CD150µm glszm LALGLE 0.644 2.44×10-4 2.03×104

ADC glcm DifferenceVariance MEAN Haralick IMOC2 F12 -0.641 2.72×10-4 1.76×104

ADC glrlm RunVariance CD100µm glrlm RunVariance 0.64 2.78×10-4 1.67×104

ADC firstorder 10Percentile CD100µm ngtdm Strength 0.634 3.58×10-4 1.27×104

ADC glcm Imc2 CD150µm glszm LALGLE -0.63 4.39×10-4 1.01×104

ADC firstorder Minimum CD100µm ngtdm Strength 0.628 4.46×10-4 9.50×103

ADC firstorder 10Percentile MEAN Haralick IMOC2 F12 -0.628 4.46×10-4 9.29×103

ADC glszm GLNUN CD100µm glrlm RunVariance 0.627 4.46×10-4 9.10×103

ADC glszm GLNUN CD150µm glszm LALGLE 0.622 5.71×10-4 6.98×103

ADC ngtdm Contrast CD100µm ngtdm Strength 0.621 5.87×10-4 6.62×103

ADC glcm ClusterProminence MEAN Haralick ASM F0 0.614 7.70×10-4 4.98×103

ADC firstorder Median CD100µm ngtdm Strength 0.613 7.74×10-4 4.83×103

ADC ngtdm Complexity CD50µm glcm Contrast 0.61 8.56×10-4 4.21×103

ADC gldmDependenceVariance CD150µm glszm LALGLE 0.61 8.56×10-4 4.11×103

ADC firstorder TotalEnergy CD50µm glcm Contrast 0.61 8.56×10-4 4.07×103

ADC glcm InverseVariance CD100µm glrlm RunVariance 0.609 8.64×10-4 3.94×103

ADC firstorder Mean CD100µm ngtdm Strength 0.607 9.13×10-4 3.66×103

ADC firstorder Maximum MEAN Haralick ASM F0 0.606 9.37×10-4 3.42×103

ADC firstorder Median MEAN Haralick IMOC2 F12 -0.606 9.37×10-4 3.41×103

ADC gldm LDLGLE CD100µm glrlm LongRunEmphasis 0.604 9.43×10-4 3.23×103

ADC firstorder Mean MEAN Haralick IMOC2 F12 -0.604 9.43×10-4 3.22×103

(Continued)
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of ADC with DWI has mainly been considered as imaging

biomarker for its estimation of cellularity based on its inverse

relation with water diffusivity in the extracellular compartment

(the higher the tumor grade, the lower the mean tumor ADC

values) (63). Our results supported this assumption, showing a

significant negative correlation between ADC and nuclei count,

and a positive correlation between ADC and extracellular space

and the sum of extracellular space and cytoplasm. These

findings were in line with results from the meta-analysis by

Surov et al. (32), which found a strong inverse correlation

between ADC and cellularity in glioma. An inverse correlation

between ADC and cellularity in GBM was also found by Eidel

et al. (33) who adopted an approach including trajectory

analysis and automatic nuclei counting for the analysis.

However, these results should be carefully interpreted mainly

due to the extremely small populations investigated in the

studies. Of note, we found that the value of correlation with

ADC mean decreased when considering the sum of

extracellular space and cytoplasm area than extracellular
Frontiers in Oncology 10
space area alone, and this could be associated with the bias

introduced by water in cytoplasm (33).

Preliminary analyses were not performed for T1C since,

differently from ADC map that corresponds to a quantitative

measurement that is supposed to reflect water diffusivity and

thus to be affected by tissue proprieties (e.g., cellularity, cell size,

nuclear size, necrosis, extracellular space) directly detectable

from nuclear-based features in H&E slides, the relationship

between information provided from T1C and nuclear-based

features from H&E is not trivial.

Further research is needed to investigate on the association

between radiomics features from T1C and pathomic features

directly associable to this kind of images, such as those

associated to microvessel density and quantitative perfusion

maps (64).

After preliminary analysis for ADC, a deeper radiopathomic

analysis was conducted to explore more detailed radiopathomic

associations. In particular, considering two separate tasks for

ADC and T1C images, we first investigated correlations between
TABLE 3 Summary of the highest-correlated (r>0.6) radiomic-pathomic features, with radiomic features extracted from T1C.

Radiomic feature name Pathomic featµre name r FDR q-value BF

T1C firstorder RootMeanSquared CD50µm ngtdm Bµsyness -0.652 2.48×10-3 3.09×104

T1C glcm JointEnergy CD200µm ngtdm Strength 0.647 2.48×10-3 2.37×104

T1C ngtdm Coarseness CD200µm ngtdm Strength 0.644 2.48×10-3 2.05×104

T1C glcm JointEnergy MEAN Haralick IMOC2 F12 -0.636 2.48×10-3 1.39×104

T1C firstorder RootMeanSquared CD150µm glszm GLNU -0.632 2.48×10-3 1.12×104

T1C firstorder 10Percentile CD50µm ngtdm Bµsyness -0.631 2.48×10-3 1.05×104

T1C ngtdm Coarseness MEAN Haralick IMOC2 F12 -0.629 2.48×10-3 9.88×103

T1C firstorder RootMeanSquared CD200µm glcm Imc2 0.621 3.15×10-3 6.73×103

T1C firstorder 90Percentile CD50µm ngtdm Bµsyness -0.619 3.15×10-3 6.18×103

T1C firstorder 10Percentile CD150µm glszm GLNU -0.61 4.26×10-3 4.20×103

T1C ngtdm Coarseness MEAN Haralick ASM F0 0.604 4.27×10-3 3.24×103

T1C firstorder 90Percentile CD150µm glszm GLNU -0.603 4.27×10-3 3.09×103

T1C firstorder 90Percentile CD200µm glcm Imc2 0.602 4.27×10-3 2.98×103

T1C firstorder RootMeanSquared CD150µm glcm Imc2 0.602 4.27×10-3 2.91×103

T1C gldm SDLGLE CD200µm ngtdm Strength 0.601 4.27×10-3 2.86×103
frontie
T1C, post-contrast T1; CD, Cellular Density; FDR, False Discovery Rate; BF, Bayes Factor; SDLGLE, Small Dependence Low Gray Level Emphasis; IMOC, Information Measure Of
Correlation; GLNU, Grey Level Non Uniformity; ASM, Angular Second Moment; glcm, gray level co-occurrence matrix; glszm, Gray Level Size Zone Matrix; ngtdm, Neighbouring Gray
Tone Difference Matrix; glrlm, Gray Level Run Length Matrix.
TABLE 2 Continued

Radiomic feature name Pathomic featµre name r FDR q-value BF

ADC glszm LALGLE CD100µm glrlm LongRunEmphasis 0.604 9.43×10-4 3.19×103

ADC ngtdm Busyness CD100µm glrlm LongRunEmphasis 0.602 9.95×10-4 2.97×103

ADC glrlm RunVariance CD150µm glszm LALGLE 0.601 1.02×10-3 2.84×103

ADC glszm ZoneVariance CD100µm glrlm LongRunEmphasis 0.6 1.04×10-3 2.73×103
ADC, Apparent Diffusion Coefficient; CD, Cellular Density; FDR, False Discovery Rate; BF, Bayes Factor; LDLGLE, Large Dependence Low Gray Level Emphasis; LALGLE, Large Area Low
Gray Level Emphasis; GLNUN, Gray level non uniformity normalized; LDLGLE, Large Dependence Low Gray Level Emphasis; ASM, Angular Second Moment; IMOC, Information
Measure Of Correlation; glcm, gray level co-occurrence matrix; glszm, Gray Level Size Zone Matrix; ngtdm, Neighbouring Gray Tone Difference Matrix; glrlm, Gray Level Run Length
Matrix.
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radiomic and pathomic features. It should be highlighted that we

opted for analyzing the extracted radiomic and pathomic

features filtered with a correlation filter to make the analyses

more controllable and manageable and eliminate redundancies

between the features. Furthermore, although we have not built

predictive models, it should be considered that the elimination of

highly correlated features is part of the main remedies against

overfitting. On the other hand, we used a high threshold (r =

0.90) to lose as little information as possible after features drop

out. In addition, this value was recommended as threshold by

Peeters et al. (59) for redundancy filtering to perform factor

analysis. Significant cross-scale associations were identified

between pathomics features and ADC radiomic features, with

correlation strength ranging from 0.45 to 0.74 in absolute value.

Significant but fewer and with a lower upper bound r values

were also found concerning the association between pathomics

and radiomics features from T1C, with correlation strength

ranging from 0.5 to 0.65 in absolute value. These results were

corroborated by very large values of BF (ranging from 21.7 to

6.46×105 for ADC task and from 22.9 to 2.58×105 for T1C task)

that gave strong evidence that the observed data supported the

alternative hypothesis.

The radiopathomic analysis was enforced by a factor analysis

aiming at establishing a compact representation of radiomic and

pathomic features in terms of factors that retained most of the

information contained in the full data set, using an approach

dealing with both the high-dimensionality as well as the

collinearity burden of feature sets (59). The correlation

between resulting radiomic and pathomic factors revealed five

significant cross-scale associations between pathomics and ADC

factors (with correlation strength ranging from 0.51 to 0.54 in

absolute value) and only two significant r values were found

concerning the association between pathomics and T1C

radiomics features (r = -0.63 and r = -0.53). Also results of

correlation analysis between factors were corroborated by very

large values of BF (ranging from 36.3 to 9.14×103) that gave

strong evidence that the observed data supported the

alternative hypothesis.

While it is difficult to demonstrate a causal relationship

between radiomics and pathomic features, we can hypothesize

about the underlying connections between them.

As highlighted, the number of significant radiopathomic

associations was almost four times higher when considering

ADC than T1C features and more than half higher when

considering ADC than T1C factors. This could be related to

the quantitative information provided from ADC maps that is

supposed to be more influenced by cellularity-associated

properties extracted from the H&E images with respect to

T1C. However, it is interesting to highlight the significant

relationships identified between features associated with cell

density and T1C radiomic features since this could provide

info on the complementarity of diffusion and perfusion that

are usually considered independent characteristics associated
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with the aggressiveness of the lesions and are independently

assessed (65). Moreover, these results are in line with those from

a recent study by Bobholz et al. (66) who found that

multiparametric MR imaging intensity values, of which ADC

and T1C, were associated with tumor cellularity. However, it

should be highlighted that tumor cellularity was quantified on

postmortem data, and any other pathomic feature than

cellularity was evaluated in their study.

Another interesting point to highlight was that most

significant radiopathomics associations involved textural

features extracted from cell density maps, both considering

ADC and T1C tasks. Concerning ADC correlation analysis,

almost 1/3 correspond to associations with first order features

and the remaining 2/3 were with textural features. Concerning

T1C correlation analysis, almost 4/5 correspond to associations

with firstorder features and the remaining 1/3 were with textural

features. A low number of significant associations involved two

intranuclear Haralick texture features (Haralick Angular Second

Moment F0 and Information measure of correlation 2 F12) with

ADC firstorder features (10 associations) and textural features (5

associations) and two T1C textural features (glcm Joint Energy

and ngtdm Coarseness). These results were in line with those

obtained in the factor analysis, in which all but one pathomic

factors associated with ADC and T1C radiomics were mainly

composed by features from cell density maps. The remaining

one was mainly associated with nuclear circularity and

eccentricity, and this could support the hypothesis that a link

exists between specific aspects of tissue heterogeneity and

parameters from diffusion MRI (67).

The prevalence of correlations involving features and factors

mainly associated with features from cell-density maps

highlights that the cell-density map-based feature extraction

technique gave rise to novel interesting potential markers that

could reflect macroscopic properties from radiologic images.

Moreover, this could be intuitively related to the intrinsic

meaning of these features that, arising from cell-density maps,

are associated with a higher scale level than cellular/intranuclear

features and are supposed to be closer to the macro-scale of

radiomic features. In addition, it should be also highlighted that,

among these significant results involving features from cell

density maps, most of them involved features at lower

resolutions (100µm, 150µm and 200 µm per pixel), that are

supposed to be closer to the macro-scale of radiomic features

with respect to those from 50µm resolution maps. On the other

side, any of delaunay triangulation features, that describe inter-

nuclear characteristics, showed significant correlations

with radiomics.

Given the promising results involving features and factors

associated with original images, we considered it appropriate to

perform Supplementary Analyses by extracting the first and

second order features following application of wavelet and local

binary pattern (LBP) filters to the images. Supplementary

Analysis results followed the trend of results obtained in the
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main analyses, with more significant results involving ADC than

T1C pipeline and most of correlations involving features and

factors mainly associated with features from cell-density maps.

Of note, several wavelet and LBP features appeared in significant

results both in correlation and factor analysis. Of note, we opted

for investigating these two higher-order feature groups due to

the wavelet and LBP features ability to decipher textural

information from different scales (68, 69) and their power for

texture analysis and classification (70). Moreover, these features

have also been used for analyzing histopathological images

(71, 72).

To our knowledge, this is the first study aiming at

investigating radiopathomic associations between radiomic

features extracted from ADC maps and T1C images and

handcrafted pathomic features arising both from cell

segmentations and cell density maps at different resolutions.

Only a few works have similarly correlated radiology and

histopathology information, and efforts have been rather limited

to establishing qualitative clinical correlation. In the context of

brain tumors, Rathore et al. (31) aimed to assess the power of

radiomic and pathomic features, both in comparison and in

combination, for the prediction of survival in GBM patients

from TCIA. They found that performances of machine learning

models based on the combination of radiomic and pathomic

features lead to better results than those based on radiomics and

pathomic features taken separately. However, they have

conducted any analysis to assess relationships between radiomic

and pathomic features. Moreover, radiomic features from ADC

were not evaluated. Bobholz et al. (22) examined the localized

relationship between MR-based radiomic features from T1, T1C,

FLAIR and ADC and their corresponding histomics features

in patients with brain tumors. They found several significant

radiopathomic associations (r > 0.2) and suggested that radiomic

features were able to capture underlying histopathology. However,

a direct comparison with our results was not possible due to

differences in extracted features, statistical analyses, and study

setting (e.g., pathomic features extracted from autopsy samples,

non-specificity on GBM patients).

In the context of other cancer types, Shao et al. (30) found

that the combination of radiomics and pathomics features was

helpful in terms of pretreatment prediction of pathological

response in patients with rectal cancer. Interestingly, they also

investigated on the correlation between extracted radiomic and

pathomic features before the construction of the predictive

signatures. Alvarez-Jimenez et al. (34) identified significant

cross-scale associations between CT radiomic features and

pathomic features that independently showed discriminative

power for differentiating between non-small cell lung cancer

subtypes. It is worth noting that, similarly to what we did in our

study, they examined pathomic features extracted from cell

density maps at different resolutions. Of note, Lu et al. (23)

performed a brief review on fusion of pathomics, radiomics and
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genomics, also providing an overview of research works

combining radiomic and pathomics in the specific field of

cancer prognosis.

Despite some promising results emerging in our

preliminary study, there are still many limitations to

overcome. First, despite utilizing a large public database, our

final cohort size was still limited. However, we ensured our

analysis was conducted as rigorously as possible. We attempted

to account for these limited numbers by appropriately

adjusting the FDR threshold. Another important limitation

affecting our work concerns the missing information on the

exact localization and orientation of the surgical sample. This

certainly constitute a bias related to the lack of MRI-histology

correspondence, but at the same time it could be an advantage

as regards the generalizability of the approach developed in a

clinical context since the dataset investigated could be

representative of real-world data acquired in clinical practice.

However, further studies performed on radiomics and

pathomics data arising from colocalized MRI-pathology

images are needed, although care should be taken concerning

issues that can introduce bias when studying correlations

between imaging and histological data. In particular,

differences in orientation between the MRI scan planes and

the surgical sample can determine a significant mismatch, the

tissue deformation occurring when the histological sample is

placed outside its anatomical background can determine

important and locally nonlinear alignment inconsistencies,

and the different spatial resolution of the two methods (1–

5 mm for MR and 3–5 mm, for histology) does not allow

accurate co-localization (26). However, we attempted

to account for the missing MRI-histology co-localization

bias as best as possible by proceeding to accurately avoid

necrotic/cystic zones and large vessels in both macroscopic

VOIs on MRI and microscopic segmentations on WSI

images, in order to allow for multiscale quantification

providing complementary information contributing to the

understanding of tumor characteristics (73). In addition, we

could not investigate the association between pathomic

features and features deriving from quantitative parameters

associated with perfusion (e.g. Ktrans, Kep, Ve, CBV) due to

the non-availability of DCE/DSC images for almost all

included patients (74). Furthermore, as previously

mentioned, the features associated with cell density and

intranuclear ones are not directly associable (regarding the

functional meaning) to those of T1C. It would have been

interesting to conduct preliminary analyses on microvessel

cell density (MVD) to evaluate the associations between

more advanced features associated with MVD segmentations

and radiomic features from T1C (64, 75).

Moreover, we have not carried out survival analyses since the

information on treatments that the patients have carried out

were missing.
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Of note, we opted for evaluating a limited number of features

in this study in order to be able to directly translate descriptors

from one scale to the next as done in our pathomic-radiomic

analysis experiments. An essential criterion for having examined

these hand-crafted features is that they are easier to interpret

with respect to features obtained from neural networks (76, 77).

However, our framework may be used to study associations

between an expanded suite of radiomic and pathomic

measurements, as well as extended to characterizing

other cancers.

Another critical limitation affecting our study concern the

well-known lack of shared reference standards concerning

data storage, the missing agreement on analysis procedures,

and the feature reliability and reproducibility limitations

affecting both radiomics and pathomics (78). In particular,

the existing lack of standardization in terms of image

acquis i t ion, processes , segmentat ion methods, and

radiomics/pathomics analys is tools , could lead to

discrepancies in feature measurements that are not due to

underlying biological variations (79, 80). For example,

differences in scanners and image acquisition parameters

between considered patients may have affected radiomics

results (81). In particular, it should be highlighted that MR

images were acquired at different magnetic field strengths,

and this represented a confounding factor, mainly for T1 and

T2 images (82). However, it is worth noting that the stability

of ADC radiomics features was found to be unaffected by

differences in magnetic field strength, matching the field-

independent nature of ADC (83). However, we normalized

T1C raw images to account for the varying intensity ranges of

MRI data and improve the robustness of radiomics features,

as indicated by the IBSI guidelines (47). Moreover, we

proceeded to report in detail all steps of radiomic and

pathomic workflow performed in our study since it is

essential to develop this emerging field in terms of clinical

translation and to improve the reproducibility of study

outcomes (15, 84).

Although our findings require careful interpretation due to

the limitations mentioned above, the implemented

radiopathomic approach revealed interesting cross-scale

relationships between radiology and pathology in patients

with GBM and may represent a starting point for future

research on GBM. Our results strengthen the role of

radiomics approach and its validation in clinical practice as

“virtual biopsy” , introducing new insights for omics

integration toward a personalized medicine approach.

Further prospective and retrospective studies involving larger

groups of patients are essential to validate obtained results,

perform in-depth analyses and extend this approach to other

cancer types.
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